1. (25 points) Using only the $\delta-\varepsilon$ definition of continuity, prove the following:
(a) $f(x)=x^{2}-2 x$ is continuous at $x=-1$. (Hint: Try $\left.\delta=\min \{1, \varepsilon / 5)\right\}$.)
(b) If $f, g: S \rightarrow \mathbf{R}$ are continuous at the point c in S, then $f+2 g$ is also continuous at c.
2. (15 points) Prove that, if $p>1$, then $\sum_{n=1}^{\infty}\left(1 / n^{p}\right)$ converges. You may assume the "Cauchy Condensation Test": If $\left(a_{n}\right)$ is a decreasing sequence of positive numbers, then

$$
\sum_{n=1}^{\infty} a_{n} \quad \text { converges iff } \quad \sum_{n=1}^{\infty} 2^{n} a_{2^{n}} \quad \text { converges. }
$$

3. (20 points) Give an example of each of the following, or argue that such an example cannot exist.
(a) A uncountably infinite set with empty interior.
(b) A collection of compact sets whose union is neither open nor closed.
(c) A finite collection of open sets whose intersection is nonempty and compact.
(d) A continuous function $f: \mathbf{R} \rightarrow \mathbf{R}$ and a compact set A for which $f^{-1}(A)$ is not compact. (You may do this one with a sketch of a graph, but make clear what A and $f(A)$ are.)
4. (20 points) Prove that a subset A of \mathbf{R} is open if and only if, for every convergent sequence $\left(x_{n}\right)$ in R such that $\lim \left(x_{n}\right) \in A$, there are at most finitely many $n \in \mathbf{N}$ for which $x_{n} \notin A$. (Hint: If A is not open, then we can find an element $a \in A$ such that, for all $n \in \mathbf{N}$, $V_{1 / n}(a) \nsubseteq A$, so $\exists x_{n} \notin A$ such that $\left|x_{n}-a\right|<1 / n$.)
5. (20 points) True or false? If true, prove it. If false, give a counterexample.
(a) If each $a_{n} \geq 0$ and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n} /\left(1+a_{n}\right)$ also converges.
(b) If $\left(a_{n}\right) \rightarrow 0$ and and $\left|c_{m}-c_{n}\right| \leq a_{n} \forall m \geq n$, then $\left(c_{n}\right)$ converges.
(c) Suppose that $S \subseteq \mathbf{R}, c \in S$ and $f, g, h: S \rightarrow \mathbf{R}$ with $f(x) \leq g(x) \leq h(x)$ for all $x \in S$, and that $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} h(x)$ both exist. Then $\lim _{x \rightarrow c} g(x)$ also exists and $\lim _{x \rightarrow c} f(x) \leq \lim _{x \rightarrow c} g(x) \leq \lim _{x \rightarrow c} h(x)$,
(d) The uncountably infinite open cover $\left\{V_{0.1}(x): x \in[0,1]\right\}$ of the closed interval $[0,1]$ has no finite subcover.

Math 323 - Solutions to Exam IIB

1. (a) Let $\varepsilon>0$ be given, and pick $\delta=\min \{1, \varepsilon / 5)\}$, as suggested in the hint. Then for $x \in \mathbf{R}$ with $|x-(-1)|<\delta \leq 1$, we have $-2<x<0$, so $-5<x-3<-3$ and hence $|x+2|<5$; so $\left|\left(x^{2}-2 x\right)-\left((-1)^{2}-2(-1)\right)\right|=\left|x^{2}-2 x-3\right|=|x-(-1)||x+3|<(\varepsilon / 5) 5=\varepsilon$. Therefore, f is continuous at -1 .
(b) Let $\varepsilon>0$ be given, and let $\delta>0$ be such that $x \in S$ and $|x-c|<\delta$ implies $|f(x)-f(c)|<$ $\varepsilon / 2$ and $|g(x)-g(c)|<\varepsilon / 4$. Then $x \in S$ and $|x-c|<\delta$ implies

$$
|(f(x)+2 g(x))-(f(c)+2 g(c))| \leq|f(x)-f(c)|+2|g(x)-g(c)|<\frac{\varepsilon}{2}+2\left(\frac{\varepsilon}{4}\right)=\varepsilon
$$

Therefore, $f+g$ is continuous at c.
2. Clearly $1 / n^{p}>1 /(n+1)^{p}$, so the terms of the given series are decreasing and positive. By the Cauchy Condensation Test, it suffices to show that $\sum 2^{n}\left(1 /\left(2^{n}\right)^{p}\right)$ converges; and the latter series can be written $\sum 1 /\left(2^{p-1}\right)^{n}$. This is a geometric series, and because $p>1$, the common ratio $1 / 2^{p-1}$ is less than one. So the series converges, and hence by the Cauchy Condensation Test $\sum_{n=1}^{\infty}\left(1 / n^{p}\right)$ also converges.
3. (a) \mathbf{I}, the set of irrational numbers.
(b) $K_{n}=[0,(n-1) / n]: \bigcup_{n=1}^{\infty} K_{n}=[0,1)$.
(c) Impossible: The intersection of finitely many open sets is open, so if it is nonempty, it can't be closed and hence not compact.
(d) One example is $f(x)=2$ and $A=\{2\}: f^{-1}(A)=\mathbf{R}$.
4. Suppose A is open, and take a convergent sequence $\left(x_{n}\right)$ with limit $a \in A$. Then there is an $\varepsilon>0$ for which $V_{\varepsilon}(a) \subseteq A$, and there is an $N \in \mathbf{N}$ for which $n \geq N$ implies $\left|x_{n}-a\right|<\varepsilon$. Thus, for all n except for the finitely many $n<N$, we have $x_{n} \in V_{\varepsilon}(a) \subseteq A$.

Conversely, suppose that every sequence converging to a limit in A has all but a finite number of its terms in A. Assume BWOC that A is not open; then there is an $a \in A$ for which there is no $V_{\varepsilon}(a) \subseteq A$. In particular, because for every $\varepsilon>0$ we have $1 / n<\varepsilon$ for some $n \in \mathbf{N}$, there is no n for which $V_{1 / n}(a) \subseteq A$; so there is an element $x_{n} \in V_{1 / n}(a) \backslash A$. But then the sequence $\left(x_{n}\right)$ converges to a but has no terms at all in A. This contradiction shows that A is open.
5. (a) True: Because $a_{n} \geq 0$, we have $1+a_{n} \geq 1$, so $a_{n} \geq a_{n} /\left(1+a_{n}\right)$. Thus the given series converges by the Comparison Test.
(b) True: Let $\varepsilon>0$ be given. Then $\exists N \in \mathbf{N}$ such that $n \geq N$ implies $\left|a_{n}-0\right|<\varepsilon$. Thus, for $m>n \geq N,\left|c_{m}-c_{n}\right| \leq\left|a_{n}\right|<\varepsilon$, so $\left(c_{n}\right)$ is Cauchy and hence convergent.
(c) False: The inequality holds if $\lim _{x \rightarrow c} g(x)$ exists, but this limit doesn't have to exist: Take $S=\mathbf{R}, c=1, f(x)=0, h(x)=1$ (constant functions), and $g=\chi_{[1, \infty)}$, i.e., $g(x)=0$ if $x<1$ and 1 if $x \geq 1$.
(d) False: It must be false, because $[0,1]$ is compact. In fact,

$$
\left\{V_{0.1}(x): x=0.09,0.28,0.47,0.66,0.85,1\right\}
$$

is a subcover with 6 elements (which is the best we can do, because the $V_{0.1}(x)$'s have width 0.2 and do not contain their endpoints, while $[0,1]$ has length 1 and does contain its endpoints).

