Math 323 - Exam III

Make sure your reasoning is clear. Points are specified. The cubing function and/or the "unit hyperbola" $y^{2}-x^{2}=1$ may be useful somewhere.

1. (16 points) Prove that a differentiable function $f: I \rightarrow \mathbb{R}$ on an interval I is decreasing if and only if $f^{\prime}(x) \leq 0$ for all x in I.
2. (20 points) Let f be a continuous function from an interval I into \mathbb{R}; denote its range $f(I)$ by J. Assume that f is strictly increasing, i.e., if $x, y \in I$ and $x<y$, then $f(x)<f(y)$. Then clearly f is one-to-one, so it has an inverse $f^{-1}: J \rightarrow I$.
(a) Prove that f^{-1} is also strictly increasing.
(b) Assume that f is differentiable at a in I and f^{-1} is differentiable at $f(a)=c$ in J. Find a formula for $\left(f^{-1}\right)^{\prime}(c)$ in terms of f, f^{\prime}, a and/or c. (The Chain Rule may be useful.)
(c) Even though f may be differentiable at a point a in I, it is possible that f^{-1} is not differentiable at $f(a)=c$ in J. How could this happen? (What does the derivative of f mean geometrically?)
3. (20 points) Recall that a function f is called Lipschitz if there is a constant M for which the slope of the segment joining any two points on the graph of f has absolute value at most M.
(a) Prove that a Lipschitz function is continuous.
(b) Prove or give a counterexample: A continuous function is Lipschitz if its domain is a closed, bounded interval.
4. (20 points) Suppose f, g share a common domain in \mathbb{R}, that $f(x) \geq g(x)$ for x in that domain, that a is is a limit point of that domain, and that $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$. Using the $\varepsilon-\delta$ definition of functional limit (not the Order Limit Theorem for sequences), prove that $L \geq M$. (Hint: Assume not and take $\varepsilon=(M-L) / 2$; then use

$$
\mid(M-g(x))-(L-f(x)|\leq|M-g(x)|+|L-f(x)| .)
$$

5. (24 points) For each of the following statements, tell whether it is (necessarily) true or (possibly) false. If true, give a quick proof. If false, give a counterexample.
(a) If f is differentiable on an interval I, then f is continuous on I.
(b) If f is differentiable on an interval I, then f^{\prime} is continuous on I.
(c) If f is continuous on a subset A of \mathbb{R}, then we can extend f to a continuous function \bar{f} from the closure \bar{A} of A to \mathbb{R}.
(d) (Challenge) If f is continuous on the interval I in \mathbb{R} and $\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|<\left|x_{2}-x_{1}\right|$ for all x_{1}, x_{2} in I, then f is contractive on I (i.e., $\exists s \in(0,1)$ s.t. $\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|<s\left|x_{2}-x_{1}\right|$ for all x_{1}, x_{2} in $\left.I\right)$.

Math 323 - Solutions to Exam III

1. (\Rightarrow) Because f is decreasing, whenever $x, y \in I$ and $x<y$, we have $f(x) \geq f(y)$, so the difference quotient $(f(y)-f(x)) /(y-x)$ is nonpositive (the denominator is positive and the numerator is negative or 0); so its limit as $y \rightarrow x$ is also nonpositive, and that limit is $f^{\prime}(x)$.
(\Leftarrow) Let $x, y \in I$ and $x<y$. Then by the $\operatorname{MVT}(f(y)-f(x)) /(y-x)=f^{\prime}(z)$ for some z between x and y. Now $f^{\prime}(z) \leq 0$ and $y-x>0$, so $f(y)-f(x) \leq 0$, i.e., $f(y) \leq f(x)$. Therefore, f is decreasing.
2. (a) Take c, d in J with $c<d$. Assume BWOC $f^{-1}(c) \geq f^{-1}(d)$. Then because f is strictly increasing, we have $c=f\left(f^{-1}(c)\right) \geq f\left(f^{-1}(d)=d\right.$, a contradiction. So $f^{-1}(c)<f^{-1}(d)$.
(b) We have $f\left(f^{-1}(y)\right)=y$ for all y in J, so by the Chain Rule,

$$
1=\frac{d}{d y}\left(\left.f\left(f^{-1}(y)\right)\right|_{y=c}=f^{\prime}\left(f^{-1}(c)\right)\left(f^{-1}\right)^{\prime}(c)=f^{\prime}(a)\left(f^{-1}\right)^{\prime}(c),\right.
$$

and hence $\left(f^{-1}\right)^{\prime}(c)=1 / f^{\prime}(a)$.
(c) If $f^{\prime}(a)=0$, then the formula in (b) fails; and indeed, if f has a horizontal tangent at some point a, then f^{\prime} must have a vertical tangent at $f(a)$ and hence not be differentiable there. (Example: The function $f(x)=x^{3}$ is strictly increasing, but its horizontal tangent at $x=0$ means that its inverse, the cube root function, has a vertical tangent at 0 and is not differentiable there.)
3. (a) Pick a in the domain A of the Lipschitz function f, which has corresponding constant M; and let $\varepsilon>0$ be given. Set $\delta=\varepsilon / M$. Then because $|f(x)-f(a)| \leq M|x-a|$ for all x in A, if $|x-a|<\delta$, we have $|f(x)-f(a)|<M \cdot(\varepsilon / M)=\varepsilon$.
(b) A counterexample is the square root function, which is continuous but has a vertical tangent at 1 , so it is continuous but not Lipschitz on the interval $[0,1]$. (The cube root function also works on the interval $[-1,1]$, so that the vertical tangent comes at an interior point.)
4. Assume BWOC that $M>L$, and take $\varepsilon=(M-L) / 2$. Then $\exists \delta>0$ such that $|x-a|<\delta$ (and x in the common domain of f and g) implies $|f(x)-L|<\varepsilon$ and $|g(x)-M|<\varepsilon$. But then for such $x, f(x)-g(x) \geq 0$, so

$$
\begin{aligned}
M-L & \leq(M-L)+(f(x)-g(x)) \leq|(M-g(x))-(L-f(x))| \\
& \leq|M-g(x)|+|L-f(x)|<2 \varepsilon=M-L,
\end{aligned}
$$

the desired contradiction.
5. (a) True: A differentiable function must first be continuous.
(b) False: f^{\prime} can't have any jump discontinuities, but it can be discontinuous, like the derivative of $x^{2} \sin (1 / x)$ (assigned the value 0 at $x=0$).
(c) False: If $A=\mathbb{R} \backslash\{0\}$, then $f(x)=1 / x$ is continuous on A, but it cannot be extended to a continuous function on $\bar{A}=\mathbb{R}$. (If f is uniformly continuous on A, then it can extended to \bar{A}.)
(d) False: The function $y=f(x)=\sqrt{x^{2}+1}$ has derivative $f^{\prime}(x)=x / \sqrt{x^{2}+1}$, which has values <1 but as $x \rightarrow \infty, f^{\prime}(x) \rightarrow 1$. So, even though, by the MVT, we always have $\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|<\left|x_{2}-x_{1}\right|$, there is no $s<1$ for which $\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|<s\left|x_{2}-x_{1}\right|$ for all x_{1}, x_{2}. (Remember that with a contractive function g and any point a, the sequence $a, g(a), g^{2}(a), g^{3}(a), \ldots$ was Cauchy and approached a fixed point of g. This f has no fixed points, because its graph does not cross the line $y=x$; and for any a the corresponding sequence is not Cauchy - it diverges to ∞, though very slowly.)

