Math 323 - Exam I

1. (25 points) Using the definition of limit (i.e., not the Algebraic Limit Theorem), prove the following:
(a) $\lim ((3 n+4) /(2 n-1))=3 / 2$.
(b) If $\lim x_{n}=x$ and $\lim y_{n}=y$, then $\lim \left(x_{n}-y_{n}\right)=x-y$.
2. (20 points) Use the Archimedean property to prove the following: If $A \subseteq \mathbb{R}$ is nonempty and bounded below, then there is a sequence $\left(a_{n}\right)$ with $a_{n} \in A$ for all $n \in \mathbb{N}$ such that $\lim a_{n}=$ $\inf A$. (Hint: Why, for each $n \in \mathbb{N}$, is there an element a_{n} for which $a_{n}-\inf A<1 / n$?)
3. (10 points) Recall that, in creating a definition for "convergence to ∞ ", the phrase " $\left|x_{n}-\ell\right|<$ $\varepsilon "$ in the usual definition of convergence to ℓ (where ε is thought of as small) is replaced with " $x_{n}>\varepsilon$ " (where ε is thought of as large). Use this definition to prove that the sequence $\left(n-\frac{1}{n}\right)_{n=1}^{\infty}$ converges to ∞.
4. (20 points) Let $\left(x_{n}\right)$ be a sequence of real numbers, and define the sequence $\left(y_{n}\right)$ (which may have terms of $-\infty)$ by: $y_{n}=\inf \left\{x_{m}: m \geq n\right\}$.
(a) Prove that $y_{n} \leq y_{n+1}$ for all $n \in \mathbb{N}$.
(b) Prove that, if $\left(x_{n}\right)$ converges to ℓ, then so does $\left(y_{n}\right)$.

You may use the fact that if $A \subseteq B$, then $\inf A \geq \inf B$. [Read this after the exam: Because $\left(y_{n}\right)$ is increasing, it has a limit, which may be ∞ or $-\infty$. This limit is called the "limit inferior", or "lim inf" of $\left(x_{n}\right)$. There is a parallel concept of "limit superior"; and (x_{n}) converges to ℓ iff

$$
\left.\lim \inf x_{n}=\lim \sup x_{n}=\ell .\right]
$$

5. (25 points) True or false? If true, prove it. If false, give a counterexample.
(a) In any interval $I=\{x \in \mathbb{R}: a \leq x \leq b\}$ (where $a<b$, of course), there is no secondlargest number, i.e., no number just below b.
(b) If $\left(y_{n}\right)$ is divergent and $\left(x_{n}\right)$ is convergent with $\lim x_{n} \neq 0$, then $\left(x_{n} y_{n}\right)$ is divergent.
(c) Let A, B be subsets of \mathbb{R} that are nonempty and bounded below. If $\forall a \in A, \exists b \in B$ such that $a<b$, then we have $\inf A<\inf B$.
(d) If A is a set of irrational real numbers that is bounded above, then $\sup A$ is irrational.

Math 323 - Solutions to Exam I

1. (a) Let $\varepsilon>0$ be given. Pick $N \in \mathbb{N}$ so that $N>(1 / 4)((11 / \varepsilon)+2)$. Then for all $n \geq N$ we have :

$$
\left|\frac{3 n+4}{2 n-1}-\frac{3}{2}\right|=\left|\frac{6 n+8-(6 n-3)}{2(2 n-1)}\right|=\left|\frac{11}{4 n-2}\right|<\varepsilon .
$$

Therefore, $\lim ((3 n+4) /(2 n-1))=3 / 2$.
(b) Let $\varepsilon>0$ be given. Pick $N \in \mathbb{N}$ so that for all $n>N,\left|x_{n}-x\right|<\varepsilon / 2$ and $\left|y_{n}-y\right|<\varepsilon / 2$. Then for all $n>N$ we have

$$
\left|\left(x_{n}-y_{n}\right)-(x-y)\right|=\left|\left(x_{n}-x\right)-\left(y_{n}-y\right)\right| \leq\left|x_{n}-x\right|+\left|y_{n}-y\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Therefore, $\lim \left(x_{n}-y_{n}\right)=x-y$.
2. Write $a^{*}=\inf A$. Now for each $n \in \mathbb{N}, a^{*}+(1 / n)$ is greater than the greatest lower bound of A, so it is not a lower bound of A; hence $\exists a_{n} \in A$ such that $a_{n}<a^{*}+1 / n$, and hence $0 \leq a_{n}-a^{*}<1 / n$. We show $\left(a_{n}\right)$ converges to a^{*} : Let $\varepsilon>0$ be given, and pick $N \in \mathbb{N}$ such that $1 / N<\varepsilon$. Then for all $n \geq N$, because $a_{n}-a^{*} \geq 0,\left|a_{n}-a^{*}\right|=a_{n}-a^{*}$, and by our choice of the a_{n} 's, the last expression is less than $1 / n$, which in turn is less than ε. Therefore $\lim \left(a_{n}\right)=a^{*}$.
3. Let $\varepsilon>0$ be given, and pick $N \in \mathbb{N}$ such that $N>\varepsilon+1$. Then for $n \geq N$ we have

$$
n-\frac{1}{n}=\frac{n^{2}-1}{n}=(n-1) \frac{n+1}{n}>n-1>\varepsilon .
$$

Therefore, $\lim \left(n-\frac{1}{n}\right)=\infty$.
4. (a) Because $\left\{x_{m}: m \geq n\right\} \supseteq\left\{x_{m}: m \geq n+1\right\}$, we have $y_{n}=\inf \left\{x_{m}: m \geq n\right\} \leq \inf \left\{x_{m}\right.$: $m \geq n+1\}=y_{n+1}$.
(b) Let $\varepsilon>0$ be given, and choose $N \in \mathbb{N}$ such that, for $n \geq N,\left|x_{n}-\ell\right|<\varepsilon / 2$. Then for $n \geq N$, because all the x_{m} with $m \geq n$ are in the interval $(\ell-\varepsilon / 2, \ell+\varepsilon / 2)$, we have

$$
\ell-\varepsilon / 2=\inf (\ell-\varepsilon / 2, \ell+\varepsilon / 2) \leq \inf \left\{x_{m}: m \geq n\right\}=y_{n} \leq x_{n}<\ell+\varepsilon / 2,
$$

so $\left|y_{n}-\ell\right| \leq \varepsilon / 2<\varepsilon$. Therefore, $\lim y_{n}=\ell$.
5. (a) True. Take any c in $[a, b]$ with $c<b$. Then there is a number q - indeed, a rational number, if we want one - for which $c<q<b$, so c is not the second-largest in the interval.
(b) True. Assume BWOC that $\left(x_{n} y_{n}\right)$ converges. Then by the Algebraic Limit Theorem, $\left(1 / x_{n}\right)$ also converges, so $\left(y_{n}\right)=\left(\left(1 / x_{n}\right)\left(x_{n} y_{n}\right)\right)$ also converges, a contradiction.
(c) False. A counterexample is $A=\{1 /(2 n+1): n \in \mathbb{N}\}$ and $B=\{1 /(2 n): n \in \mathbb{N}\}$.
(d) False. A counterexample is $A=\{-\sqrt{2} / n: n \in \mathbb{N}\}$.

