Math 323 — Exam I

- 1. (25 points) Using the definition of limit (i.e., not the Algebraic Limit Theorem), prove the following:
 - (a) $\lim((3n+4)/(2n-1)) = 3/2$.
 - (b) If $\lim x_n = x$ and $\lim y_n = y$, then $\lim (x_n y_n) = x y$.
- 2. (20 points) Use the Archimedean property to prove the following: If $A \subseteq \mathbb{R}$ is nonempty and bounded below, then there is a sequence (a_n) with $a_n \in A$ for all $n \in \mathbb{N}$ such that $\lim a_n = \inf A$. (Hint: Why, for each $n \in \mathbb{N}$, is there an element a_n for which $a_n \inf A < 1/n$?)
- 3. (10 points) Recall that, in creating a definition for "convergence to ∞ ", the phrase " $|x_n \ell| < \varepsilon$ " in the usual definition of convergence to ℓ (where ε is thought of as small) is replaced with " $x_n > \varepsilon$ " (where ε is thought of as large). Use this definition to prove that the sequence $(n \frac{1}{n})_{n=1}^{\infty}$ converges to ∞ .
- 4. (20 points) Let (x_n) be a sequence of real numbers, and define the sequence (y_n) (which may have terms of $-\infty$) by: $y_n = \inf\{x_m : m \ge n\}$.
 - (a) Prove that $y_n \leq y_{n+1}$ for all $n \in \mathbb{N}$.
 - (b) Prove that, if (x_n) converges to ℓ , then so does (y_n) .

You may use the fact that if $A \subseteq B$, then inf $A \ge \inf B$. [Read this after the exam: Because (y_n) is increasing, it has a limit, which may be ∞ or $-\infty$. This limit is called the "limit inferior", or "lim inf" of (x_n) . There is a parallel concept of "limit superior"; and (x_n) converges to ℓ iff

$$\lim\inf x_n = \lim\sup x_n = \ell .$$

- 5. (25 points) True or false? If true, prove it. If false, give a counterexample.
 - (a) In any interval $I = \{x \in \mathbb{R} : a \le x \le b\}$ (where a < b, of course), there is no second-largest number, i.e., no number just below b.
 - (b) If (y_n) is divergent and (x_n) is convergent with $\lim x_n \neq 0$, then $(x_n y_n)$ is divergent.
 - (c) Let A, B be subsets of \mathbb{R} that are nonempty and bounded below. If $\forall a \in A, \exists b \in B$ such that a < b, then we have $\inf A < \inf B$.
 - (d) If A is a set of irrational real numbers that is bounded above, then sup A is irrational.

Math 323 — Solutions to Exam I

1. (a) Let $\varepsilon > 0$ be given. Pick $N \in \mathbb{N}$ so that $N > (1/4)((11/\varepsilon) + 2)$. Then for all $n \ge N$ we have :

$$\left| \frac{3n+4}{2n-1} - \frac{3}{2} \right| = \left| \frac{6n+8-(6n-3)}{2(2n-1)} \right| = \left| \frac{11}{4n-2} \right| < \varepsilon.$$

Therefore, $\lim((3n+4)/(2n-1)) = 3/2$.

(b) Let $\varepsilon > 0$ be given. Pick $N \in \mathbb{N}$ so that for all n > N, $|x_n - x| < \varepsilon/2$ and $|y_n - y| < \varepsilon/2$. Then for all n > N we have

$$|(x_n - y_n) - (x - y)| = |(x_n - x) - (y_n - y)| \le |x_n - x| + |y_n - y| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
.

Therefore, $\lim (x_n - y_n) = x - y$.

- 2. Write $a^* = \inf A$. Now for each $n \in \mathbb{N}$, $a^* + (1/n)$ is greater than the greatest lower bound of A, so it is not a lower bound of A; hence $\exists a_n \in A$ such that $a_n < a^* + 1/n$, and hence $0 \le a_n a^* < 1/n$. We show (a_n) converges to a^* : Let $\varepsilon > 0$ be given, and pick $N \in \mathbb{N}$ such that $1/N < \varepsilon$. Then for all $n \ge N$, because $a_n a^* \ge 0$, $|a_n a^*| = a_n a^*$, and by our choice of the a_n 's, the last expression is less than 1/n, which in turn is less than ε . Therefore $\lim (a_n) = a^*$.
- 3. Let $\varepsilon > 0$ be given, and pick $N \in \mathbb{N}$ such that $N > \varepsilon + 1$. Then for $n \geq N$ we have

$$n - \frac{1}{n} = \frac{n^2 - 1}{n} = (n - 1)\frac{n + 1}{n} > n - 1 > \varepsilon$$
.

Therefore, $\lim(n-\frac{1}{n})=\infty$.

- 4. (a) Because $\{x_m : m \ge n\} \supseteq \{x_m : m \ge n+1\}$, we have $y_n = \inf\{x_m : m \ge n\} \le \inf\{x_m : m \ge n+1\} = y_{n+1}$.
 - (b) Let $\varepsilon > 0$ be given, and choose $N \in \mathbb{N}$ such that, for $n \geq N$, $|x_n \ell| < \varepsilon/2$. Then for $n \geq N$, because all the x_m with $m \geq n$ are in the interval $(\ell \varepsilon/2, \ell + \varepsilon/2)$, we have

$$\ell - \varepsilon/2 = \inf(\ell - \varepsilon/2, \ell + \varepsilon/2) \le \inf\{x_m : m \ge n\} = y_n \le x_n < \ell + \varepsilon/2$$

so $|y_n - \ell| \le \varepsilon/2 < \varepsilon$. Therefore, $\lim y_n = \ell$.

- 5. (a) True. Take any c in [a,b] with c < b. Then there is a number q indeed, a rational number, if we want one for which c < q < b, so c is not the second-largest in the interval.
 - (b) True. Assume BWOC that $(x_n y_n)$ converges. Then by the Algebraic Limit Theorem, $(1/x_n)$ also converges, so $(y_n) = ((1/x_n)(x_n y_n))$ also converges, a contradiction.
 - (c) False. A counterexample is $A = \{1/(2n+1) : n \in \mathbb{N}\}$ and $B = \{1/(2n) : n \in \mathbb{N}\}$.
 - (d) False. A counterexample is $A = \{-\sqrt{2}/n : n \in \mathbb{N}\}.$