
September 25, 2001
Math 323 — Exam I

1. (25 points) Using the definition of limit (i.e., not the Algebraic Limit Theorem), prove the
following:

(a) lim((3n + 4)/(2n− 1)) = 3/2.

(b) If lim xn = x and lim yn = y, then lim(xn − yn) = x− y.

2. (20 points) Use the Archimedean property to prove the following: If A ⊆ IR is nonempty and
bounded below, then there is a sequence (an) with an ∈ A for all n ∈ IN such that lim an =
inf A. (Hint: Why, for each n ∈ IN, is there an element an for which an − inf A < 1/n?)

3. (10 points) Recall that, in creating a definition for “convergence to ∞”, the phrase “|xn−`| <
ε” in the usual definition of convergence to ` (where ε is thought of as small) is replaced with
“xn > ε” (where ε is thought of as large). Use this definition to prove that the sequence
(n− 1

n)∞n=1 converges to ∞.

4. (20 points) Let (xn) be a sequence of real numbers, and define the sequence (yn) (which may
have terms of −∞) by: yn = inf{xm : m ≥ n}.

(a) Prove that yn ≤ yn+1 for all n ∈ IN.

(b) Prove that, if (xn) converges to `, then so does (yn).

You may use the fact that if A ⊆ B, then inf A ≥ inf B. [Read this after the exam: Because
(yn) is increasing, it has a limit, which may be ∞ or −∞. This limit is called the “limit
inferior”, or “lim inf” of (xn). There is a parallel concept of “limit superior”; and (xn)
converges to ` iff

lim inf xn = lim supxn = ` .]

5. (25 points) True or false? If true, prove it. If false, give a counterexample.

(a) In any interval I = {x ∈ IR : a ≤ x ≤ b} (where a < b, of course), there is no second-
largest number, i.e., no number just below b.

(b) If (yn) is divergent and (xn) is convergent with lim xn 6= 0, then (xnyn) is divergent.

(c) Let A,B be subsets of IR that are nonempty and bounded below. If ∀ a ∈ A, ∃ b ∈ B
such that a < b, then we have inf A < inf B.

(d) If A is a set of irrational real numbers that is bounded above, then sup A is irrational.



Math 323 — Solutions to Exam I

1. (a) Let ε > 0 be given. Pick N ∈ IN so that N > (1/4)((11/ε) + 2). Then for all n ≥ N we
have : ∣∣∣∣3n + 4

2n− 1
− 3

2

∣∣∣∣ =
∣∣∣∣6n + 8− (6n− 3)

2(2n− 1)
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∣∣∣∣ 11
4n− 2

∣∣∣∣ < ε .

Therefore, lim((3n + 4)/(2n− 1)) = 3/2.

(b) Let ε > 0 be given. Pick N ∈ IN so that for all n > N , |xn−x| < ε/2 and |yn−y| < ε/2.
Then for all n > N we have

|(xn − yn)− (x− y)| = |(xn − x)− (yn − y)| ≤ |xn − x|+ |yn − y| < ε

2
+

ε

2
= ε .

Therefore, lim(xn − yn) = x− y.

2. Write a∗ = inf A. Now for each n ∈ IN, a∗ + (1/n) is greater than the greatest lower bound
of A, so it is not a lower bound of A; hence ∃ an ∈ A such that an < a∗ + 1/n, and hence
0 ≤ an − a∗ < 1/n. We show (an) converges to a∗: Let ε > 0 be given, and pick N ∈ IN such
that 1/N < ε. Then for all n ≥ N , because an − a∗ ≥ 0, |an − a∗| = an − a∗, and by our
choice of the an’s, the last expression is less than 1/n, which in turn is less than ε. Therefore
lim(an) = a∗.

3. Let ε > 0 be given, and pick N ∈ IN such that N > ε + 1. Then for n ≥ N we have

n− 1
n

=
n2 − 1

n
= (n− 1)

n + 1
n

> n− 1 > ε .

Therefore, lim(n− 1
n) = ∞.

4. (a) Because {xm : m ≥ n} ⊇ {xm : m ≥ n + 1}, we have yn = inf{xm : m ≥ n} ≤ inf{xm :
m ≥ n + 1} = yn+1.

(b) Let ε > 0 be given, and choose N ∈ IN such that, for n ≥ N , |xn − `| < ε/2. Then for
n ≥ N , because all the xm with m ≥ n are in the interval (`− ε/2, ` + ε/2), we have

`− ε/2 = inf(`− ε/2, ` + ε/2) ≤ inf{xm : m ≥ n} = yn ≤ xn < ` + ε/2 ,

so |yn − `| ≤ ε/2 < ε. Therefore, lim yn = `.

5. (a) True. Take any c in [a, b] with c < b. Then there is a number q — indeed, a rational
number, if we want one — for which c < q < b, so c is not the second-largest in the
interval.

(b) True. Assume BWOC that (xnyn) converges. Then by the Algebraic Limit Theorem,
(1/xn) also converges, so (yn) = ((1/xn)(xnyn)) also converges, a contradiction.

(c) False. A counterexample is A = {1/(2n + 1) : n ∈ IN} and B = {1/(2n) : n ∈ IN}.
(d) False. A counterexample is A = {−

√
2/n : n ∈ IN}.


