Math 323 - Final Exam

Make sure your reasoning is clear. Points are specified.

1. (20 points) Prove the Mean Value Theorem for Integrals: If f is continuous on $[a, b]$, then there is a point c in $[a, b]$ for which $f(c)$ is the "average value" $\left(\int_{a}^{b} f\right) /(b-a)$ of f on $[a, b]$. (Hint for one possible proof: Denote by m and M the extreme values of f on $[a, b]$, and use them to find bounds on $\int_{a}^{b} f$.)
2. (18 points) Give examples to show the following:
(a) The intersection of infinitely many nested, nonempty, bounded, open sets $U_{1} \supseteq U_{2} \supseteq$ $U_{3} \supseteq \ldots$ may be empty.
(b) A continuous function on a bounded open set may be unbounded.
(c) A sequence in an unbounded closed set may not have a convergent subsequence.
3. (24 points) Prove the other half of the Cauchy Condensation Test: If $\left(a_{n}\right)$ is a decreasing sequence of positive numbers and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}$ also converges. (Hint: It is enough to show that the convergence of $\sum_{n=2}^{\infty} a_{n}$ implies the convergence of $\sum_{k=1}^{\infty} 2^{k-1} a_{2^{k}}$. Consider the diagram below.)

4. (24 points) True (in every case) or (possibly) false? If true, give a short proof. (For example, refer to a theorem.) If false, give a counterexample.
(a) On a closed interval $[a, b]$, every continuous function is the derivative of some (differentiable) function.
(b) On a closed interval $[a, b]$, every derivative of a (differentiable) function is a continuous function.
(c) If f is integrable on $[a, b]$ and $F(x)=\int_{a}^{x} f$, then $F^{\prime}=f$.
(d) If f is integrable and g differs from f at only a finite number of points, then g is also integrable.

TURN OVER! One more question.
5. (14 points) Recall the Generalized Mean Value Theorem: If g, h are continuous on $[a, b]$ and differentiable on (a, b), then there exists c in (a, b) for which

$$
(g(b)-g(a)) h^{\prime}(c)=(h(b)-h(a)) g^{\prime}(c) .
$$

Let $f(x)$ be twice differentiable on $[0, b]$. Prove the second case of Lagrange's Remainder Theorem: There is a c in $(0, b)$ for which

$$
f(b)=f(0)+f^{\prime}(0) b+\frac{1}{2} f^{\prime \prime}(c) b^{2} .
$$

(The first case is the Mean Value Theorem.) Hint: Let $g(x)=f(x)-\left(f(0)+f^{\prime}(0) x\right)$ and $h(x)=x^{2}$, and check $g(0)=g^{\prime}(0)=0$.

Math 323 - Solutions to Final Exam

1. There are two possible proofs; one is shorter, and the other avoids any mention of derivatives:
(i) Because f is continuous on $[a, b]$, by the FTC we know that $\int_{a}^{x} f=F$ is a function whose derivative is f. By the Mean Value Theorem (for Derivatives), there is a c between a and b for which $F^{\prime}(c)(b-a)=F(b)-F(a)$; and because $F^{\prime}(c)=f(c), F(b)=\int_{a}^{b} f$ and $F(a)=0$, the result follows.
(ii) Because f is continuous on $[a, b]$, by the Extreme Value Theorem it takes on its minimum and maximum values, say at $d, e \in[a, b]$ respectively. Then because $f(d) \leq f(x) \leq f(e)$ for all $x \in[a, b]$, we have $\int_{a}^{b} f(d) \leq \int_{a}^{b} f \leq \int_{a}^{b} f(e)$, i.e., $f(d)(b-a) \leq \int_{a}^{b} f \leq f(e)(b-a)$. Dividing through by $(b-a)$, we get $f(d) \leq\left(\int_{a}^{b} f\right) /(b-a) \leq f(e)$, and by the Intermediate Value Theorem we know there is an x-value c between d, e, and hence in $[a, b]$, for which $f(c)=\left(\int_{a}^{b} f\right) /(b-a)$.
2. Here are some possible examples:
(a) $U_{n}=(0,1 / n)$.
(b) $f(x)=1 / x$ on $(0,1)$.
(c) $x_{n}=n$ in $[0, \infty)$.

3 . Let $\left(b_{k}\right)$ denote the sequence

$$
a_{2}, a_{4}, a_{4}, a_{8}, a_{8}, a_{8}, a_{8}, a_{16}, a_{16}, a_{16}, a_{16}, a_{16}, a_{16}, a_{16}, a_{16}, a_{32}, \ldots
$$

i.e., b_{k} is $a_{2^{n}}$ where 2^{n} is the smallest power of 2 greater than k. Thus $\left(b_{k}\right)$ consists of 2^{n-1} copies of $a_{2^{n}}$, so $\sum_{k=1}^{\infty} b_{k}=\sum_{n=0}^{\infty} 2^{n-1} a_{2^{n}}$. Now because the a_{n} 's are nonnegative, so are the b_{k}; so to show that the b-series converges, it suffices by the Comparison Test to show $b_{k} \leq a_{k}$ for each k. Now, $b_{k}=a_{2^{n}}$ where $2^{n}>k$, and because the a_{n} 's are decreasing, it follows that $b_{k}=a_{2^{n}} \leq a_{k}$. So the b-series converges, and hence $a_{1}+2 \sum_{n=0}^{\infty} 2^{n-1} a_{2^{n}}=\sum_{n=0}^{\infty} 2^{n} a_{2^{n}}$ also converges.
4. (a) True, by the Fundamental Theorem of Calculus.
(b) False: We know that $x^{2} \sin (1 / x)$ (defined to be 0 at $x=0$) has a derivative that is discontinuous at 0 .
(c) False: Let $f(x)=0$ if $x \neq 0$ and 1 if $x=0$. Then $F(x)=\int_{0}^{x} f=0$, the constant function, so F^{\prime} is also the constant function 0 , not f.
(d) True: If P is a partition for which $U(f, P)-L(f, P)<\varepsilon / 2$, then pick a partition Q that isolates the points where g differs from f in intervals of which the lengths add up to $\varepsilon /(2 M)$ where M is a bound on $|g|$. Then $U(g, P \cup Q)-L(g, P \cup Q)<\varepsilon$.
5. As suggested in the hint, $g(0)=f(0)-f(0)-f^{\prime}(0) 0=0$ and $g^{\prime}(0)=f^{\prime}(0)-f^{\prime}(0)=0$. And of course $h(0)=0$ and $h^{\prime}(0)=0$. Thus by the GMVT, there is an a in $(0, b)$ for which $(g(b)-g(0))\left(h^{\prime}(a)\right)=(h(b)-h(0)) g^{\prime}(a)$, i.e., $g(b) h^{\prime}(a)=h(b) g^{\prime}(a)$; and there is a c in $(0, a)$ (and hence in $(0, b)$) for which $\left(g^{\prime}(a)-g^{\prime}(0)\right) h^{\prime}(c)=(h(a)-h(0)) g^{\prime}(c)$, i.e., $g^{\prime}(a) h(c)=h^{\prime}(a) g(c)$. Thus, because $h^{\prime}(x)$ and $h^{\prime \prime}(x)$ are not 0 inside $(0, b)$, we have

$$
\frac{f(b)-\left[f(0)+f^{\prime}(0) b\right]}{b^{2}}=\frac{g(b)}{h(b)}=\frac{g^{\prime}(a)}{h^{\prime}(a)}=\frac{g^{\prime \prime}(c)}{h^{\prime \prime}(c)}=\frac{f^{\prime \prime}(c)}{2} .
$$

The result follows.

