
November 7, 2001
Math 323 — Exam IIB

1. (25 points) Using only the δ-ε definition of continuity, prove the following:

(a) f(x) = x2 − 2x is continuous at x = −1. (Hint: Try δ = min{1, ε/5)}.)
(b) If f, g : S → R are continuous at the point c in S, then f + 2g is also continuous at c.

2. (15 points) Prove that, if p > 1, then
∑∞
n=1(1/np) converges. You may assume the “Cauchy

Condensation Test”: If (an) is a decreasing sequence of positive numbers, then

∞∑
n=1

an converges iff
∞∑
n=1

2na2n converges.

3. (20 points) Give an example of each of the following, or argue that such an example cannot
exist.

(a) A uncountably infinite set with empty interior.

(b) A collection of compact sets whose union is neither open nor closed.

(c) A finite collection of open sets whose intersection is nonempty and compact.

(d) A continuous function f : R→ R and a compact set A for which f−1(A) is not compact.
(You may do this one with a sketch of a graph, but make clear what A and f(A) are.)

4. (20 points) Prove that a subset A of R is open if and only if, for every convergent sequence
(xn) in R such that lim(xn) ∈ A, there are at most finitely many n ∈ N for which xn /∈ A.
(Hint: If A is not open, then we can find an element a ∈ A such that, for all n ∈ N,
V1/n(a) 6⊆ A, so ∃xn /∈ A such that |xn − a| < 1/n.)

5. (20 points) True or false? If true, prove it. If false, give a counterexample.

(a) If each an ≥ 0 and
∑∞
n=1 an converges, then

∑∞
n=1 an/(1 + an) also converges.

(b) If (an)→ 0 and and |cm − cn| ≤ an ∀m ≥ n, then (cn) converges.

(c) Suppose that S ⊆ R, c ∈ S and f, g, h : S → R with f(x) ≤ g(x) ≤ h(x) for all
x ∈ S, and that limx→c f(x) and limx→c h(x) both exist. Then limx→c g(x) also exists
and limx→c f(x) ≤ limx→c g(x) ≤ limx→c h(x),

(d) The uncountably infinite open cover {V0.1(x) : x ∈ [0, 1]} of the closed interval [0, 1] has
no finite subcover.



Math 323 — Solutions to Exam IIB

1. (a) Let ε > 0 be given, and pick δ = min{1, ε/5)}, as suggested in the hint. Then for x ∈ R
with |x− (−1)| < δ ≤ 1, we have −2 < x < 0, so −5 < x−3 < −3 and hence |x+2| < 5;
so |(x2 − 2x) − ((−1)2 − 2(−1))| = |x2 − 2x − 3| = |x − (−1)||x + 3| < (ε/5)5 = ε.
Therefore, f is continuous at −1.

(b) Let ε > 0 be given, and let δ > 0 be such that x ∈ S and |x−c| < δ implies |f(x)−f(c)| <
ε/2 and |g(x)− g(c)| < ε/4. Then x ∈ S and |x− c| < δ implies

|(f(x) + 2g(x))− (f(c) + 2g(c))| ≤ |f(x)− f(c)|+ 2|g(x)− g(c)| < ε

2
+ 2

(
ε

4

)
= ε .

Therefore, f + g is continuous at c.

2. Clearly 1/np > 1/(n+1)p, so the terms of the given series are decreasing and positive. By the
Cauchy Condensation Test, it suffices to show that

∑
2n(1/(2n)p) converges; and the latter

series can be written
∑

1/(2p−1)n. This is a geometric series, and because p > 1, the common
ratio 1/2p−1 is less than one. So the series converges, and hence by the Cauchy Condensation
Test

∑∞
n=1(1/np) also converges.

3. (a) I, the set of irrational numbers.
(b) Kn = [0, (n− 1)/n]:

⋃∞
n=1Kn = [0, 1).

(c) Impossible: The intersection of finitely many open sets is open, so if it is nonempty, it
can’t be closed and hence not compact.

(d) One example is f(x) = 2 and A = {2}: f−1(A) = R.

4. Suppose A is open, and take a convergent sequence (xn) with limit a ∈ A. Then there is an
ε > 0 for which Vε(a) ⊆ A, and there is an N ∈ N for which n ≥ N implies |xn − a| < ε.
Thus, for all n except for the finitely many n < N , we have xn ∈ Vε(a) ⊆ A.

Conversely, suppose that every sequence converging to a limit in A has all but a finite number
of its terms in A. Assume BWOC that A is not open; then there is an a ∈ A for which there
is no Vε(a) ⊆ A. In particular, because for every ε > 0 we have 1/n < ε for some n ∈ N,
there is no n for which V1/n(a) ⊆ A; so there is an element xn ∈ V1/n(a)\A. But then the
sequence (xn) converges to a but has no terms at all in A. This contradiction shows that A
is open.

5. (a) True: Because an ≥ 0, we have 1 + an ≥ 1, so an ≥ an/(1 + an). Thus the given series
converges by the Comparison Test.

(b) True: Let ε > 0 be given. Then ∃N ∈ N such that n ≥ N implies |an − 0| < ε. Thus,
for m > n ≥ N , |cm − cn| ≤ |an| < ε, so (cn) is Cauchy and hence convergent.

(c) False: The inequality holds if limx→c g(x) exists, but this limit doesn’t have to exist:
Take S = R, c = 1, f(x) = 0, h(x) = 1 (constant functions), and g = χ[1,∞), i.e.,
g(x) = 0 if x < 1 and 1 if x ≥ 1.

(d) False: It must be false, because [0, 1] is compact. In fact,

{V0.1(x) : x = 0.09, 0.28, 0.47, 0.66, 0.85, 1}

is a subcover with 6 elements (which is the best we can do, because the V0.1(x)’s have
width 0.2 and do not contain their endpoints, while [0, 1] has length 1 and does contain
its endpoints).


