
Chapter 3: Topology of R

Dictionary: Recall Vε(x) is the open interval (x− ε, x+ ε).

(a) A subset U of R is open iff, ∀x ∈ U , ∃ ε > 0 s.t. Vε(x) ⊆ U .

(b) A subset F of R is closed iff, for every convergent sequence (xn) with xn ∈ F ∀n ∈ N, the
limit of (xn) is also in F .

(c) The interior A◦ of a subset A of R is the largest open subset of A. (It is obtained from A by
taking those elements that have a neighborhood inside A.)

(d) The closure A of a subset A of R is the smallest closed subset of R that contains A (as a
subset). (It is obtained by adding to A all the points that are limits of sequences in A.)

(e) If A ⊆ B ⊆ A, then A is dense in B.

(f) For a subset A of R and x ∈ R, x is an isolated point if ∃ ε > 0 s.t. Vε(x) ∩A = {x}.

(g) For a subset A of R and x ∈ R (not necessarily in A), x is an accumulation point of A iff
there is a sequence (an) with an ∈ A\{x} ∀n ∈ N s.t., lim an = x. (The book calls such an x
a limit point of A; other books allow isolated points to be limit points.)

Example. • R and ∅ are both open and closed. (In R, they are the only such sets.)

• An open interval (a, b) is an open set. So are (a,∞) and (−∞, a).

• A closed interval [a, b] is a closed set. So are [a,∞) and (−∞, a]. So is any finite set.

• A half-open interval (a, b] is neither open nor closed.

• Q = R, so Q is dense in R.

• Q◦ = ∅.

• [0, 1]◦ = (0, 1).

• (0, 1] = [0, 1].

• {1/n : n ∈ N} = {1/n : n ∈ N} ∪ {0}.

• {1/n : n ∈ N}◦ = ∅.

Remark. These ideas of topology make sense in many “spaces” other than R; for example, in the
plane R2, or more generally in real n-space Rn, where the neighborhoods of a point are discs (in
R2) or n-dimensional “spheres” (in Rn). It is possible to extend the ideas even to strange “spaces”
like the Moebius strip, the torus, or the Klein bottle, just by saying what the neighborhoods of
points are. For the Moebius strip, which is physically built by taking a strip of paper, giving it a
half twist, and taping the ends, this amounts to saying that, in the following diagram, A and B
will remain separate points, with half-disc neighborhoods around them, but that C and D will end
up the same point, with a neighborhood around it that is a disc consisting of a half-disc around C



and a half-disc around D:

If we don’t do the twist, but glue the top and bottom, first, in the same direction (yielding a
tube), and then the left and right edges in the same direction, we end up with a torus, a surface
where every point has a neighborhood that looks like a neighborhood in R2, if you stand close
enough:

If you glue top and bottom to get a tube, and then glue the left and right ends in opposite
directions, you get a Klein bottle, a surface that cannot be built inside R3, even though, again,
every point has a neighborhood that looks like a neighborhood in R2. Here is a misleading attempt
to draw it. Somewhere in that blue expanse of “bottleneck,” the “neck” passes through the “side”
of the bottle, so that the ends can be glued in the correct direction; but the points in the neck and
the points in the side somehow remain distinct:

Note that, although we can’t realize a Klein bottle in R3, it makes sense as a glued rectangle.

Proposition. (a) Any union of open sets is open.

(b) An intersection of finitely many open sets is open.

(c) A set A is open iff its complement Ac = R\A is closed.

(d) Any intersection of closed set is closed.

(e) A union of finitely many closed sets is closed.

Proof. (a) and (b): These proofs are exercises.
(c) (⇒): Suppose A is open, and let (bn) be a convergent sequence in Ac, with limit x. If x ∈ A,

then there is an neighborhood Vε(x) of x contained in A. So ∀n ∈ N, |xn − x| 6< ε, −/\−. Hence,
x ∈ Ac. Thus, Ac is closed.

(⇐): Suppose Ac is closed, and let x ∈ A. Assume BWOC that there is no ε > 0 s.t.
Vε(x) ⊆ A. Then ∀n ∈ N, ∃xn ∈ Ac s.t. |xn − x| < 1/n. The sequence (xn) in Ac has limit x,
which must also be in Ac because Ac is closed. So x /∈ A, −/\−.

(d) and (e): These now follow from (a) and (b).



Remark. A subset of R is open iff it is a union of (possibly infinitely many) open intervals.

Proof. (⇐) The last proposition. (⇒) Let U be open. Then for all x in U , ∃Vε(x) ⊆ U , so
U =

⋃
x∈U Vε(x).

Example. (Cantor set) (an interesting subset of R)
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or equivalently, C is the set of all x in [0, 1] that can be written as a base-3 “decimal” without using
the digit 1. (For example, 1/3 = 0.022 . . . in base 3, as well as 0.1, so 1/3 is in the Cantor set.)
It is closed, because each of the sets being intersected (a finite union of closed intervals) is closed
(or, because we are starting with a closed set and dropping out, i.e., taking the complement, of the
open “middle third” intervals. Note that the “length” of C is
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But C is uncountably infinite, because it can be set in 1-1 correspondence with the interval [0, 1],
with its elements expressed in base 2, just by replacing the 2’s in the base-3 representations of the
elements of C by 1’s and interpreting the result as a base-2 representation of an element of [0, 1].

Questions:

1. Can a nonempty countable set be open?

2. Can a set of length 0 (like the Cantor set) contain any open sets?

[The answers are both no]

I introduce the following terminology with some trepidation, because I know it can be misun-
derstood if it is not used carefully:

Definition. Let A be a subset of R. Then a subset B of A is open [respectively closed] in A iff
B = A ∩ S where S is open [respectively closed] in R.

Example. Because of the equation (1/2, 1] = [0, 1]∩ (1/2, 3/2), we see that (1/2, 1] is open in [0, 1]
but closed in (1/2, 3/2).

Definition. • An open cover of a subset A of R is a family U = {Uλ : λ ∈ Λ} of open sets in
R for which A ⊆

⋃
λ∈Λ Uλ =

⋃
U .

• A subcover V of U is a subfamily of U for which A ⊆
⋃
V. It is a finite subcover if there are

only finitely many open sets in V.

• A subset C of R is compact iff every open cover of C has a finite subcover.

Theorem. (Heine-Borel) A subset of R is compact iff it is closed and bounded.



Example. A counterexample to (⇐) in a “metric space” different from R: Let `1 be the set of all
sequences (with terms from R) whose sums are absolutely convergent, with the distance between
two sequences (an) and (bn) in `1 given by (the real number)

∑
|an − bn|. Consider the set

F = {((1, 0, 0, 0, . . . ) , (0, 1, 0, 0, . . . ) , (0, 0, 1, 0, . . . ) , . . . )} .

Because the distance between any two elements of F is 2, there are no Cauchy sequences in F
except for those that are eventually constant; so F is closed. And all elements of F are 1 unit away
from (0, 0, 0, . . . ), so F is bounded. Now for each element x of F , notice that V1/2(x) contains only
one element of F , namely x; but the union of all the V1/2(x)’s, as x varies over F , contains F . So
{V1/2(x) : x ∈ F} is an open cover of F with no finite subcover; so F is not compact.

Proof. (of Heine-Borel)
(⇒) (works in every metric space) Suppose C is compact. Assume first, BWOC, that C is not

closed, i.e., has a limit point x that is not in it. For ε > 0, let Uε = {y ∈ R : |y − x| > ε}, an open
set in R. Then

⋃
ε>0 Uε = R\{x}, so {Uε : ε > 0} is an open cover of C. But for any finite subcover

V = {Uε(1), Uε(2), . . . , Uε(n)} ,

the union of V is Uε where ε = min(ε(1), ε(2), . . . , ε(n)). Now because x is a limit point of C, there
is an element c of C for which |c− x| < ε, so c /∈ Uε =

⋃
V, so V is not a subcover of C, −/\−. So C

is closed.
Now assume BWOC that the compact set C is not bounded. Then Un = (−n, n) is an open

cover of C with no finite subcover, −/\−. So C is bounded.
(⇐) (needs the completeness of R) Let C be a closed and bounded subset of R, and assume

BWOC that it has an open cover U with no finite subcover. Because C is bounded, it is contained
in some closed interval [a, b]. Now at least one of[
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has no finite subcover by elements of U , because if both had finite subcovers, then their union
would be a finite subcover of C. Suppose the first of these has no finite subcover. Then at least
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has no finite subcover by elements of U , say the latter. Continuing in this way, we get a sequence
of intervals
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for which I1 ⊇ I2 ⊇ I3 ⊇ . . . , the length of In is (b − a)/2n−1, and In ∩ C has no finite subcover
in U . Now we use the completeness of R: By the Nested Interval Property (and the fact that the
lengths of the In’s are approaching 0), we know

⋂∞
n=1 In is a single-point set, {d}. And because



each In ∩ C has no finite subcover, it is not empty, so we can pick an element cn in it. Because
both cn and d are in In, we have |cn − d| ≤ (b − a)/2n−1, so (cn) converges to d. Because Cn is
closed, d ∈ C, so there is an element U of U for which d ∈ U ; and because U is open, there is an
ε > 0 for which Vε(d) ⊆ U . Pick N in N for which (b− a)/2N−1 < ε. Then because all of IN is less
than ε away from d, we see that

IN ∩ C ⊆ Vε(d) ⊆ U .

So {U} is a finite subcover of U for the set IN ∩C, contradicting our choice of IN . Therefore, C is
compact.

The property in the following proposition is what the text takes as the definition of compact
set, but it is not easy to show that they are equivalent in a general metric space.

Proposition. A subset C of R is compact iff every sequence in C has a subsequence that has a
limit in C.

Proof. (⇒) Because C is bounded, every sequence in C has a convergent subsequence by Bolzano-
Weierstrass; and the limit of that subsequence is in C because C is closed.

(⇐) If C is not bounded, then we can find a sequence in C with limit ∞ or −∞, and such a
sequence has no convergent subsequence; so C is bounded. If C is not closed, then we can find a
sequence in C approaching a limit point not in C, and such a sequence has no subsequence with a
limit in C; so C is also closed.

As the text points out, compact sets should be thought of as generalizations of closed bounded
intervals. It offers the following fact as a sample of the kind of statement that generalizes from
closed bounded intervals (in this case, the Nested Interval Property) to compact sets.

Proposition. A decreasing sequence C1 ⊇ C2 ⊇ C3 ⊇ . . . of nonempty compact sets has nonempty
intersection.

Proof. If the intersection were empty, the complements R\Cn would give an open cover of C1, and
there would be no finite subcover, because the union of any finite subcover would be the complement
of one of the Cn’s and hence would not include the elements of Cn, which are in C1.

[At this point students are ready to do the sixth problem set.]

Optional: Topology in general: Topology (or “rubber-sheet geometry”) is a major field of study
in math. The most active areas are probably in “manifolds”, where every point has a neighborhood
that looks like a neighborhood in some Rn. (The torus and Klein bottle mentioned earlier are
examples of “2-manifolds without boundary.” The Moebius strip is a 2-manifold with boundary,
because of the edge.) But the general ideas of topology turn out to be useful in more general
situations. Here is one way of describing a “topological space”: For any set X of “points”, take a
family U of subsets of X that satisfy:

(1) X and ∅ are in U ;

(2) any union of sets in U is again in U ; and

(3) any finite intersection of sets in U is again in U .



Then (X,U) is a “topological space,” the elements of U are the “open sets,” and two points are
“close” if they are in the same open set. The “closed sets” are just the complements of the open
sets.

Example. X = R2 and the closed sets are the “algebraic varieties” defined by sets P of polynomials
in two variables:

V (P ) = {(a, b) ∈ R2 : ∀ p(x, y) ∈ P, p(a, b) = 0} .

Then R2, with the complements of the algebraic varieties as open sets, forms a topological space.
But it is not a metric space, because you can’t “separate points”: Given two distinct points
(a, b), (c, d), for any open sets U, V where (a, b) ∈ U and (c, d) ∈ V , we have U ∩ V 6= ∅. (If
it were a metric space, taking ε to be half the distance between the two points would place the
points in disjoint ε-neighborhoods.)


