Math 323 — Exam I

Make sure your reasoning is clear. Points are specified.

- 1. (20 points) Let A be a nonempty subset of \mathbb{R} that is bounded above. Then it can be shown (but don't do it!) that there is a sequence (a_n) of terms in A for which $\lim a_n = \sup(A)$.
 - (a) Give an example of a set A for which there is no sequence in A with limit sup A that is eventually constant.
 - (b) Give an example of a set A for which every sequence in A with limit sup A is eventually constant.
 - (c) Prove that if c is a <u>negative</u> real number, then the set $cA = \{ca : a \in A\}$ is bounded below and $\inf(cA) = c \cdot \sup(A)$.
- 2. (25 points) Let us say that a sequence $(c_n)_{n=1}^{\infty}$ of real numbers "cervonges to c" (where $c \in \mathbb{R}$) if and only if there is an $N \in \mathbb{N}$ such that, for all n > N and all $\varepsilon > 0$, $|c_n c| < \varepsilon$.
 - (a) If a sequence (c_n) cervonges to c, does (c_n) converge to c? Explain, and if not, give an example.
 - (b) If a sequence (c_n) converges to c, does (c_n) cervonge to c? Explain, and if not, give an example.
- 3. (10 points) A problem in our text instructs us to define the phrase "converges to ∞ " most texts would say "diverges to ∞ ". Define what it should mean to say " (a_n) diverges to $-\infty$ ". (Warning: " $|a_n + \infty| < \varepsilon$ " is gibberish. What should "close to $-\infty$ " mean?)
- 4. (20 points) Concerning the Algebraic Limit Theorem :
 - (a) Prove the product part of the ALT: If $\lim a_n = a$ and $\lim b_n = b$, then $\lim (a_n b_n) = ab$. To eliminate a case in the proof, you may assume that $a \neq 0$.
 - (b) Using the ALT, prove that the limit of (3n+1)/(2n-5) is as expected.
- 5. (10 points) Prove that, if $x_n \leq y_n \leq z_n$ for all n in \mathbb{N} and $\lim x_n = \ell = \lim z_n$, then $\lim y_n$ also exists and is ℓ . You may use without proof the fact that, if $a \leq b \leq c$, then $|b| \leq \max(|a|, |c|)$.
- 6. (15 points) True or false. If true, give a quick proof; if false, give a counterexample.
 - (a) $\sup(AB) = (\sup A)(\sup B)$. (Here, $AB = \{ab : a \in A, b \in B\}$.)
 - (b) $\lim (a_n/b_n) = (\lim a_n)/(\lim b_n).$
 - (c) If $a_n \leq b_n$ for all n in \mathbb{N} , and $\lim a_n = a$ and $\lim b_n = b$, then $a \leq b$.

Math 323 — Solutions to Exam I

- 1. (a) One such A is the open interval (0,1), but any set that is bounded above and does not contain its sup would work.
 - (b) One such A is {1}, but any set in which the sup is in A but is separated from the rest of A by an open gap would work. (The technical phrase is that that sup is an "isolated point" of the set.)
 - (c) For each x in cA, x = ca for some a in A, and $\sup(A) \ge a$, so $c \cdot \sup(A) \le ca = x$; thus x is bounded below by $c \cdot \sup(A)$. Now let b be a lower bound of cA; then for all a in A, because $ca \in cA$, $b \le ca$, so $b/c \ge a$. Thus b/c is an upper bound for A, so $b/c \ge \sup(A)$, and hence $b \le c \cdot \sup(A)$. It follows that $c \cdot \sup(A)$ is the greatest lower bound of cA.
- 2. (a) Yes. The definition of "cervonges" implies that $c_n = c$ for all $n \ge N$; so of course for any $\varepsilon > 0$ there is an N for which $|c_n c| = 0 < \varepsilon$ for all $n \ge N$.
 - (b) No: The sequence (1/n) converges to 0, but it does not cervonge to 0.
- 3. One version of the definition might be: a_n converges to $-\infty$ iff, for each B > 0, there is an $N \in \mathbb{N}$ for which, for all $n \geq N$, $a_n \leq -B$.
- 4. (a) Let $\varepsilon > 0$ be given, and choose N in N sufficiently large that for all $n \ge N$,

$$|a_n - a| < \frac{\varepsilon}{2(|b| + 1)}$$
 and $|b_n - b| < \frac{\varepsilon}{2|a|}$ and $|b_n - b| < 1$.

Then for such n we have $||b_n| - |b|| < 1$, so that $|b_n| < |b| + 1$, and so

$$|a_n b_n - ab| = |(a_n - a)b_n + a(b_n - b)| \le |a_n - a||b_n| + |a||b_n - b|$$

$$< \frac{\varepsilon}{2(|b| + 1)}(|b| + 1) + |a|\frac{\varepsilon}{2|a|} = \varepsilon .$$

Therefore, $\lim(a_n b_n) = ab$.

- (b) Because (3n+1)/(2n-5) is equal to $(3+\frac{1}{n})/(2-\frac{5}{n})$, the limit of the latter is equal to the limit of the former. But using the fact that $\lim(c/n) = 0$ for any constant c, we get using the ALT that $\lim(3+\frac{1}{n}) = (\lim 3) + (\lim \frac{1}{n}) = 3 + 0 = 3$ and similarly $\lim(2-\frac{5}{n}) = (\lim 2) (\lim \frac{5}{n}) = 2 0 = 2$, so again by the ALT (and the fact that $2 \neq 0$), we have $\lim((3n+1)/(2n-5)) = 3/2$.
- 5. Let $\varepsilon > 0$ be given, and pick N in \mathbb{N} so that, for all $n \ge N$, $|x_n \ell| < \varepsilon$ and $|z_n \ell| < \varepsilon$. Then because $x_n \ell \le y_n \ell \le z_n \ell$, we have, for all $n \ge N$, $|y_n \ell| \le \max(|x_n \ell|, |z_n \ell|) < \varepsilon$. Therefore $\lim y_n = \ell$.
- 6. (a) False: A counterexample is $A = \{-1\}$ and $B = \{0, 1\}$, because $\sup(AB) = \sup\{-1, 0\} = 0$, but $(\sup A)(\sup B) = (-1)(1) = -1$.
 - (b) False: The hypothesis that $\lim b_n \neq 0$ is necessary. For instance $a_n = 1/n$ and $b_n = 1/n$ would make the left side equal to 1 and the right undefined.
 - (c) True, by the Order Limit Theorem.