September 25, 2001
Math 323 — Exam I

1. (25 points) Using the definition of limit (i.e., not the Algebraic Limit Theorem), prove the
following:

(a) im((3n+4)/(2n —1)) = 3/2.
(b) If limz, = = and limy,, = y, then lim(x,, —y,) =z — y.

2. (20 points) Use the Archimedean property to prove the following: If A C IR is nonempty and
bounded below, then there is a sequence (a,) with a, € A for all n € IN such that lima,, =
inf A. (Hint: Why, for each n € IN, is there an element a,, for which a,, —inf A < 1/n?)

3. (10 points) Recall that, in creating a definition for “convergence to oo”, the phrase “|x,, —¢| <
€” in the usual definition of convergence to ¢ (where ¢ is thought of as small) is replaced with
“r, > &” (where € is thought of as large). Use this definition to prove that the sequence
(n— 1)2, converges to cc.

4. (20 points) Let (x,) be a sequence of real numbers, and define the sequence (y,) (which may
have terms of —o0) by: y, = inf{x,, : m > n}.

(a) Prove that y, < yn41 for all n € N.

(b) Prove that, if (z,) converges to ¢, then so does (yy).

You may use the fact that if A C B, then inf A > inf B. [Read this after the exam: Because
(yn) is increasing, it has a limit, which may be oo or —oo. This limit is called the “limit
inferior”, or “lim inf” of (x,). There is a parallel concept of “limit superior”; and ()
converges to £ iff

lim inf z,, = lim supx,, = ¢ ]

5. (25 points) True or false? If true, prove it. If false, give a counterexample.
(a) In any interval I = {x € R: a < x < b} (where a < b, of course), there is no second-
largest number, i.e., no number just below b.

(b) If (yn) is divergent and (x,) is convergent with lim z,, # 0, then (z,yy) is divergent.

(c) Let A, B be subsets of R that are nonempty and bounded below. If Va € A, 3b € B
such that a < b, then we have inf A < inf B.

(d) If A is a set of irrational real numbers that is bounded above, then sup A is irrational.



Math 323 — Solutions to Exam 1

1. (a) Let e > 0 be given. Pick N € IN so that N > (1/4)((11/¢) + 2). Then for all n > N we
have :
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Therefore, lim((3n +4)/(2n — 1)) = 3/2.

(b) Let e > 0 be given. Pick N € IN so that for all n > N, |z, — 2| < £/2 and |y, —y| < £/2.
Then for all n > N we have
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Therefore, lim(z,, — y,) = — y.

2. Write a* = inf A. Now for each n € IN, a* 4 (1/n) is greater than the greatest lower bound
of A, so it is not a lower bound of A; hence Ja, € A such that a, < a* + 1/n, and hence
0 <a,—a* <1/n. We show (ay) converges to a*: Let € > 0 be given, and pick N € N such
that 1/N < e. Then for all n > N, because a, —a* > 0, |a, — a*| = a, — a*, and by our
choice of the a,’s, the last expression is less than 1/n, which in turn is less than . Therefore
lim(a,) = a*.

3. Let € > 0 be given, and pick N € IN such that NV > &+ 1. Then for n > N we have
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Therefore, lim(n — 1) = .

4. (a) Because {z, : m > n} D {x,, : m > n+ 1}, we have y, = inf{z,, : m > n} <inf{z,, :
m>n+1} = ypt1.

(b) Let £ > 0 be given, and choose N € IN such that, for n > N, |x,, — f| < /2. Then for
n > N, because all the z,, with m > n are in the interval (¢ —e/2,¢ + ¢/2), we have

(—¢e/2=inf(l —¢/2,0+¢/2) <inf{zy, :m>n} =y, <x, <l+e/2,
o |yn — 4| < e/2 < e. Therefore, limy,, = /.

5. (a) True. Take any c in [a,b] with ¢ < b. Then there is a number ¢ — indeed, a rational
number, if we want one — for which ¢ < ¢ < b, so ¢ is not the second-largest in the
interval.

(b) True. Assume BWOC that (z,y,) converges. Then by the Algebraic Limit Theorem,
(1/xy,) also converges, so (yn) = ((1/zyn)(znyn)) also converges, a contradiction.

(c) False. A counterexample is A ={1/(2n+1):n € N} and B = {1/(2n) : n € IN}.
(d) False. A counterexample is A = {—v/2/n:n € N}.



