
November 29, 2011
Math 323 — Exam III

Make sure your reasoning is clear. Points are specified. The cubing function and/or the “unit
hyperbola” y2 − x2 = 1 may be useful somewhere.

1. (16 points) Prove that a differentiable function f : I → R on an interval I is decreasing if
and only if f ′(x) ≤ 0 for all x in I.

2. (20 points) Let f be a continuous function from an interval I into R; denote its range f(I)
by J . Assume that f is strictly increasing, i.e., if x, y ∈ I and x < y, then f(x) < f(y). Then
clearly f is one-to-one, so it has an inverse f−1 : J → I.

(a) Prove that f−1 is also strictly increasing.

(b) Assume that f is differentiable at a in I and f−1 is differentiable at f(a) = c in J . Find
a formula for (f−1)′(c) in terms of f , f ′, a and/or c. (The Chain Rule may be useful.)

(c) Even though f may be differentiable at a point a in I, it is possible that f−1 is not
differentiable at f(a) = c in J . How could this happen? (What does the derivative of f
mean geometrically?)

3. (20 points) Recall that a function f is called Lipschitz if there is a constant M for which the
slope of the segment joining any two points on the graph of f has absolute value at most M .

(a) Prove that a Lipschitz function is continuous.

(b) Prove or give a counterexample: A continuous function is Lipschitz if its domain is a
closed, bounded interval.

4. (20 points) Suppose f, g share a common domain in R, that f(x) ≥ g(x) for x in that domain,
that a is is a limit point of that domain, and that limx→a f(x) = L and limx→a g(x) = M .
Using the ε–δ definition of functional limit (not the Order Limit Theorem for sequences),
prove that L ≥M . (Hint: Assume not and take ε = (M − L)/2; then use

|(M − g(x))− (L− f(x)| ≤ |M − g(x)|+ |L− f(x)| .)

5. (24 points) For each of the following statements, tell whether it is (necessarily) true or (pos-
sibly) false. If true, give a quick proof. If false, give a counterexample.

(a) If f is differentiable on an interval I, then f is continuous on I.

(b) If f is differentiable on an interval I, then f ′ is continuous on I.

(c) If f is continuous on a subset A of R, then we can extend f to a continuous function f
from the closure A of A to R.

(d) (Challenge) If f is continuous on the interval I in R and |f(x2)− f(x1)| < |x2 − x1| for
all x1, x2 in I, then f is contractive on I (i.e., ∃ s ∈ (0, 1) s.t. |f(x2)−f(x1)| < s|x2−x1|
for all x1, x2 in I).



Math 323 — Solutions to Exam III

1. (⇒) Because f is decreasing, whenever x, y ∈ I and x < y, we have f(x) ≥ f(y), so the
difference quotient (f(y)− f(x))/(y − x) is nonpositive (the denominator is positive and the
numerator is negative or 0); so its limit as y → x is also nonpositive, and that limit is f ′(x).

(⇐) Let x, y ∈ I and x < y. Then by the MVT (f(y) − f(x))/(y − x) = f ′(z) for some
z between x and y. Now f ′(z) ≤ 0 and y − x > 0, so f(y) − f(x) ≤ 0, i.e., f(y) ≤ f(x).
Therefore, f is decreasing.

2. (a) Take c, d in J with c < d. Assume BWOC f−1(c) ≥ f−1(d). Then because f is strictly
increasing, we have c = f(f−1(c)) ≥ f(f−1(d) = d, a contradiction. So f−1(c) < f−1(d).

(b) We have f(f−1(y)) = y for all y in J , so by the Chain Rule,

1 =
d

dy

(
f(f−1(y)

)
|y=c = f ′(f−1(c))(f−1)′(c) = f ′(a)(f−1)′(c) ,

and hence (f−1)′(c) = 1/f ′(a).

(c) If f ′(a) = 0, then the formula in (b) fails; and indeed, if f has a horizontal tangent at
some point a, then f ′ must have a vertical tangent at f(a) and hence not be differentiable
there. (Example: The function f(x) = x3 is strictly increasing, but its horizontal tangent
at x = 0 means that its inverse, the cube root function, has a vertical tangent at 0 and
is not differentiable there.)

3. (a) Pick a in the domain A of the Lipschitz function f , which has corresponding constant
M ; and let ε > 0 be given. Set δ = ε/M . Then because |f(x)− f(a)| ≤M |x− a| for all
x in A, if |x− a| < δ, we have |f(x)− f(a)| < M · (ε/M) = ε.

(b) A counterexample is the square root function, which is continuous but has a vertical
tangent at 1, so it is continuous but not Lipschitz on the interval [0, 1]. (The cube root
function also works on the interval [−1, 1], so that the vertical tangent comes at an
interior point.)

4. Assume BWOC that M > L, and take ε = (M − L)/2. Then ∃ δ > 0 such that |x − a| < δ
(and x in the common domain of f and g) implies |f(x) − L| < ε and |g(x) −M | < ε. But
then for such x, f(x)− g(x) ≥ 0, so

M − L ≤ (M − L) + (f(x)− g(x)) ≤ |(M − g(x))− (L− f(x))|
≤ |M − g(x)|+ |L− f(x)| < 2ε = M − L ,

the desired contradiction.



5. (a) True: A differentiable function must first be continuous.

(b) False: f ′ can’t have any jump discontinuities, but it can be discontinuous, like the
derivative of x2 sin(1/x) (assigned the value 0 at x = 0).

(c) False: If A = R\{0}, then f(x) = 1/x is continuous on A, but it cannot be extended to a
continuous function on A = R. (If f is uniformly continuous on A, then it can extended
to A.)

(d) False: The function y = f(x) =
√
x2 + 1 has derivative f ′(x) = x/

√
x2 + 1, which has

values < 1 but as x → ∞, f ′(x) → 1. So, even though, by the MVT, we always have
|f(x2) − f(x1)| < |x2 − x1|, there is no s < 1 for which |f(x2) − f(x1)| < s|x2 − x1|
for all x1, x2. (Remember that with a contractive function g and any point a, the
sequence a, g(a), g2(a), g3(a), . . . was Cauchy and approached a fixed point of g. This f
has no fixed points, because its graph does not cross the line y = x; and for any a the
corresponding sequence is not Cauchy — it diverges to ∞, though very slowly.)


