Math 323 - Exam I

Make sure your reasoning is clear. Points are specified.

1. (20 points) Let A be a nonempty subset of \mathbb{R} that is bounded above. Then it can be shown (but don't do it!) that there is a sequence $\left(a_{n}\right)$ of terms in A for which $\lim a_{n}=\sup (A)$.
(a) Give an example of a set A for which there is no sequence in A with $\operatorname{limit} \sup A$ that is eventually constant.
(b) Give an example of a set A for which every sequence in A with $\operatorname{limit} \sup A$ is eventually constant.
(c) Prove that if c is a negative real number, then the set $c A=\{c a: a \in A\}$ is bounded below and $\inf (c A)=c \cdot \sup (A)$.
2. (25 points) Let us say that a sequence $\left(c_{n}\right)_{n=1}^{\infty}$ of real numbers "cervonges to c " (where $c \in \mathbb{R}$) if and only if there is an $N \in \mathbb{N}$ such that, for all $n>N$ and all $\varepsilon>0,\left|c_{n}-c\right|<\varepsilon$.
(a) If a sequence $\left(c_{n}\right)$ cervonges to c, does $\left(c_{n}\right)$ converge to c ? Explain, and if not, give an example.
(b) If a sequence $\left(c_{n}\right)$ converges to c, does $\left(c_{n}\right)$ cervonge to c ? Explain, and if not, give an example.
3. (10 points) A problem in our text instructs us to define the phrase "converges to ∞ " - most texts would say "diverges to ∞ ". Define what it should mean to say " $\left(a_{n}\right)$ diverges to $-\infty$ ". (Warning: " $\left|a_{n}+\infty\right|<\varepsilon$ " is gibberish. What should "close to $-\infty$ " mean?)
4. (20 points) Concerning the Algebraic Limit Theorem :
(a) Prove the product part of the ALT: If $\lim a_{n}=a$ and $\lim b_{n}=b$, then $\lim \left(a_{n} b_{n}\right)=a b$. To eliminate a case in the proof, you may assume that $a \neq 0$.
(b) Using the ALT, prove that the limit of $(3 n+1) /(2 n-5)$ is as expected.
5. (10 points) Prove that, if $x_{n} \leq y_{n} \leq z_{n}$ for all n in \mathbb{N} and $\lim x_{n}=\ell=\lim z_{n}$, then $\lim y_{n}$ also exists and is ℓ. You may use without proof the fact that, if $a \leq b \leq c$, then $|b| \leq \max (|a|,|c|)$.
6. (15 points) True or false. If true, give a quick proof; if false, give a counterexample.
(a) $\sup (A B)=(\sup A)(\sup B)$. (Here, $A B=\{a b: a \in A, b \in B\}$.)
(b) $\lim \left(a_{n} / b_{n}\right)=\left(\lim a_{n}\right) /\left(\lim b_{n}\right)$.
(c) If $a_{n} \leq b_{n}$ for all n in \mathbb{N}, and $\lim a_{n}=a$ and $\lim b_{n}=b$, then $a \leq b$.

Math 323 - Solutions to Exam I

1. (a) One such A is the open interval $(0,1)$, but any set that is bounded above and does not contain its sup would work.
(b) One such A is $\{1\}$, but any set in which the sup is in A but is separated from the rest of A by an open gap would work. (The technical phrase is that that sup is an "isolated point" of the set.)
(c) For each x in $c A, x=c a$ for some a in A, and $\sup (A) \geq a$, so $c \cdot \sup (A) \leq c a=x$; thus x is bounded below by $c \cdot \sup (A)$. Now let b be a lower bound of $c A$; then for all a in A, because $c a \in c A, b \leq c a$, so $b / c \geq a$. Thus b / c is an upper bound for A, so $b / c \geq \sup (A)$, and hence $b \leq c \cdot \sup (A)$. It follows that $c \cdot \sup (A)$ is the greatest lower bound of $c A$.
2. (a) Yes. The definition of "cervonges" implies that $c_{n}=c$ for all $n \geq N$; so of course for any $\varepsilon>0$ there is an N for which $\left|c_{n}-c\right|=0<\varepsilon$ for all $n \geq N$.
(b) No: The sequence $(1 / n)$ converges to 0 , but it does not cervonge to 0 .
3. One version of the definition might be: a_{n} converges to $-\infty$ iff, for each $B>0$, there is an $N \in \mathbb{N}$ for which, for all $n \geq N, a_{n} \leq-B$.
4. (a) Let $\varepsilon>0$ be given, and choose N in \mathbb{N} sufficiently large that for all $n \geq N$,

$$
\left|a_{n}-a\right|<\frac{\varepsilon}{2(|b|+1)} \quad \text { and } \quad\left|b_{n}-b\right|<\frac{\varepsilon}{2|a|} \quad \text { and } \quad\left|b_{n}-b\right|<1
$$

Then for such n we have $\left|\left|b_{n}\right|-|b|\right|<1$, so that $\left|b_{n}\right|<|b|+1$, and so

$$
\begin{aligned}
\left|a_{n} b_{n}-a b\right| & =\left|\left(a_{n}-a\right) b_{n}+a\left(b_{n}-b\right)\right| \leq\left|a_{n}-a\right|\left|b_{n}\right|+|a|\left|b_{n}-b\right| \\
& <\frac{\varepsilon}{2(|b|+1)}(|b|+1)+|a| \frac{\varepsilon}{2|a|}=\varepsilon .
\end{aligned}
$$

Therefore, $\lim \left(a_{n} b_{n}\right)=a b$.
(b) Because $(3 n+1) /(2 n-5)$ is equal to $\left(3+\frac{1}{n}\right) /\left(2-\frac{5}{n}\right)$, the limit of the latter is equal to the limit of the former. But using the fact that $\lim (c / n)=0$ for any constant c, we get using the ALT that $\lim \left(3+\frac{1}{n}\right)=(\lim 3)+\left(\lim \frac{1}{n}\right)=3+0=3$ and similarly $\lim \left(2-\frac{5}{n}\right)=(\lim 2)-\left(\lim \frac{5}{n}\right)=2-0=2$, so again by the ALT (and the fact that $2 \neq 0)$, we have $\lim ((3 n+1) /(2 n-5))=3 / 2$.
5. Let $\varepsilon>0$ be given, and pick N in \mathbb{N} so that, for all $n \geq N,\left|x_{n}-\ell\right|<\varepsilon$ and $\left|z_{n}-\ell\right|<\varepsilon$. Then because $x_{n}-\ell \leq y_{n}-\ell \leq z_{n}-\ell$, we have, for all $n \geq N,\left|y_{n}-\ell\right| \leq \max \left(\left|x_{n}-\ell\right|,\left|z_{n}-\ell\right|\right)<\varepsilon$. Therefore $\lim y_{n}=\ell$.
6. (a) False: A counterexample is $A=\{-1\}$ and $B=\{0,1\}$, because $\sup (A B)=\sup \{-1,0\}=$ 0 , but $(\sup A)(\sup B)=(-1)(1)=-1$.
(b) False: The hypothesis that $\lim b_{n} \neq 0$ is necessary. For instance $a_{n}=1 / n$ and $b_{n}=1 / n$ would make the left side equal to 1 and the right undefined.
(c) True, by the Order Limit Theorem.

