Math 323 — Exam III

Make sure your reasoning is clear. Points are specified. The cubing function and/or the “unit hyperbola” $y^2 - x^2 = 1$ may be useful somewhere.

1. (16 points) Prove that a differentiable function $f : I \rightarrow \mathbb{R}$ on an interval I is decreasing if and only if $f'(x) \leq 0$ for all x in I.

2. (20 points) Let f be a continuous function from an interval I into \mathbb{R}; denote its range $f(I)$ by J. Assume that f is strictly increasing, i.e., if $x, y \in I$ and $x < y$, then $f(x) < f(y)$. Then clearly f is one-to-one, so it has an inverse $f^{-1} : J \rightarrow I$.

 (a) Prove that f^{-1} is also strictly increasing.

 (b) Assume that f is differentiable at a in I and f^{-1} is differentiable at $f(a) = c$ in J. Find a formula for $(f^{-1})'(c)$ in terms of f, f', a and/or c. (The Chain Rule may be useful.)

 (c) Even though f may be differentiable at a point a in I, it is possible that f^{-1} is not differentiable at $f(a) = c$ in J. How could this happen? (What does the derivative of f mean geometrically?)

3. (20 points) Recall that a function f is called Lipschitz if there is a constant M for which the slope of the segment joining any two points on the graph of f has absolute value at most M.

 (a) Prove that a Lipschitz function is continuous.

 (b) Prove or give a counterexample: A continuous function is Lipschitz if its domain is a closed, bounded interval.

4. (20 points) Suppose f, g share a common domain in \mathbb{R}, that $f(x) \geq g(x)$ for x in that domain, that a is a limit point of that domain, and that $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = M$. Using the $\varepsilon-\delta$ definition of functional limit (not the Order Limit Theorem for sequences), prove that $L \geq M$. (Hint: Assume not and take $\varepsilon = (M - L)/2$; then use

 $$|(M - g(x)) - (L - f(x))| \leq |M - g(x)| + |L - f(x)|.$$

5. (24 points) For each of the following statements, tell whether it is (necessarily) true or (possibly) false. If true, give a quick proof. If false, give a counterexample.

 (a) If f is differentiable on an interval I, then f is continuous on I.

 (b) If f is differentiable on an interval I, then f' is continuous on I.

 (c) If f is continuous on a subset A of \mathbb{R}, then we can extend f to a continuous function \overline{f} from the closure \overline{A} of A to \mathbb{R}.

 (d) (Challenge) If f is continuous on the interval I in \mathbb{R} and $|f(x_2) - f(x_1)| < |x_2 - x_1|$ for all x_1, x_2 in I, then f is contractive on I (i.e., $\exists s \in (0, 1)$ s.t. $|f(x_2) - f(x_1)| < s|x_2 - x_1|$ for all x_1, x_2 in I).
Math 323 — Solutions to Exam III

1. (⇒) Because \(f \) is decreasing, whenever \(x, y \in I \) and \(x < y \), we have \(f(x) \geq f(y) \), so the difference quotient \((f(y) - f(x))/(y - x) \) is nonpositive (the denominator is positive and the numerator is negative or 0); so its limit as \(y \to x \) is also nonpositive, and that limit is \(f'(x) \).

(⇐) Let \(x, y \in I \) and \(x < y \). Then by the MVT \((f(y) - f(x))/(y - x) = f'(z) \) for some \(z \) between \(x \) and \(y \). Now \(f'(z) \leq 0 \) and \(y - x > 0 \), so \(f(y) - f(x) \leq 0 \), i.e., \(f(y) \leq f(x) \). Therefore, \(f \) is decreasing.

2. (a) Take \(c, d \) in \(J \) with \(c < d \). Assume BWOC \(f^{-1}(c) \geq f^{-1}(d) \). Then because \(f \) is strictly increasing, we have \(c = f(f^{-1}(c)) \geq f(f^{-1}(d)) = d \), a contradiction. So \(f^{-1}(c) < f^{-1}(d) \).

(b) We have \(f(f^{-1}(y)) = y \) for all \(y \) in \(J \), so by the Chain Rule,

\[
1 = \frac{d}{dy} (f(f^{-1}(y)))|_{y=c} = f'(f^{-1}(c))(f^{-1})'(c) = f'(a)(f^{-1})'(c),
\]

and hence \((f^{-1})'(c) = 1/f'(a) \).

(c) If \(f'(a) = 0 \), then the formula in (b) fails; and indeed, if \(f \) has a horizontal tangent at some point \(a \), then \(f' \) must have a vertical tangent at \(f(a) \) and hence not be differentiable there. (Example: The function \(f(x) = x^3 \) is strictly increasing, but its horizontal tangent at \(x = 0 \) means that its inverse, the cube root function, has a vertical tangent at 0 and is not differentiable there.)

3. (a) Pick \(a \) in the domain \(A \) of the Lipschitz function \(f \), which has corresponding constant \(M \); and let \(\varepsilon > 0 \) be given. Set \(\delta = \varepsilon/M \). Then because \(|f(x) - f(a)| \leq M|x - a| \) for all \(x \) in \(A \), if \(|x - a| < \delta \), we have \(|f(x) - f(a)| < M \cdot (\varepsilon/M) = \varepsilon \).

(b) A counterexample is the square root function, which is continuous but has a vertical tangent at 1, so it is continuous but not Lipschitz on the interval \([-1, 1]\), so that the vertical tangent comes at an interior point.

4. Assume BWOC that \(M > L \), and take \(\varepsilon = (M - L)/2 \). Then \(\exists \delta > 0 \) such that \(|x - a| < \delta \) (and \(x \) in the common domain of \(f \) and \(g \)) implies \(|f(x) - L| < \varepsilon \) and \(|g(x) - M| < \varepsilon \). But then for such \(x \), \(f(x) - g(x) \geq 0 \), so

\[
M - L \leq (M - L) + (f(x) - g(x)) \leq |(M - g(x)) - (L - f(x))| \\
\leq |M - g(x)| + |L - f(x)| < 2\varepsilon = M - L,
\]

the desired contradiction.
5. (a) True: A differentiable function must first be continuous.

(b) False: \(f' \) can’t have any jump discontinuities, but it can be discontinuous, like the derivative of \(x^2 \sin(1/x) \) (assigned the value 0 at \(x = 0 \)).

(c) False: If \(A = \mathbb{R} \setminus \{0\} \), then \(f(x) = 1/x \) is continuous on \(A \), but it cannot be extended to a continuous function on \(\overline{A} = \mathbb{R} \). (If \(f \) is uniformly continuous on \(A \), then it \underline{can} extended to \(\overline{A} \).

(d) False: The function \(y = f(x) = \sqrt{x^2 + 1} \) has derivative \(f'(x) = x/\sqrt{x^2 + 1} \), which has values < 1 but as \(x \to \infty \), \(f'(x) \to 1 \). So, even though, by the MVT, we always have \(|f(x_2) - f(x_1)| < |x_2 - x_1| \), there is no \(s < 1 \) for which \(|f(x_2) - f(x_1)| < s|x_2 - x_1| \) for all \(x_1, x_2 \). (Remember that with a contractive function \(g \) and any point \(a \), the sequence \(a, g(a), g^2(a), g^3(a), \ldots \) was Cauchy and approached a fixed point of \(g \). This \(f \) has no fixed points, because its graph does not cross the line \(y = x \); and for any \(a \) the corresponding sequence is not Cauchy — it diverges to \(\infty \), though very slowly.)