Chapter 6: Sequences and Series of Functions

Definition. A sequence (f,)52; of functions on a subset A of R into R:

e converges pointwise to f : A — R iff, Vo € A, (fu(z)) — f(z); ie., Vo € A and € > 0,
JN € Ns.t., if n > N, then |f,(z) — f(x)| <e.

e converges uniformlyto f: A —- R iff Ve >0, 3N € Ns.t., if n > N, then |f,(z) — f(z)| <€
Vz € A. (In other words, the same N works for all z-values.)
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Example. A = [_L 1]7 fn($) = .%'1/(2”71)’

-1 ifxz<O ; :
f(z) = 0 ifz=0
1 ifxz>0

Notice that f,, — f pointwise, but not uniformly: For
x near 1 or —1, a much smaller N is needed to make
fn(z) close to f(x) than is true for z near 0.

Theorem. If each f, is continuous and f,, — f uniformly, then f is also continuous.

Proof. Let € > 0 be given, pick N € Ns.t., Vn> N, |f,(x) — f(z)] <e/3Vx € A. Fix ¢in A, and
let 6 > 0 be such that |z —¢| < § (and x € A) implies |fy(x) — fn(c)] < €/3. Then |z —¢| < §
implies

[f(z) = )l < [f (@) = fn ()| + [fulz) = [N + [ fn(e) = fle)] <e .

So f is continuous at c. O

The Cauchy criterion for convergence of a sequence of numbers translates to a sequence of
functions, for either kind of convergence: A sequence (f,) of functions on A is pointwise Cauchy
iff, Ve € Aand € > 0, 3N € N s.t., if m,n > N, then |f,(z) — fn(x)| < €. The sequence is (of
course) uniformly Cauchy iff, in this definition, we can move the “Va € A” to the end. Because
a Cauchy sequence of real numbers is convergent, a sequence of functions that is Cauchy in either
sense has a limit function; and if the sequence is uniformly Cauchy, the convergence is uniform. So
by the theorem, a uniformly Cauchy sequence of continuous functions has a continuous limit.

Example. A sequence of functions is defined as follows: The function fy is just the function z.
The function f; is the function that is constant 1/2 on the interval (1/3,2/3) (i.e., the first interval
removed in constructing the Cantor set), and linear from the point (0,0) to the point (1/3,1/2)
and from the point (2/3,1/2) to the point (1,1). The function f> is constantly 1/4 on the interval
(1/9,2/9), 1/2 on the interval (1/3,2/3) = (3/9,6/9) and 3/4 on the interval (7/9,8/9) (i.e., the
first three intervals removed in constructing the Cantor set), and linear on each remaining piece
of [0,1] to make the function continuous. Each new f, is defined in this way: f,4+1 agrees with
fn—1 on the intervals removed by the n-th stage of forming the Cantor set, and on the remaining
subintervals of [0, 1] it is made constantly k/2"*! on the interval removed at the (n + 1)-th stage



that is k-th from the left among all the pieces removed to this point, and linear (but steeper than
the linear pieces of f,,) on the what is left of [0, 1], to make it continuous.
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It can be shown that this sequence of functions is uniformly Cauchy, so its limit f is a continuous
function, constant on all the pieces of [0, 1] that were removed in the construction of the Cantor set.
Thus, we have a continuous monotone increasing function from [0, 1] onto itself that has derivative
0 everywhere except on the Cantor set (i.e., derivative 0 on a subset of measure 1).

The next proposition justifies the process of differentiating a power series term-by-term to get
the derivative of the sum function.

Proposition. If f, — f pointwise and f] — g uniformly on [a,b], then f is differentiable and
/=g onla,b].

Proof. Fix ¢ in [a,b]. We want to show that f’(c¢) (which is a limit, by definition) is equal to g(c),
so let € > 0 be given. We need to find a § > 0 for which 0 < |z — ¢| < § (and z € [a, b]) implies

f(z) — f(¢)

r —cC

—g(c)’ <e.

f(x) = f()

Tr—cC

fn(x) = fulc)

r —cC

—9(0)] < + = fa(0)| + 1 fale) = g(0)]

Tr—cC r—cC

‘f(ﬁ) —fle)  fulz) = fulc)

we want to show that we can find an n in N and a § > 0 for which each of these terms is < ¢/3,
with at least one inequality strict. The last one is easy: There is an No in N for which n > Ns
implies |f/,(¢) — g(c¢)| < £/3. And once we have fixed on a subscript n that works in the first and
third terms, then we can pick a § > 0 that works in the second term for that f,,. So it remains to
make the first term work: Pick N7 in N so that m,n > N7 implies
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for all ¢ in [a,b]. Then by the MVT applied to f,,, — fn, for all z, ¢ in [a, b], there is a t between z, ¢
for which

Jm(x) — fa(c) _ Jm(x) — fu(c)

r —C r —cC

:Mm—nmwwm—nm>

T —c
= (= £) O = 10 = Fr0)] < 5 -
And because fp,(z) — f(x) and f,,(c) — f(c) as m — oo, we see that for n > Ny,

f(ﬂj) B fn(c) _ f(x) B fn(c)

r —cC r —cC

€
< —.
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(In the limit, the inequality isn’t strict anymore.) So picking n to the the larger of Ni, Ny and a
0 > 0 that works in the second term for f,, we get the inequality we wanted. O



So now we have our basic objective:

Definition. A power series centered at ¢ is an indicated sum

Z an(z —c)"
n=0

The partial sums
n
sn(@) =Y aj(x — )’
§=0

are polynomials that form a sequence of functions; if they converge (in any sense, on any set), to
a function f(x), then we say the power series converges to f(z) (in that sense, on that set). Of
course, $,(c) = ag, so the power series does converge at c.

Proposition. If, for a given x-value g, the series of constants y > an(xo — )" converges abso-
lutely, then the power series Y o an(x—c)™ converges uniformly on [c—r,c+1] where r = |xg—c|.

Proof. Let € > 0 be given. We will use the Cauchy criterion for convergence of a series of constants,
applied to 3%  [an(20 — ¢)"|: There is an N in N for which, if m >n > N, then 37" | [a;j(zo —
c)’| < e. So for all z in [c — 7, ¢+ 7], we have |z — ¢| < |zg — ¢| =7, s0

m
|5 (@) = su(@)| = | Y ajl@—c)
j=n+1
m . m
< Y laill@—o| < Y ajll(@o — e <.
j=n+1 Jj=n+1

O]

Corollary. If > °° s an(z — )" and > oo nay(z — )" 1 (=300 y(n + aps1(z — ¢)") converge,
the latter uniformly, on [c —r,c+ 1], then (the limit function of) > 7" o (n+ 1)ant1(z —¢)™ is the
derivative of (the limit function of > "y an(z —¢)™ on [c —r,c+1].

Corollary. If all the term-by-term “formal” derivatives of > o7 s an(x —c)™ converge uniformly on
[c — ¢+ 7] for some r >0, then a, = (1/n!)f™(c).

Proof. By induction,
o0
Znn—l (n—k+Dap(zx—c)"F,
n==k

so fB(e) =k(k—1)...(1)a. O

Example. Suppose that we have already defined (or somehow shown) that e® = Y >° a™/nl,
but we want to find the coefficients a,, of the power series of this function centered at 1: e* =

>0 pan(z — 1)™. Because the n-th derivative of e is e®, we have a,, = (1/n!)e! =e/(n!); so

[e.9]

Zix—l (=e-e@ )
nl
n=0



We saw above that, if a power series converges uniformly at some point other than its center ¢,
then it converges on the whole interval out to that point from c¢. A natural question is: Just how
wide is the interval on which a series converges? Here is the answer:

Proposition. Set R = (limsup {/|a,|)™! (or oo if the lim sup is 0). Then Y o0 jan(z — )"
converges absolutely for x in (c — R,c+ R) and diverges forx <c—R orxz >c+ R. (Atz =c—R
and x = ¢+ R, the series may converge or diverge.)

Proof. (partial) Suppose = € (¢ — R,c+ R), and pick s > 1 s.t. |z — ¢|s®> < R. Then pick N in N
for which n > N implies {/|a,| < s/R. Then for n > N

1
Vian(z = o = lanllz — o < - <1,

so by the Root Test, > > ;a,(z — ¢)" converges absolutely.
If x <c¢c— Rorx>c+ R, then the terms of the series don’t approach 0. O

Definition. R = (limsup {/]a,|)~" is the radius of convergence of Y o0 jan(z — c)™.

Note:

(n+1)/n
YN0+ Dager] = Yo+ 1 (" ans]) :

and as n — oo, ¥Yn+ 1 and (n+ 1)/n approach 1, so

limsup {/|(n + 1)anp41]| = limsup "V/|an41| = limsup {/|a,| .

Thus, a power series and its term-by-term first derivative (and by induction all the higher term-
by-term derivatives) have the same radius of convergence.

Example. Consider Y o2 2™ /nl. Because {/n! is not bounded, lim sup {/1 /n! =0, so the radius
of convergence for the power series for e is co. (To see that {/n! is not bounded, assume BWOC
that it is bounded, by B. Then n!/B" < 1 for all n. But if we take n > BIB+1/[B]! (where the
brackets mean the “greatest integer” or “floor” function: [B] is the greatest integer less than or
equal to B, so that its factorial makes sense), then

nl n n-1 [B]+1 [B]! [B]!
' ' Z N BB

B B B B BB

because k/B > 1 for k = [B] +1,[B]+2,...,n — 1. (It is also true for k = n, but we want to keep
that factor.) But the last expression is > 1, so we have a contradiction.)

Example. Consider

1 4 155 1 - _Oosinmrn
xfgq: +a fﬂx +-~—Z o T .
n=0
Because
sinn
limsup { ! 7r=0,
n!

so the radius of convergence is oo.



Example. Consider

1, 1 45 1 B 1 -
2eorl” 327 Tigt _;m(n+2)(n+1)x ‘
Because
li . L li ! 1
im su ——————— =limsu =1,
PV et 2)(n+ 1) P 2Tl
so the radius of convergence is 1. The series converges (absolutely) at x = 1 and = = —1, because
1/((n+2)(n+1)) < 1/n? The derivative,
i 1 xn—i—l
nt 1
diverges at x = 1 and converges (conditionally) at = —1. The second derivative

oo
> "
n=0

diverges at both x =1 and x = —1.

Example. By long division 1/(1 + 2) = 1 — 2 + 2% — 2% + ..., and because the right side is a
geometric series, it converges iff |x| < 1. Integrating (term by term) gives

1 1 1
ln(1—|—:n)::1:—511:2—1—51:3—1:54—1—...

The latter diverges at * = —1 and converges conditionally at = = 1.



