
Chapter 2: (Infinite) Sequences and Series

A(n infinite) sequence is a list of numbers a1, a2, a3, . . ., indexed by N (or a0, a1, a2, a3, . . .,
indexed by the nonnegative integers N0) — so there is a first one, a second one, a third one, etc.,
Repetitions are allowed: We may have a1 = a2 6= a3 = a4, for example. A(n infinite) series is an
indicated “summing” of a sequence,

a1 + a2 + a3 + . . . or
∞∑
n=1

an ,

whether or not the sum makes sense. (We’ll talk more about that later.)
Calculus was invented to deal with motion (speeds, etc.). Sequences are a tool to describe

motion, at least in discrete steps: first, second, third, etc. Later we will take up functions, to
describe continuous motion, but sequences are a step on the way. Note that both pure and applied
math use sequences in this way, as better and better approximations to a solution.

Example.(
1

n

)∞
n=1

, (2(−1)n)∞n=1 , (n)∞n=1 , ((−1)n(n+ 2))∞n=1 ,

(
2n+ 1

3n− 2

)∞
n=1

So really, a sequence is a function from N (or N0 = N ∪ {0}) into R.

Example. (A sequence defined “by induction” or “defined recursively”) a1 = 1 = 1/1
and if an = bn/cn where bn, cn ∈ Z, then

an+1 =
bn + 2cn
bn + cn

.

So

a1 =
1

1
= 1 , a2 =

3

2
= 1.5 , a3 =

7

5
= 1.4 a4 =

17

12
= 1.416

Guess the limit?

To describe “a sequence gets close to a limit” in algebraic terms, (i.e., without reference to
motion), we make a sequence of definitions — the last one is the official one, because we can write
proofs with it.

Definition. A sequence (xn)∞n=1 (of real numbers) converges to the limit L in R (or just is convergent
if the value of L is unknown or unimportant) iff

(1) as we go along the sequence, the xn’s get closer to L.

(2) for large enough n, the xn’s become as close as desired to L.

(3) for any tolerance around L, the xn’s are within that tolerance if n is large enough.

(4)
∀ ε > 0, ∃N ∈ N s.t. n ≥ N =⇒ |xn − L| < ε

(or − ε < xn − L < ε , or L− ε < xn < L+ ε , or xn ∈ (L− ε, L+ ε) ).

Example. Prove that limn→∞
2n√
n2+1

= 2.



Proof. Let ε > 0 be given. [Here is the reasoning that we will need to finish the proof: We need to
find N so that, for n > N , ∣∣∣∣ 2n√

n2 + 1
− 2

∣∣∣∣ < ε .

Now ∣∣∣∣ 2n√
n2 + 1

− 2

∣∣∣∣ =

∣∣∣∣∣2n− 2
√
n2 + 1√

n2 + 1

∣∣∣∣∣
=

∣∣∣∣ 4n2 − (4n2 + 4)√
n2 + 1(2n+ 2

√
n2 + 1)

∣∣∣∣
=

4√
n2 + 1(2n+ 2

√
n2 + 1)

Now for any n in N, 2n+ 2
√
n2 + 1 ≥ 2 + 2 = 4, so 4/(2n+ 2

√
n2 + 1) < 1. So to get the inequality

we need, we only have to arrange 1/
√
n2 + 1 < ε, or

√
(1/ε2)− 1 < n. But what if ε > 1, so that

the square root doesn’t make sense? We can just rule that out, because if we choose a big tolerance,
the terms of the sequence will always be within it. So here is the proof written forward:] Take N
in N so that N >

√
max(0, (1/ε2)− 1). Then for n ≥ N , we have n2 + 1 > 1/ε2, so 1/

√
n2 + 1 < ε,

and hence ∣∣∣∣ 2n√
n2 + 1

− 2

∣∣∣∣ =
4√

n2 + 1(2n+ 2
√
n2 + 1)

=
4

2n+ 2
√
n2 + 1

· 1√
n2 + 1

< ε .

Therefore, limn→∞
2n√
n2+1

= 2.

[At this point students are ready to do the second problem set.]

Of course we don’t want to go through all that every time we need to find a limit, so we prove
the Algebraic Limit Theorem, i.e., the “Limit Theorems” that everyone learns and forgets in Calc 1.
The sum and difference parts of the proof are easy, the quotient part is harder, and the square root
is an exercise. Let’s prove the product part:

Theorem. (Product Limit Theorem) If limxn = x and lim yn = y, then lim(xnyn) = xy.
(Here and elsewhere, of course, lim means the limit as n → ∞, as long as we are talking about
limits of sequences. When we get to limits of functions, we will have to write more.)

Proof. Let ε > 0 be given. [We want |xnyn− xy| < ε; and it will be useful to add and subtract the
same quantity inside the the absolute value:

|xnyn − xy| = |xnyn − xny + xny − xy| ≤ |xn||yn − y|+ |xn − x||y|

Now we know that we can make the differences |yn − y| and |xn − x| as small as we need, and |y|
doesn’t change with n. But |xn| may change as we change n, so we need to be sure that it doesn’t
change too much. One way to arrange that is note that, for large enough values of n, |xn − x| < 1,
so that |xn| − |x| < 1, or |xn| < |x| + 1. Thus |xn| at least doesn’t get any larger than the fixed
value |x|+ 1. Now all we need to arrange is to have the sum of the two terms come out less than ε



by making the differences that we can control small enough:] Pick N in N large enough so that all
three of the following hold for all n ≥ N :

|xn − x| < 1 , |xn − x| <
ε

2|y|
, |yn − y| <

ε

2(|x|+ 1)
.

(What if y = 0? In that case, we can just drop the middle condition.) Then for all n ≥ N ,

|xnyn − xy| ≤ |xn||yn − y|+ |xn − x||y| < (|x|+ 1)
ε

2(|x|+ 1)
+

ε

2|y|
|y| = ε ,

and the proof of the limit is complete.

Similarly:

• lim(an + bn) = (lim an) + (lim bn)

• lim(can) = c(lim an), where c is a constant

• If lim(bn) 6= 0, then lim(an/bn) = (lim an)/(lim bn)

• If an ≤ bn for all n (and the limits of (an), (bn) exist), then lim an ≤ lim bn.

Example. Let’s redo the example that we did earlier directly from the definition of limit; this
time, we’ll use the Algebraic Limit Theorem. First, we divide both numerator and denominator
by n; we can put n under the radical as n2 because we know it is positive. Also, we know that the
limit of a constant sequence is that constant, and the limit of 1/n is 0:

lim
n→∞

2n√
n2 + 1

= lim
2√

1 + 1
n2

=
2

lim
√

1 + 1
n2

=
2√

1 +
(
lim 1

n

)2
=

1√
1 + 02

= 2

The next example is not important as a theorem; we include it as an example of how to do one
of the homework problems:

Example. Proposition: If lim an = a and |bn − b| ≤ 3(an − a)2 for all n in N, then lim bn = b.

Proof. Let ε > 0 be given. Pick N in N s.t., for n ≥ N , |an − a| <
√
ε/3. Then for n ≥ N ,

|bn − b| ≤ 3(an − a)2 < 3(
√
ε/3)2 = ε .

Therefore, lim bn = b.

Here is why we can’t just assume something (though of course we can make a guess) from the
first few terms of a sequence:

(1) It is possible to cook up examples that look clear and then go crazy: Let

an = n+ (n− 1)(n− 2)(n− 3)(n− 4)(n− 5) .

a1 = 1 , a2 = 2 , a3 = 3 , a4 = 4 , a5 = 5 , a6 = 126



(2) Artificial examples aside, here is a “real” one: Everyone has seen “Venn diagrams” used to
show intersections and unions of sets:

So, into how many regions (inside and outside) is the plane divided by n circles? Let rn denote
that number. It is easy to count that r0 = 1, r1 = 2, r2 = 4, and r3 = 8.

So the formula is rn = 2n, right? Nope. You can check that r4 = 14. (Each new circle hits
each of the old circles in at most two points, so the (n + 1)-st new circle is divided into 2n
arcs by these intersections, and each of these arcs cuts an old region into two, increasing the
count of regions by 2n. So a recursive definition of the sequence (rn) is given by: r0 = 1,
r1 = 2, and rn+1 = rn + 2n. For n = 3, we get r4 = 8 + 2(3) = 14, as claimed.)

(3) The polynomial n2 − n+ 41 gives prime numbers for n = 0, 1, 2, . . . , 40, but not for n = 41.

[At this point students are ready to do the third problem set.]

Definition. A sequence (xn)∞n=1 is increasing if x1 ≤ x2 ≤ x3 ≤ . . . , i.e., if n < m =⇒ xn ≤ xm
[respectively decreasing if if x1 ≥ x2 ≥ x3 ≥ . . . , i.e., if n < m =⇒ xn ≥ xm]. It is monotone if it
is either increasing or decreasing.

Theorem. (Monotone Convergence Theorem) An increasing sequence that is bounded above
converges (to the supremum of its terms). [Writing the “decreasing” version is left to you.]

Proof. Let (xn)∞n=1 be an increasing sequence s.t. {xn : n ∈ N} is bounded above, and let x =
sup{xn : n ∈ N}. Let ε > 0 be given. Then x − ε is not an upper bound for {xn : n ∈ N}, so
∃N ∈ N s.t. xN > x − ε. Now for n ≥ N we have xN ≤ xn ≤ x, so |xn − x| ≤ |xN − x| < ε.
Therefore x = limxn.

Example. Recall a1 = 1/1 and if an = bn/cn, then an+1 = (bn+2cn)/(bn+cn) = (an+2)/(an+1).
Now this sequence is not monotone; in fact, if a term is less than

√
2, then the next term is greater

than
√

2, and vice versa.
(Verifying the last claim: Suppose an <

√
2; then the following statements are all true or all



false, using the fact that an + 1 > 0:

an+1 =
an + 2

an + 1
>
√

2

an + 2 >
√

2an +
√

2

2−
√

2 > (
√

2− 1)an√
2 > an

But the last statement is true by hypothesis, so the first is also true. Similarly, if I had started by
supposing that an > 2, then I would have found that an+1 < 2.)

Do the alternating terms (i.e., every other term in the sequence — the odd ones and the even
ones) form monotone sequences? Well,

an+2 =
(an + 2)/(an + 1) + 2

(an + 2)/(an + 1) + 1
=

3an + 4

2an + 3

Now suppose an <
√

2 (which is true for n = 1, say). We know that an+2 <
√

2 again because we
know the an’s are alternately above and below

√
2; so the odd-numbered an’s are bounded above,

by
√

2. Do we necessarily have an+2 ≥ an? Again, the following statements are all true or all false
(because 2an + 3 > 0); I’m starting with the statement of which I’m not sure and seeing if I reach
a statement that I know is true:

an <
3an + 4

2an + 3

2a2n + 3an < 3an + 4

a2n < 2

an <
√

2

[Warning: Going from the second last statement to the last one here is an example showing that this
kind of “algebraic logic” can in general be misleading. Here, I know that an is a positive number,
so taking square roots on both sides is safe; but if I don’t know that, the statements a2n > 2 and
an >

√
2 are not necessarily both true or both false.] All the statements are true, so the odd-

numbered an’s form an increasing sequence. Similarly, the even-numbered an’s form a decreasing
sequence bounded below by

√
2. By the Monotone Convergence Theorem, both “subsequences”

converge. Do they have the same limit? (If so, it must be
√

2.) Well, because an + 1 > 1, if we
drop it from a denominator (of a positive fraction), the result will get larger:

|an+1 −
√

2| =
∣∣∣∣an + 2

an + 1
−
√

2

∣∣∣∣ =

∣∣∣∣∣an + 2−
√

2an −
√

2

an + 1

∣∣∣∣∣
< |an + 2−

√
2an −

√
2| = (

√
2− 1)|an −

√
2|

Repeating this n times, we see that

|an+1 −
√

2| < (
√

2− 1)n|a1 −
√

2| = (
√

2− 1)n+1

Because
√

2− 1 < 1, its powers approach 0, so lim an =
√

2.
Let’s try a different approach to the end of the argument above, one that the text uses repeatedly

in the exercises. Suppose we have reached the point above where we know that the odd-numbered



an’s form an increasing sequence that is bounded above. Then we know that it converges; but we
don’t (officially) know the limit. To find the limit, let’s call it a. Then as n → ∞, both an and
an+2 must get closer and closer to a, and they are related by an+2 = (3an + 4)/(2an + 3); so a must
be related to itself by a = (3a + 4)/(2a + 3). A little algebra gives a = ±

√
2, and because all the

an’s are positive, the limit must be the positive square root. Similarly, as soon as we know that
the even-numbered an’s are decreasing and bounded below, we can find that the limit must be

√
2

by the same reasoning.

Lemma. If |r| < 1, then lim rn = 0.

Proof. We may assume WLOG that r > 0; then r > r2 > r3 > · · · ≥ 0, so lim rn = L exists.
Assume BWOC that L > 0, and pick N in N s.t. |rN − L| < (L/r) − L (a positive number, so a
possible choice for ε), i.e., rN < L/r. Then rN+1 < L, so L is not a lower bound for {rn : n ∈ N},
so L is not lim rn, −/\−. Therefore L = 0.

Challenge. In one of the text exercises, the author challenges us to find the limit of the sequence
defined recursively by x1 = 2, xn+1 = (xn + 2/xn)/2 converges to

√
2. His reasoning is that, as

n→∞ both xn+1 and xn go to the same limit x, so x must satisfy x = (x+2/x)/2, which simplifies
to x =

√
2. Now, given c > 0, find a sequence that converges to

√
c.

[Tom Dinitz proposed xn+1 = ((c − 1)/c)(xn + c/((c − 1)xn)), because again, x =
((c − 1)/c)(x + c/((c − 1)x)) simplifies to x =

√
c. This does seem to work for many c

-- for c = 0.5 the next term is 0 and the following terms are meaningless; and for

c = 0.6 the sequence seems to diverge. But xn+1 = (1/2)(xn + c/xn) -- essentially

reasoning that if xn is too small to have x2n = c, then c/xn will be too large, and

the average of the two will be closer to right -- seems to work.]

As mentioned earlier, for a sequence (an)∞n=1, the indicated sum symbol
∑∞

n=1 an is a series —
but that doesn’t imply that the symbol means anything. Or if it does mean something, then it
means the sequence of “partial sums”:

Definition. We say that the series
∑∞

n=1 an converges to L in R if the sequence of partial sums

s1 = a1 , s2 = a1 + a2 , s3 = a1 + a2 + a3 , . . .

converges to L (as a sequence). (The m-th partial sum can be written sm =
∑m

n=1 an.)

Example.
∑∞

n=1(−1)n : The partial sums are −1, 0,−1, 0,−1, 0, . . . , so the series doesn’t converge.

Example. (Geometric series)
∑∞

n=0 ar
n. The n-th (or maybe the (n+ 1)-st, depending on how

you count) partial sum is a(1− rn+1)/(1− r) (unless r = 1), so the series converges to a/(1− r) if
|r| < 1 and diverges if |r| ≥ 1.

(Proof of the partial sum formula: Suppose r 6= 1. Then

sn = a+ ar + ar2 + · · ·+ arn ,

and so
rsn = ar + ar2 + · · ·+ arn + arn+1 .

Subtracting gives sn − rsn = a− arn+1, and dividing both sides by 1− r gives the result.)

But for almost any other series, even if we know it converges, we can’t tell what it converges to.



Proposition. If a series
∑
an converges, then the sequence of terms an converges to 0; but not

conversely.

Proof. Suppose
∑
an converges to L, and let ε > 0 be given. Then ∃N ∈ N s.t. ∀m ≥ N ,∣∣∣∣∣

m∑
n=1

an − L

∣∣∣∣∣ < ε

2
.

In particular, ∀m ≥ N + 1,

|am − 0| =

∣∣∣∣∣
m∑

n=1

an −
m−1∑
n=1

an

∣∣∣∣∣ ≤
∣∣∣∣∣
m∑

n=1

an − L

∣∣∣∣∣+

∣∣∣∣∣
m−1∑
n=1

an − L

∣∣∣∣∣ < ε

2
+
ε

2
= ε .

So lim an = 0.
For the “but not conversely” part, we need a sequence an that converges to 0 but

∑
an diverges.

The simplest example is the harmonic series
∑

(1/n): We know that lim(1/n) = 0, so we need
to show that the partial sums of

∑
(1/n) don’t converge. Because the (1/n)’s are all positive,

the partial sums are increasing, so we just need to show they are not bounded above. So assume
BWOC that they are bounded above, say by B. Pick N ∈ N s.t. N > 2B, and consider the sum
of the first 2N terms of

∑
(1/n). In the sum below, we replace the numbers 1/n with n between

successive powers of 2 with the reciprocal of the next larger power of 2; so 1/3 gets replaced by
1/4; each of 1/5, 1/6 and 1/7 get replaced by 1/8; each of 1/9 through 1/15 get replaced by 1/16,
and so on. The result, of course, is smaller than before because each of the terms is replaced by
something smaller (or equal).

2N∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+

1

9
+ · · ·+ 1

2N

> 1 +
1

2
+

1

4
+

1

4
+

1

8
+

1

8
+

1

8
+

1

8
+

1

16
+ · · ·+ 1

2N

= 1 +
1

2
+

1

2
+

1

2
+ · · ·+ 1

2

= 1 +
1

2
N > 1 +B > B

Because we have 2 copies of 1/4, 4 copies of 1/8, 8 copies of 1/16, and so on, it adds up to N copies
of 1/2. So the partial sums of the harmonic series are not bounded above by B, −/\−.

[At this point students are ready to do the fourth problem set.]

We will return to the subject of series later, but let’s get back to sequences:

Definition. A subsequence of a sequence (an)∞n=1 is a sequence of the form (ank
)∞k=1 where n1 <

n2 < n3 < . . .

So even divergent sequences can have subsequences that converge:

• 0, 1, 0, 2, 0, 3, 0, . . . has the subsequence 0, 0, 0, . . .

• 1, 2, 3, 1, 2, 3, 1, 2, 3, . . . has subsequences 1, 1, 1, . . . and 2, 2, 2, . . . and 3, 3, 3, . . .



• 1, 12 ,
1
3 ,

3
4 ,

1
5 ,

5
6 ,

1
7 , . . . has subsequences 1, 13 ,

1
5 ,

1
7 , . . . and 1

2 ,
3
4 ,

5
6 , . . .

Theorem. (Bolzano-Weierstrass) A bounded sequence has a convergent subsequence.

Proof. (Picture first.) Suppose all terms of (an) are in the interval [C,D]. Set b1 = a1. Now
infinitely many of the an’s are in the left subinterval [C, 12C + 1

2D] or infinitely many are in the
right subinterval [12C + 1

2D,D] (or maybe both). Say the former, and let b2 be the first an after b1
that lies in the left subinterval.

Now infinitely many of the an’s are in the left subinterval [C, 34C + 1
4D] of [C, 12C + 1

2D] or
infinitely many of the an’s are in the right subinterval [34C + 1

4D,
1
2C + 1

2D] (or both). Suppose the
latter, and let b3 be the first an after b2 that lies in [34C + 1

4D,
1
2C + 1

2D]. Continue; then (bn) is a
subsequence of (an), and we want to show that it converges.

Consider the intervals I1 = [C,D], I2 = [C, 12C + 1
2D], I3 = [34C + 1

4D,
1
2C + 1

2D], etc., that
were used in choosing the bn’s. We have I1 ⊃ I2 ⊃ I3 ⊃ . . . , so their intersection is nonempty. But
the length of In is (D − C)/2n−1, approaching 0, so their intersection is a single point {b}.

We claim that b = lim bn: Let ε > 0 be given, and pick N in N so that (D−C)/2n−1 < ε. Then
for all n ≥ N , both bn and b are in In, so |bn − b| ≤ (D − C)/2n−1 < ε. The result follows.

Challenge. (Chosen to be similar to a homework problem) Find a sequence with subsequences
that converge to each natural number.
One answer is 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, . . . .

A “Cauchy sequence” is a sequence of objects in any “metric space” (where distances make
sense) that is, in a sense, trying to converge; but if the space is not complete, there may not be a
point for it to converge to. Here are some examples:

Example. (1) The now-familiar sequence a1 = 1 and an+1 = (an + 2)/(an + 1) is a sequence in
Q, but its limit,

√
2, isn’t there.

(2) Suppose we measure the distance between continuous functions f, g on the interval [−1, 1] by

d(f, g) =

∫ 1

−1
|f(x)− g(x)| dx

i.e., the area between the graphs of the functions. Then the continuous functions fn(x) =
2n−1
√
x approach the step function f(x) which is 1 if x > 0, 0 if x = 0 and −1 if x < 0; but

that is not a continuous function.



But we will shortly show that, in R, a sequence is Cauchy iff it is convergent. So for our purposes
the Cauchy criterion is just a convenient way to handle sequences when we don’t know the limit. In
particular, because we usually don’t know the sum of a series, it is particularly useful with series.

Theorem. A sequence (an) in R is convergent iff it is Cauchy, i.e., iff, ∀ ε > 0, ∃N ∈ N s.t.
∀m,n ≥ N , |am − an| < ε.

Proof. (⇐) Write lim an =. Let ε > 0 be given, and pick N ∈ N s.t. ∀n ≥ N , |an−a| < ε/2. Then
for all m,n ≥ N ,

|am − an| ≤ |am − a|+ |a− an| <
ε

2
+
ε

2
= ε .

(⇒) We begin with a:

Lemma. A Cauchy sequence is bounded.

Proof. For (an) Cauchy, pick N ∈ N s.t. ∀m,n ≥ N , |am − an| < 1. Then ∀m ≥ N , |am| − |aN | ≤
|am − aN | < 1, so ∀n ∈ N,

|an| ≤ max(|a1|, |a2|, . . . , |aN |, |aN |+ 1) .

Now suppose (an) is Cauchy. By the lemma and Bolzano-Weierstrass, it has a convergent
subsequence (bn), with limit b, say. We claim that (an) converges to b also: Let ε > 0 be given,
and pick N ∈ N such that

∀m,n ≥ N, |am − an| <
ε

2
and ∀m ≥ N, |bm − b| <

ε

2
.

Then ∀n ≥ N , because we can find a bm for which bm = ak with k ≥ N , we have

|an − b| ≤ |an − ak|+ |bm − b| <
ε

2
+
ε

2
= ε .

Corollary. (Cauchy criterion for series)
∑∞

n=1 an converges iff, ∀ ε > 0, ∃N ∈ N s.t., ∀m >
n ≥ N ,

∑m
k=n ak < ε.

Here are the basic theorems about the convergence of series:

Proposition. (Comparison test) Suppose 0 ≤ an ≤ bn ∀n ∈ N. If
∑
bn is converges, then

∑
an

converges [or equivalently the contrapositive: If
∑
an diverges, then

∑
bn diverges].



The proof is an exercise, but it could be based on the Cauchy criterion, because
∑m

k=n ak ≤∑m
k=n bk.

Proposition. (Absolute convergence test) If
∑
|an| converges, then

∑
an converges.

Proof. Use the Cauchy criterion: |
∑n

k=m ak| ≤
∑n

k=m |ak|, so the result follows.

Remark. Theorem 2.7.10 says that even if the terms in an absolutely convergent series are rear-
ranged, the sum will be the same. But it is a horrible fact that, if a series

∑
an converges but does

not converge absolutely, then for every B in R ∪ {∞,∞}, there is a rearrangement (bn) of (an) for
which

∑
bn converges to B. Here is a sketch of the argument:

If we look at the sum of the positive an’s (in order) and the sum of the negative ones, at least
one of these sums must diverge (to ∞ or to −∞, respectively), or else

∑
|an| would converge. But

if one converges and the other diverges, then
∑
an diverges, which isn’t true. So both diverge.

Now fix a B — in R, for now. Add up just enough positive an’s to get a partial sum larger than
B. Then add in just enough negative an’s to make the sum less B. Then add in just enough more
positive an’s to get above B again. And so on. Now because

∑
an converges, its terms approach

0 (in absolute value); and the partial sums obtained in this way never differ from B by more than
the last term of the other sign, so these partial sums will approach the limit B.

If B = ∞, first add enough positive an’s to get above 1, then just enough negative an’s to get
below 1, then just enough positive an’s to get above 2, then just enough bn’s to get below 2, and
so on. The case when B = −∞ is left to you.

It follows that the commutative law fails rather spectularly for infinite series.

Definition. If
∑
|an| converges, we say that

∑
an converges absolutely.

Example. The alternating harmonic series
∑

(−1)n+11/n converges (by the next result), but not
absolutely.

Proposition. (Alternating series test) If the terms in
∑
an alternate signs and their absolute

values are decreasing with limit 0, then
∑
an converges.

Proof. Assume WLOG that a1 > 0. Then because the signs of the an’s alternate and their absolute
values decrease, a2 + a3 is a negative number. Hence, letting sn denote the n-th partial sum, we
have

s1 = a1 > s1 + a2 + a3 = s3 and similarly

s3 > s3 + a4 + a5 = s5

s5 > s5 + a6 + a7 = s7

and so on. So the odd-numbered partial sums form a decreasing sequence. Similarly, the even-
numbered partial sums form an increasing sequence. Moreover, every odd partial sum s2n−1 is
greater than any odd partial sum s2m−1 with m > n, which is greater than s2m, which is greater
than any s2k with k < m. So all the even-numbered partial sums are upper bounds for the set
of odd-numbered partial sums. And vice versa. It follows that the limits of monotone sequences
of even-numbered partial sums and odd-numbered partial sums both exist and lie between the
sequences. It remains to show they are equal. But because the difference between them is bounded
above by the difference between any even-numbered and any odd-numbered partial sum, and the
difference between two consecutive partial sums, i.e., a term in the sequence, is approaching 0, it
follows that the difference between the limits is 0, i.e., they are equal.



Proposition. (Ratio test) If lim |an+1/an| < 1, then
∑
an converges absolutely. If the limit is

greater than 1, the series diverges. If the limit is 1, the series could do either.

The proof is an exercise, so we will not provide it here. The general idea is to set up a comparison
test with a geometric series with a common ratio r < 1. Because it is usually easy to apply, the
ratio test is usually the first choice to decide whether a series (of constants) converges. But the
following test can sometimes give an answer when the ratio test fails.

Proposition. (Root test) If lim n
√
|an| < 1, then

∑
an converges absolutely. If the limit is greater

than 1, the series diverges. If the limit is 1, the series could do either.

Proof. Assume the limit is less than 1; pick r strictly between the limit and 1, and choose N in N
such that, for all n > N , n

√
|an| < r. Then |an| < rn, and

∑
rn converges, so by the comparison

test
∑∞

n=N |an| also converges. Adding the finite sum
∑N−1

n=1 |an| shows that
∑∞

n=1 an converges
absolutely.

Example. Let us apply the ratio and root tests to a few series to see if we can verify convergence:

(a)
∑

5/(2n − 1):

Ratio test:
5/(2n+1 − 1)

5/(2n − 1)
=

2n − 1

2n+1 − 1
=

1− (1/2n)

2− (1/2n)
→ 1− 0

2− 0
=

1

2
< 1

so the series converges absolutely.

Root test:
n

√
5

2n − 1
=

n
√

5

2 n
√

1− (1/2n)

The n-th root of 5 approaches 1, and because 1−(1/2)n approaches 1, its n-th root approaches
it even more quickly; so the limit is 1/2 and the series converges absolutely.

(b) We know that
∑

1/n diverges, but neither the ratio nor the root test give us that information:

1/(n+ 1)

1/n
=

n

n+ 1
→ 1

n

√
1

n
= n−1/n → 1

The latter limit is found by taking the logarithm and appealing to L’Hôpital’s rule from
calculus: Because log(n−1/n) = −(log n/n), and letting n → ∞ gives the indeterminate
form −∞/∞, we can take the derivative in numerator and denominator; the quotient of the
derivatives is −1/n, with limit 0, so that is the limit of log(n−1/n); so the limit we want is 1.

(c) We claim that the
∑

1/n2 converges, but the ratio and root tests again fail:

1/(n+ 1)2

1/n2
=

(
n

n+ 1

)2

→ 1
n

√
1

n2
= n−2/n → 1

Euler was the discoverer of the value of
∑

1/n2; it is π2/6. His method, however was flawed;
a correct proof is linked to the course home page. But Euler’s idea is interesting, so let
us review it. He reasoned that, if a polynomial p(x) has roots a1, a2, . . . , an (repeated by
multiplicity), then it can be written as

p(x) = c(x− a1)(x− a2) . . . (x− an) ,



where c is the leading coefficient of p(x). If the constant term ±ca1a2 . . . an of p(x) is 1, then
we can divide through by it and write

p(x) =

(
1− x

a1

)(
1− x

a2

)
. . .

(
1− x

an

)
.

Now: ∗∗What is true for polynomials is true for power series.∗∗ (This is Euler’s error. For
example, the exponential function, which is given by a power series, has no roots, so by his
reasoning it should be a constant function; but it isn’t.) Consider the function

sinx

x
= 1− x2

3!
+
x4

5!
+ . . .

It has zeros ±π,±2π,±3π, . . . and its constant term is 1, so by the reasoning above it can be
written as an infinite product

sinx

x
=
(

1− x

π

)(
1 +

x

π

)(
1− x

2π

)(
1 +

x

2π

)(
1− x

3π

)(
1 +

x

3π

)
. . .

=
(

1− x

π2

)(
1− x

4π2

)(
1− x

9π2

)
. . .

If we multiply this out, the coefficient of x2 is −
∑

1/n2π2; while the coefficient of x2 in the
power series above is −1/3!. Setting these equal to each other gives

∑
1/n2 = π2/6. And

that, miraculously, turns out to be correct.

[At this point students are ready to do the fifth problem set.]

Our text chooses not to include the following test, because we haven’t talked about integrals
yet. But it is usually placed at this point in calculus books, so let’s include it here.

Proposition. (Integral test) Suppose f : [1,∞)→ R is a decreasing positive function. Then the
improper integral inf∞1 f converges iff the series

∑∞
n=1 f(n) converges.

Proof. It is easy to see from a diagram

that for every positive integer N

N−1∑
n=1

f(n) ≥
∫ N

1
f(x) dx ≥

N∑
n=2

f(n) .

Passing to the limit as N → ∞, we see that if either the integral or the series is bounded, then
so is the other. (But be careful: If they exist, their limits are not equal. The improper integral is
somewhere between the sum of the series and that sum minus its first term.)



Corollary.
∑∞

n=1 1/np converges iff p > 1.

Proof. If p ≤ 0, then the terms of the sequence do not approach 0, so the series does not converge.
For p = 1, we have seen that the harmonic series diverges. For p > 0 and p 6= 1, f(x) = xp is a
decreasing positive function on [1,∞), so the Integral Test applies:∫ ∞

1

1

xp
dx =

[
x1−p

1− p

]∞
1

=
1

1− p
lim

M→∞

(
M1−p − 1

)
,

and the limit exists (as a finite number) iff 1− p < 0, i.e., p > 1

[At this point students are ready to do the sixth problem set.]


