
Chapter 4: Functional Limits and Continuity

Definition. Let S ⊆ R and f : S → R.

(a) For an accumulation point a of S, the number ` is the limit of f(x) as x approaches a, or
limx→a f(x) = `, iff

∀ ε > 0, ∃ δ > 0 s.t., if 0 < |x− a| < δ and x ∈ S , then |f(x)− `| < ε .

(b) For s ∈ S, f is continuous at s iff,

∀ ε > 0, ∃ δ > 0 s.t., if |x− s| < δ and x ∈ S , then |f(x)− f(s)| < ε .

(c) If f is continuous at every point of S, then f is continuous on S.

Thus, relative to (b), if s is an isolated point of S, then f is automatically continuous at s —
it just has to be defined there, but we assumed f has domain all of S, including at s. But if s is
an accumulation point of S, then to say that f is continuous at s means:

(1) f(s) is defined (which, again, is automatic),

(2) limx→s f(x) exists, and

(3) limx→s f(x) = f(s).

The point of the next result is to relate limits of functions to limits of sequences.

Proposition. Let S ⊆ R, f : S → R and a be an accumulation point of S. Then limx→a f(x) = `
iff, for every sequence (sn) in S\{a} s.t. lim sn = a, we have lim f(sn) = `.

Proof. (⇒) Take a sequence (sn) in S\{a} with limit a, and let ε > 0 be given. Pick δ > 0 as in
the definition of function limit, and pick N in N so that, ∀n ≥ N , |sn − a| < δ. Then ∀n ≥ N ,
|f(sn)− `| < ε. So lim f(sn) = `.

(⇐) Assume limx→a f(x) 6= `. Negating the definition of function limit gives

∃ ε > 0 s.t. ∀ δ > 0 , ∃ s ∈ S s.t. 0 < |s− a| < δ and |f(s)− `| < ε .

Picking the δ-values 1/n and picking a corresponding sn for each of them, we get

∃ ε > 0 s.t. ∀n ∈ N , ∃ sn ∈ S s.t. 0 < |sn − a| <
1

n
and |f(sn)− `| ≥ ε .

But then the sequence (sn) in S\{a} satisfies lim sn = a and lim f(sn) 6= `, contradicting the
hypothesis about sequence limits.

Recall that, for any sets A,B, any function f : A → B, and any subsets X of A and Y of B,
we write f(X) = {f(x) : x ∈ X} (a subset of B) and call it the image of X (under f), and we
write f−1(Y ) = {a ∈ A : f(a) ∈ Y } (a subset of A) and call it the inverse image of Y (under f).
So f−1 makes sense as a mapping of subsets of B to subsets of A, even if f , as a function from the
elements of A to the elements of B, is not even close to being one-to-one and onto B.

Proposition. Let S ⊆ R and f : S → R. Then f is continuous on S iff, for all open sets U in R,
f−1(U) is open in S (i.e., “the inverse image of every open set is open”).



Proof. (⇒) Let U be open in R; we want to show that f−1(U) = V ∩ S for some open set V in
R, i.e., if s ∈ f−1(U), then ∃ δ > 0 s.t. Vδ(s) ∩ S ⊆ f−1(U). Now for s ∈ f−1(U), f(s) ∈ U , so
∃ ε > 0 for which Vε(f(s)) ⊆ U . Pick δ > 0 so that, if |x− s| < δ and x ∈ S, then |f(x)− f(s)| < ε.
Translating this into neighborhoods says that Vδ(s) ∩ S ⊆ f−1(Vε(f(s))) ⊆ f−1(U), as we wanted.

(⇐) Assume the inverse image of every open set in R is open in S. Take s in S, and let ε > 0 be
given. Then Vε(f(s)) is open in R, so f−1(Vε(f(s))) = V ∩ S, where V is open in R. Let δ > 0 be
such that Vδ(s) ⊆ V . Then if |x− s| < δ and x ∈ S, we have x ∈ Vδ(s)∩S ⊆ V ∩S ⊆ f−1(Vε(f(s),
i.e., |f(x)− f(s)| < ε. So f is continuous at s; and hence f is continuous on all of S.

Corollary. A function on a subset S of R is continuous on S iff the inverse image (in S) of every
closed set in R is closed in S.

Example. Proposition. limx→2(2x
2 − 3) = 5

Proof. Note that the domain of 2x2 − 3 is all of R, so 2 is an accumulation point of the domain —
so this limit has a hope of making sense. Now let ε > 0 be given. [We need ε > |(2x2 − 3)− 5| =
2|x − 2||x + 2|. We can make |x − 2| small, so we only need to put a bound on |x + 2| near to 2.]
Let δ = min(ε/10, 1). Then for x ∈ R s.t. |x−2| < δ, we have 1 < x < 3 and so |x+ 2| < 3 + 2 = 5,
and hence

|(2x2 − 3)− 5| = 2|x− 2||x+ 2| < 2
( ε

10

)
(5) = ε ,

as required.

Of course we don’t want to go through that every time, so we establish the Algebraic Limit
Theorem for Functions as in the text. We won’t prove it all — see the text for most of it — but
we will prove the subtraction part two ways: Let S ⊆ R, f, g : S → R be continuous and a be an
accumulation point of S. If limx→a f(x) and limx→a g(x) exist, then

lim
x→a

(f(x)− g(x)) = lim
x→a

f(x)− lim
x→a

g(x) .

Let’s use the notation limx→a f(x) = ` and limx→a g(x) = m.

Proof. (I, from the definition of functional limit) Let ε > 0 be given. Pick δ > 0 for which, if
0 < |x−a| < δ and x ∈ S, then |f(x)− `| < ε/2 and |g(x)−m| < ε/2. If 0 < |x−a| < δ and x ∈ S,

|(f(x)− g(x))− (`−m)| = |(f(x)− `)− (g(x)−m)| ≤ |f(x)− `|+ |g(x)−m| ≤ ε

2
+
ε

2
= ε .

The result follows.

Proof. (II, from the ALT for sequences, using the sequential version of function limits) Let (xn) be
any sequence of elements of S with limit a. Then because f and g are continuous, the sequences
(f(xn)) and (g(xn)) have limits ` and m respectively. By the ALT for sequences, lim(f(xn) −
g(xn)) = `−m. The result follows.

Example. Two odd functions. Here are two examples that show that continuity of functions
can happen at odd spots.

• The Dirichlet function, also called the salt-and-pepper function or the characteristic function
of the rationals: Recall that, for any subset B of any set A, we can define the “characteristic



function of B (in A)” to be the function χB : A → R given by χB(a) = 1 if a ∈ B and 0 if
a /∈ B. If we apply this to the rationals Q as a subset of the reals R, we get

χQ(x) =

{
1 if x is rational
0 if x is irrational

We claim that χQ is discontinuous at every real number. Suppose first that a is an irrational
number. Then we know that f(a) = 0, but every Vδ(a), with δ > 0, contains rational numbers
b, for which f(b) = 1; so with ε = 1/2, there is no δ > 0 for which 0 < |x − a| < δ makes
|f(x) − f(a)| < ε. We can make a similar argument if a is rational, because the irrationals
are also dense in R.

• The Thomae function or popcorn function:

t(x) =

{
0 if x is irrational
1
n if x = m

n where m,n ∈ N, n > 0, gcd(m,n) = 1

At every rational number m/n, the value of the Thomae function is 1/n; but there are
irrationals, with Thomae value 0, in every neighborhood of m/n, so if we set ε = 1/(2n),
then there is no δ that satisfies the definition of continuity at m/n, i.e., t is discontinuous at
every rational number. But it is continuous at every irrational x: Given ε > 0, we can find a
δ > 0 for which Vδ(x) contains none of the rational numbers of the form m/n with 1/n ≥ ε
— such rationals are spaced discretely along the line, so we can exclude them all by taking
δ small enough (though writing a formula for such a δ would be a mess). Then |x − y| < δ
forces |f(x)− f(y)| = f(y) < ε.

Example. Exercise 4.3.11 from the text: Find f : R → R discontinuous at each point of S and
continuous on Sc if

(a) S = Z. [One answer is χZ.]

(c) (The shift in order is deliberate.) S = [0, 1] [One answer is χ[0,1]∩Q.]

(b) S = (0, 1). [The trick is to make the last example continuous at the endpoints, by
dragging the value of the ends down to 0. One way to do that is to multiply the answer to (c)
by a continuous function that is 0 at 0 and 1, say the parabola p(x) = x(1− x): χ[0,1]∩Q · p.]

(d) S = {1/n : n ∈ N} [One answer is the function

f(x) =

{
0 if x /∈ S
1
n if x = 1

n

.]

Question. For A ⊆ R, what is the set of points at which χA is continuous? [A◦ ∪ (Ac)◦]

[At this point students are ready to do the eighth problem set.]

Challenge. Prove or give a counterexample in each case: For a continuous function from a subset
of R into R the Q of a P set is a P set (in the domain of the function).



P \ Q image inverse image

open T: equivalent to “continuous”

closed T: equivalent to “continuous” 2

bounded F: 3

compact

connected 1 T: 4

Notes:

1 For a subset A of R, the following are equivalent:

(a) A is connected.

(b) A is an interval (of some kind: bounded or unbounded; open, closed or half-open).

(c) For all r, s, t ∈ R with r < s < t and r, t ∈ A, we have s ∈ A.

2 For any function f : A → B and any subset C of B, we have A\f−1(C) = f−1(B\C); so
“inverse images respect complements”. Verify this equality of sets, and conclude that the
conditions “the inverse image of every open set is open” and “the inverse image of every
closed set is closed” are equivalent.

3 This one is false, and it is the only one where you can’t get a function f coming from all of
R.

4 This is the Intermediate Value Theorem — we’ll do it in class.

[Answers: The image of an open set need not be open; e.g., the image of an open interval under a
constant function is a single point. The image of a closed set need not be closed; e.g., the image
of [0,∞) under x 7→ x/

√
x2 + 1 is [0, 1). The image of a bounded set need not be bounded; e.g.,

the image of [0, π/2) under x 7→ tanx is [0,∞). The inverse image of a bounded set need not be
bounded; e.g., the inverse image of the range (one point) of a constant function is R. The image
of a compact set is compact; we’ll prove it, and use it, shortly. The inverse image of a compact
set need not be compact; again, think of a constant function. And finally, the inverse image of a
connected set need not be connected; for example, the inverse image of (−1/2, 1/2) under the sine
function is the union of infinitely many open intervals, among them (−π/6, π/6) and (5π/6, 7π/6).]

Proposition. Let S be a compact subset of R and f : S → R be a continuous function. Then f(S)
is compact.

Proof. Let U be an open cover of f(S), and consider U ′ = {f−1(U) : U ∈ U}. Because the U ’s are
open in R, the f−1(U)’s are open in S; and ∀x ∈ S, f(x) ∈ f(S), so f(x) is in some U in the open
cover U , and hence x ∈ f−1(U). Therefore, U ′ is an open cover of S. By hypothesis, U ′ has a finite
subcover {f−1(U1), . . . , f

−1(Un)}. Now every element of f(S) is of the form f(x) for some x in S,
and each x is in some f−1(Uj), so each f(x) is in some Uj . It follows that {U1, . . . , Un} is a finite
subcover of f(S), and the proof is complete.

Now we finally get to some of the basic theorems of calculus, the proving of which is a major
objective of this course:



Corollary. (Extreme Value Theorem) Let S ⊂ R be compact and f : S → R be continuous.
Then there exist a, b ∈ S s.t., ∀ s ∈ S, f(a) ≤ f(s) ≤ f(b).

Proof. f(S) is compact, so it includes its sup and inf.

Theorem. (Intermediate Value Theorem) Let I be an interval in R, f : I → R be continuous,
a, b ∈ I and r ∈ R be between f(a) and f(b). Then ∃ c ∈ [a, b] ⊆ I s.t. f(c) = r.

Proof. We may assume, WLOG, f(a) < r < f(b) (because if r = f(a) or r = f(b), then we
could take c = a or c = b; and if f(a) > r > f(b), it would be simple to rewrite the proof). Let
c = sup{x ∈ [a, b] : f(x) ≤ r}; we claim that f(c) = r.

I. (based on δ-ε arguments): Assume BWOC that f(c) > r, and pick δ > 0 s.t., if |x−c| < δ and
x ∈ [a, b], then |f(x)−f(c)| < f(c)− r. Now c− δ is not an upper bound for {x ∈ [a, b] : f(x) ≤ r},
so ∃x∗ ∈ [a, b] s.t. x∗ > c − δ and f(x∗) ≤ r. We have c − δ < x∗ < c, so |x∗ − c| < δ, but also
f(c)− r ≤ f(c)− f(x∗) = |f(x∗)− f(c)|, −/\−.

Assume BWOC that f(c) < r; note c < b because f(b) > r. Pick δ < 0 s.t. |x − c| < δ
and x ∈ [a, b] implies |f(x) − f(c)| < r − f(c). Then x∗ = c + min{δ/2, b − c}; then x∗ ∈ [a, b]
but x∗ > c, so x∗ /∈ {x ∈ [a, b] : f(x) ≤ r}, i.e., f(x∗) > r. So we have |x∗ − c| < δ and
r − f(c) < f(x∗)− f(c) = |f(x∗)− f(c)|, −/\−. Therefore, f(c) = r.

II.(based on sequential continuity): Let (sn) be a sequence in {x ∈ [a, b] : f(x) ≤ r} with
limit c. Then f(sn) ≤ r for all n, so f(c) = lim f(sn) ≤ r by the Order Limit Theorem for
sequences. Similarly, if (tn) is a decreasing sequence in (c, b] with limit c, then f(tn) > r for all n
by our choice of c, so r ≥ lim f(tn) = f(c) again by the Order Limit Theorem for sequences. So
f(c) = r.

Definition. Let S ⊆ R and f : S → R. Then f is uniformly continuous on S iff, ∀ ε > 0, ∃ δ > 0
s.t. x1, x2 ∈ S and |x1 − x2| < δ implies |f(x1)− f(x2)| < ε.

The point is that, given ε > 0, the same δ > 0 “works” at every point of S.

[This is a good time to look at the graphic "Given epsilon, find delta," to which there

is a link on the course home page.]

Example. (A continuous, but not uniformly continuous, function on a closed, un-
bounded set) Let f : R → R be given by f(x) = x2, and let’s restrict to x1 > 0 and ε = 1.
The horizontal stripe around y = x21 with radius 1 cuts off the same piece of the graph of y = x2

as the vertical stripe from x =
√
x21 − 1 to x =

√
x21 + 1. Because the graph is concave up,

x1 −
√
x21 + 1 <

√
x21 − 1 − x1, so the largest δ that works for ε = 1 at x1 is x1 −

√
x21 + 1. As

x1 →∞, this largest δ approaches 0. So there is no δ > 0 that works at every x1.

Example. (A continuous, but not uniformly continuous, function on a non-closed,
bounded set) Let f : (−π/2, π/2) → R be given by f(x) = tanx. For ε = 1, the largest δ > 0
at x1 > 0 is arctan(tanx1 + 1) − x1, which approaches 0 as x1 → (π/2)−, so f is not uniformly
continuous.

Theorem. If S ⊆ R is compact and f : S → R is continuous, then f is uniformly continuous on
S.



Proof. Let ε > 0 be given. Then ∀x ∈ S, ∃ δ(x) > 0 (varying with x as far as we know, so we put
x into the notation for δ — the point is to show that we can find a δ that does not depend on x)
s.t., if |s− x| < δ(s) and s ∈ S, then |f(s)− f(x)| < ε/2. Consider U = {Vδ(x)/2(x) : x ∈ S}; it is
an open cover of S, because each x is at least in its own neighborhood, indeed, at the center of it.
So by hypothesis, U has a finite subcover U ′ = {Vδ(x1)/2(x1), . . . , Vδ(xn)/2(xn)}. Set

δ = min{δ(x1)/2, . . . , δ(xn)/2} ,

and suppose s, t ∈ S s.t. |s − t| < δ. Then because U ′ is a cover of S, s ∈ Vδ(xj)/2(xj) for some
j ∈ {1, . . . , n}, so

|s− xj | < δ(xj)/2 < δ(xj) and hence |f(s)− f(xj)| < ε/2 .

But we also have

|t− xj | = |(t− s) + (s− xj)| ≤ |t− s|+ |s− xj | < δ + δ(xj)/2 ≤ δ(xj) ,

so we have |f(t)− f(xj)| < ε/2 also, and hence

|f(s)− f(t)| ≤ |f(s)− f(xj)|+ |f(xj)− f(t)| < ε .

So f is uniformly continuous.

In the two examples before the theorem, it may have seemed that the reason that the function
was not uniformly continuous was that the tangent became vertical. This is almost true, as we can
see by looking ahead: If the derivative of f defined on some interval I is bounded, say |f ′| ≤M on
I, then for x1,2 in I, f(x2)− f(x1) = f ′(z)(x2 − x1) for some z between x1, x2 by the Mean Value
Theorem, so |f(x2) − f(x1)| ≤ M |x2 − x1|. Thus, given an ε > 0, the value δ = ε/M will “work”
at every point of I. But:

Example. (A function with a vertical tangent that is uniformly continuous) Consider
f(x) = sgn(x)

√
|x|/(

√
|x| + 1) on R, where sgn denotes the “signum” function: 1 if x > 0, −1 if

x < 0, and 0 if x = 0.

The tangent line to the graph is vertical at x = 0, but because the function is continuous on the
closed interval [−1, 1], it is uniformly continuous on the whole interval. Also, because the derivative
is bounded on [1,∞) and on (−∞,−1], f is uniformly continuous on these intervals as well, so f is
uniformly continuous on all of R.

Here is one use for uniform continuity: Let us define 3
√
2. We know what 3q means if q ∈ Q:

If q = m/n, then 3q = n
√

3m = ( n
√

3)m. So the natural way to extend the definition to 3
√
2 (and

similarly for other exponentials with irrational exponents) is “by continuity”: take a sequence of

rationals (qn) that converges to
√

2 and set 3
√
2 = lim 3qn . This is the natural way, but does it really

work — for example, does it matter whether which sequence of rationals you take to approach
√

2?
It turns out that continuity isn’t quite enough:



Example. The function f(x) = 1/(x−π) is continuous on Q, even on R/{π}, but it is not uniformly
continuous, and there is no continuous function f : R→ R that extends f .

Proposition. If S ⊆ R and f : S → R is uniformly continuous, then there is a unique continuous
(in fact, uniformly continuous) f : S → R for which f(x) = f(x) ∀x ∈ S (i.e., f is an “extension”
of f to the closure S of its domain S).

Proof. We want to define f as follows: For x ∈ S, f(x) = f(x); and for x ∈ S\S, pick a sequence
(xn) in S with limit x, and set f(x) = lim f(xn). To see that this limit exists, let ε > 0, and pick
δ > 0 s.t., ∀ s, t ∈ S with |s − t| < δ, we have |f(s) − f(t)| < ε. Because (xn) is Cauchy, ∃N ∈ N
s.t. m,n ≥ N implies |xm − xn| < δ and hence |f(xm)− f(xn)| < ε. Therefore (f(xn)) is Cauchy,
so it has a limit in R. We define f(x) to be that limit.

This is the only way we could hope to define a continuous function extending f to S, because
continuity must respect sequential limits. Let’s check that this f : S → R is uniformly continuous:
Let ε > 0 be given, and pick δ > 0 s.t., if |u− v| < δ and u, v ∈ S, then |f(u)− f(v)| < ε/3. Take
x, y ∈ S, and pick sequences (xn), (yn) of elements of S with limits x, y respectively; then by the
definition of f or just the continuity of f , lim f(xn) = f(x) and lim f(yn) = f(y). Pick N ∈ N s.t.
∀n ≥ N , we have all four of

|x− xn| <
δ

3
, |y − yn| <

δ

3
,

|f(xn)− f(x)| < ε/3 , |f(yn)− f(y)| < ε/3 .

Then if |x− y| < δ/3, we have for n ≥ N

|xn − yn| ≤ |xn − x|+ |x− y|+ |y − yn| < 3 · δ
3

= δ ,

so |f(xn)− f(yn)| < ε/3, and hence

|f(x)− f(y)| ≤ |f(x)− f(xn)|+ |f(xn)− f(yn)|+ |f(yn)− f(y)| < 3 · ε
3

= ε .

Thus, δ/3 “works” for ε at every element of S; so f is uniformly continuous.

Corollary. For a > 0, there is a unique continuous function f : R → R for which f(q) = aq for
all q ∈ Q.

Proof. The function f : Q→ R given by f(q) = aq isn’t uniformly continuous on all of Q, but it is
enough to show that it is uniformly continuous on each [−N,N ]∩Q for some N in N, because then
we can extend f to the whole interval [−N,N ]; then we let N → ∞. But even though we can’t
take derivatives yet (and even if we could, the domain here is only rational numbers), we can see
that any difference quotient (aq2 − aq1)/(q2 − q1) with q1, q2 in [−N,N ] ∩ Q is no larger than the
slope of the tangent line to the graph of f(q) = aq at the right end, q = N [where the derivative
is aN ln a — unless 0 < a < 1, in which case the function is decreasing and the absolute value of
the slope at the left end, a−N ln a, is the bound]. So the difference quotient is bounded, say by M ,
and that means that δ = ε/M works to show f is uniformly continuous on [−N,N ] ∩Q.

Here are two other (ultimately equivalent) ways that exponentials with irrational exponents
might be defined. In both cases, the starting point is more advanced than uniform continuity, and
the derivation of the properties of the exponential function might be easier, but they both have
the problem of seeing that they agree with the basic definition of exponential when the exponent
is rational.



• Define ax (after we have studied “power series,” which we haven’t discussed yet) as follows:
Verify that the series

∑∞
n=0 x

n/n! converges for all x in R, and define the function

exp(x) =

∞∑
n=0

xn/n! .

Verify that exp is strictly increasing and has range (0,∞), so it has an inverse function
ln : (0,∞)→ R. Then we set

ax = exp(x ln a) .

• Define ax (after studying derivatives, integrals and differential equations) by verifying that
“initial value problems” like y′ = y, y(0) = 1 have unique solutions, and define the solution
to this one to be exp. Then define ax as above.

[At this point students are ready to do the ninth problem set.]


