Math 323 — Exam IIB

November 7, 2001

- 1. (25 points) Using only the δ - ε definition of continuity, prove the following:
 - (a) $f(x) = x^2 2x$ is continuous at x = -1. (Hint: Try $\delta = \min\{1, \varepsilon/5\}$.)
 - (b) If $f, g: S \to \mathbf{R}$ are continuous at the point c in S, then f + 2g is also continuous at c.
- 2. (15 points) Prove that, if p > 1, then $\sum_{n=1}^{\infty} (1/n^p)$ converges. You may assume the "Cauchy Condensation Test": If (a_n) is a decreasing sequence of positive numbers, then

$$\sum_{n=1}^{\infty} a_n \quad \text{converges iff} \quad \sum_{n=1}^{\infty} 2^n a_{2^n} \quad \text{converges.}$$

- 3. (20 points) Give an example of each of the following, or argue that such an example cannot exist.
 - (a) A uncountably infinite set with empty interior.
 - (b) A collection of compact sets whose union is neither open nor closed.
 - (c) A finite collection of open sets whose intersection is nonempty and compact.
 - (d) A continuous function $f : \mathbf{R} \to \mathbf{R}$ and a compact set A for which $f^{-1}(A)$ is not compact. (You may do this one with a sketch of a graph, but make clear what A and f(A) are.)
- 4. (20 points) Prove that a subset A of **R** is open if and only if, for every convergent sequence (x_n) in R such that $\lim(x_n) \in A$, there are at most finitely many $n \in \mathbf{N}$ for which $x_n \notin A$. (Hint: If A is not open, then we can find an element $a \in A$ such that, for all $n \in \mathbf{N}$, $V_{1/n}(a) \not\subseteq A$, so $\exists x_n \notin A$ such that $|x_n - a| < 1/n$.)
- 5. (20 points) True or false? If true, prove it. If false, give a counterexample.
 - (a) If each $a_n \ge 0$ and $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} a_n/(1+a_n)$ also converges.
 - (b) If $(a_n) \to 0$ and and $|c_m c_n| \le a_n \ \forall m \ge n$, then (c_n) converges.
 - (c) Suppose that $S \subseteq \mathbf{R}$, $c \in S$ and $f, g, h : S \to \mathbf{R}$ with $f(x) \leq g(x) \leq h(x)$ for all $x \in S$, and that $\lim_{x \to c} f(x)$ and $\lim_{x \to c} h(x)$ both exist. Then $\lim_{x \to c} g(x)$ also exists and $\lim_{x \to c} f(x) \leq \lim_{x \to c} g(x) \leq \lim_{x \to c} h(x)$,
 - (d) The uncountably infinite open cover $\{V_{0.1}(x) : x \in [0,1]\}$ of the closed interval [0,1] has no finite subcover.

Math 323 — Solutions to Exam IIB

- 1. (a) Let $\varepsilon > 0$ be given, and pick $\delta = \min\{1, \varepsilon/5\}\}$, as suggested in the hint. Then for $x \in \mathbf{R}$ with $|x (-1)| < \delta \le 1$, we have -2 < x < 0, so -5 < x 3 < -3 and hence |x + 2| < 5; so $|(x^2 2x) ((-1)^2 2(-1))| = |x^2 2x 3| = |x (-1)||x + 3| < (\varepsilon/5)5 = \varepsilon$. Therefore, f is continuous at -1.
 - (b) Let $\varepsilon > 0$ be given, and let $\delta > 0$ be such that $x \in S$ and $|x-c| < \delta$ implies $|f(x)-f(c)| < \varepsilon/2$ and $|g(x) g(c)| < \varepsilon/4$. Then $x \in S$ and $|x-c| < \delta$ implies

$$|(f(x) + 2g(x)) - (f(c) + 2g(c))| \le |f(x) - f(c)| + 2|g(x) - g(c)| < \frac{\varepsilon}{2} + 2\left(\frac{\varepsilon}{4}\right) = \varepsilon.$$

Therefore, f + g is continuous at c.

- 2. Clearly $1/n^p > 1/(n+1)^p$, so the terms of the given series are decreasing and positive. By the Cauchy Condensation Test, it suffices to show that $\sum 2^n (1/(2^n)^p)$ converges; and the latter series can be written $\sum 1/(2^{p-1})^n$. This is a geometric series, and because p > 1, the common ratio $1/2^{p-1}$ is less than one. So the series converges, and hence by the Cauchy Condensation Test $\sum_{n=1}^{\infty} (1/n^p)$ also converges.
- 3. (a) **I**, the set of irrational numbers.
 - (b) $K_n = [0, (n-1)/n]: \bigcup_{n=1}^{\infty} K_n = [0, 1).$
 - (c) Impossible: The intersection of finitely many open sets is open, so if it is nonempty, it can't be closed and hence not compact.
 - (d) One example is f(x) = 2 and $A = \{2\}$: $f^{-1}(A) = \mathbf{R}$.
- 4. Suppose A is open, and take a convergent sequence (x_n) with limit $a \in A$. Then there is an $\varepsilon > 0$ for which $V_{\varepsilon}(a) \subseteq A$, and there is an $N \in \mathbf{N}$ for which $n \geq N$ implies $|x_n a| < \varepsilon$. Thus, for all n except for the finitely many n < N, we have $x_n \in V_{\varepsilon}(a) \subseteq A$.

Conversely, suppose that every sequence converging to a limit in A has all but a finite number of its terms in A. Assume BWOC that A is not open; then there is an $a \in A$ for which there is no $V_{\varepsilon}(a) \subseteq A$. In particular, because for every $\varepsilon > 0$ we have $1/n < \varepsilon$ for some $n \in \mathbf{N}$, there is no n for which $V_{1/n}(a) \subseteq A$; so there is an element $x_n \in V_{1/n}(a) \setminus A$. But then the sequence (x_n) converges to a but has no terms at all in A. This contradiction shows that Ais open.

- 5. (a) True: Because $a_n \ge 0$, we have $1 + a_n \ge 1$, so $a_n \ge a_n/(1 + a_n)$. Thus the given series converges by the Comparison Test.
 - (b) True: Let $\varepsilon > 0$ be given. Then $\exists N \in \mathbf{N}$ such that $n \ge N$ implies $|a_n 0| < \varepsilon$. Thus, for $m > n \ge N$, $|c_m c_n| \le |a_n| < \varepsilon$, so (c_n) is Cauchy and hence convergent.
 - (c) False: The inequality holds if $\lim_{x\to c} g(x)$ exists, but this limit doesn't have to exist: Take $S = \mathbf{R}$, c = 1, f(x) = 0, h(x) = 1 (constant functions), and $g = \chi_{[1,\infty)}$, i.e., g(x) = 0 if x < 1 and 1 if $x \ge 1$.
 - (d) False: It must be false, because [0, 1] is compact. In fact,

$$\{V_{0.1}(x): x = 0.09, 0.28, 0.47, 0.66, 0.85, 1\}$$

is a subcover with 6 elements (which is the best we can do, because the $V_{0,1}(x)$'s have width 0.2 and do not contain their endpoints, while [0, 1] has length 1 and does contain its endpoints).