
Chapter 6: Sequences and Series of Functions

Definition. A sequence (fn)∞n=1 of functions on a subset A of R into R:

• converges pointwise to f : A → R iff, ∀x ∈ A, (fn(x)) → f(x); i.e., ∀x ∈ A and ε > 0,
∃N ∈ N s.t., if n ≥ N , then |fn(x)− f(x)| < ε.

• converges uniformly to f : A→ R iff ∀ ε > 0, ∃N ∈ N s.t., if n ≥ N , then |fn(x)− f(x)| < ε
∀x ∈ A. (In other words, the same N works for all x-values.)

Example. A = [−1, 1], fn(x) = x1/(2n−1),

f(x) =


−1 if x < 0

0 if x = 0
1 if x > 0

Notice that fn → f pointwise, but not uniformly: For
x near 1 or −1, a much smaller N is needed to make
fN (x) close to f(x) than is true for x near 0.

Theorem. If each fn is continuous and fn → f uniformly, then f is also continuous.

Proof. Let ε > 0 be given, pick N ∈ N s.t., ∀n ≥ N , |fn(x)− f(x)| < ε/3 ∀x ∈ A. Fix c in A, and
let δ > 0 be such that |x − c| < δ (and x ∈ A) implies |fN (x) − fN (c)| < ε/3. Then |x − c| < δ
implies

|f(x)− f(c)| ≤ |f(x)− fN (x)|+ |fn(x)− fN (c)|+ |fN (c)− f(c)| < ε .

So f is continuous at c.

The Cauchy criterion for convergence of a sequence of numbers translates to a sequence of
functions, for either kind of convergence: A sequence (fn) of functions on A is pointwise Cauchy
iff, ∀x ∈ A and ε > 0, ∃N ∈ N s.t., if m,n ≥ N , then |fm(x) − fn(x)| < ε. The sequence is (of
course) uniformly Cauchy iff, in this definition, we can move the “∀x ∈ A” to the end. Because
a Cauchy sequence of real numbers is convergent, a sequence of functions that is Cauchy in either
sense has a limit function; and if the sequence is uniformly Cauchy, the convergence is uniform. So
by the theorem, a uniformly Cauchy sequence of continuous functions has a continuous limit.

Example. A sequence of functions is defined as follows: The function f0 is just the function x.
The function f1 is the function that is constant 1/2 on the interval (1/3, 2/3) (i.e., the first interval
removed in constructing the Cantor set), and linear from the point (0, 0) to the point (1/3, 1/2)
and from the point (2/3, 1/2) to the point (1, 1). The function f2 is constantly 1/4 on the interval
(1/9, 2/9), 1/2 on the interval (1/3, 2/3) = (3/9, 6/9) and 3/4 on the interval (7/9, 8/9) (i.e., the
first three intervals removed in constructing the Cantor set), and linear on each remaining piece
of [0, 1] to make the function continuous. Each new fn is defined in this way: fn+1 agrees with
fn−1 on the intervals removed by the n-th stage of forming the Cantor set, and on the remaining
subintervals of [0, 1] it is made constantly k/2n+1 on the interval removed at the (n + 1)-th stage



that is k-th from the left among all the pieces removed to this point, and linear (but steeper than
the linear pieces of fn) on the what is left of [0, 1], to make it continuous.

It can be shown that this sequence of functions is uniformly Cauchy, so its limit f is a continuous
function, constant on all the pieces of [0, 1] that were removed in the construction of the Cantor set.
Thus, we have a continuous monotone increasing function from [0, 1] onto itself that has derivative
0 everywhere except on the Cantor set (i.e., derivative 0 on a subset of measure 1).

The next proposition justifies the process of differentiating a power series term-by-term to get
the derivative of the sum function.

Proposition. If fn → f pointwise and f ′n → g uniformly on [a, b], then f is differentiable and
f ′ = g on [a, b].

Proof. Fix c in [a, b]. We want to show that f ′(c) (which is a limit, by definition) is equal to g(c),
so let ε > 0 be given. We need to find a δ > 0 for which 0 < |x− c| < δ (and x ∈ [a, b]) implies∣∣∣∣f(x)− f(c)

x− c
− g(c)

∣∣∣∣ < ε .

∣∣∣∣f(x)− f(c)
x− c

− g(c)
∣∣∣∣ ≤ ∣∣∣∣f(x)− f(c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣+
∣∣∣∣fn(x)− fn(c)

x− c
− f ′n(c)

∣∣∣∣+ |f ′n(c)− g(c)| ,

we want to show that we can find an n in N and a δ > 0 for which each of these terms is ≤ ε/3,
with at least one inequality strict. The last one is easy: There is an N2 in N for which n ≥ N2

implies |f ′n(c) − g(c)| < ε/3. And once we have fixed on a subscript n that works in the first and
third terms, then we can pick a δ > 0 that works in the second term for that fn. So it remains to
make the first term work: Pick N1 in N so that m,n ≥ N1 implies

|f ′m(t)− f ′n(t)| ≤ ε

3

for all t in [a, b]. Then by the MVT applied to fm− fn, for all x, c in [a, b], there is a t between x, c
for which ∣∣∣∣fm(x)− fn(c)

x− c
− fm(x)− fn(c)

x− c

∣∣∣∣ =
∣∣∣∣(fm − fn)(x)− (fm − fn)(c)

x− c

∣∣∣∣
= |(fm − fn)′(t)| = |f ′m(t)− f ′n(t)| < ε

3
.

And because fm(x)→ f(x) and fm(c)→ f(c) as m→∞, we see that for n ≥ N1,∣∣∣∣f(x)− fn(c)
x− c

− f(x)− fn(c)
x− c

∣∣∣∣ ≤ ε

3
.

(In the limit, the inequality isn’t strict anymore.) So picking n to the the larger of N1, N2 and a
δ > 0 that works in the second term for fn, we get the inequality we wanted.



So now we have our basic objective:

Definition. A power series centered at c is an indicated sum

∞∑
n=0

an(x− c)n .

The partial sums

sn(x) =
n∑

j=0

aj(x− c)j

are polynomials that form a sequence of functions; if they converge (in any sense, on any set), to
a function f(x), then we say the power series converges to f(x) (in that sense, on that set). Of
course, sn(c) = a0, so the power series does converge at c.

Proposition. If, for a given x-value x0, the series of constants
∑∞

n=0 an(x0 − c)n converges abso-
lutely, then the power series

∑∞
n=0 an(x−c)n converges uniformly on [c−r, c+r] where r = |x0−c|.

Proof. Let ε > 0 be given. We will use the Cauchy criterion for convergence of a series of constants,
applied to

∑∞
n=0 |an(x0− c)n|: There is an N in N for which, if m > n ≥ N , then

∑m
j=n+1 |aj(x0−

c)j | < ε. So for all x in [c− r, c+ r], we have |x− c| ≤ |x0 − c| = r, so

|sm(x)− sn(x)| =

∣∣∣∣∣∣
m∑

j=n+1

aj(x− c)j

∣∣∣∣∣∣
≤

m∑
j=n+1

|aj ||(x− c)j | ≤
m∑

j=n+1

|aj ||(x0 − c)j | < ε .

Corollary. If
∑∞

n=0 an(x− c)n and
∑∞

n=1 nan(x− c)n−1 (=
∑∞

n=0(n+ 1)an+1(x− c)n) converge,
the latter uniformly, on [c− r, c+ r], then (the limit function of)

∑∞
n=0(n+ 1)an+1(x− c)n is the

derivative of (the limit function of
∑∞

n=0 an(x− c)n on [c− r, c+ r].

Corollary. If all the term-by-term “formal” derivatives of
∑∞

n=0 an(x− c)n converge uniformly on
[c− r, c+ r] for some r > 0, then an = (1/n!)f (n)(c).

Proof. By induction,

f (k)(x) =
∞∑

n=k

n(n− 1) . . . (n− k + 1)an(x− c)n−k ,

so f (k)(c) = k(k − 1) . . . (1)ak.

Example. Suppose that we have already defined (or somehow shown) that ex =
∑∞

n=0 x
n/n!,

but we want to find the coefficients an of the power series of this function centered at 1: ex =∑∞
n=0 an(x− 1)n. Because the n-th derivative of ex is ex, we have an = (1/n!)e1 = e/(n!); so

ex =
∞∑

n=0

e

n!
(x− 1)n(= e · e(x−1) .



We saw above that, if a power series converges uniformly at some point other than its center c,
then it converges on the whole interval out to that point from c. A natural question is: Just how
wide is the interval on which a series converges? Here is the answer:

Proposition. Set R = (lim sup n
√
|an|)−1 (or ∞ if the lim sup is 0). Then

∑∞
n=0 an(x − c)n

converges absolutely for x in (c−R, c+R) and diverges for x < c−R or x > c+R. (At x = c−R
and x = c+R, the series may converge or diverge.)

Proof. (partial) Suppose x ∈ (c − R, c + R), and pick s > 1 s.t. |x − c|s2 < R. Then pick N in N
for which n ≥ N implies n

√
|an| < s/R. Then for n ≥ N

n
√
|an(x− c)n = n

√
|an||x− c| <

1
s
< 1 ,

so by the Root Test,
∑∞

n=0 an(x− c)n converges absolutely.
If x < c−R or x > c+R, then the terms of the series don’t approach 0.

Definition. R = (lim sup n
√
|an|)−1 is the radius of convergence of

∑∞
n=0 an(x− c)n.

Note:
n
√
|(n+ 1)an+1| = n

√
n+ 1

(
n+1
√
|an+1|

)(n+1)/n
,

and as n→∞, n
√
n+ 1 and (n+ 1)/n approach 1, so

lim sup n
√
|(n+ 1)an+1| = lim sup n+1

√
|an+1| = lim sup n

√
|an| .

Thus, a power series and its term-by-term first derivative (and by induction all the higher term-
by-term derivatives) have the same radius of convergence.

Example. Consider
∑∞

n=0 x
n/n!. Because n

√
n! is not bounded, lim sup n

√
1/n! = 0, so the radius

of convergence for the power series for ex is ∞. (To see that n
√
n! is not bounded, assume BWOC

that it is bounded, by B. Then n!/Bn < 1 for all n. But if we take n > B[B]+1/[B]! (where the
brackets mean the “greatest integer” or “floor” function: [B] is the greatest integer less than or
equal to B, so that its factorial makes sense), then

n!
Bn

=
n

B
· n− 1

B
· . . . · [B] + 1

B
· [B]!
B[B]

> n · [B]!
B[B]+1

because k/B > 1 for k = [B] + 1, [B] + 2, . . . , n− 1. (It is also true for k = n, but we want to keep
that factor.) But the last expression is > 1, so we have a contradiction.)

Example. Consider

x− 1
3!
x3 +

1
5!

55 − 1
7!
x7 + · · · =

∞∑
n=0

sinnπ
n!

xn .

Because

lim sup n

√∣∣∣∣sinnπn!

∣∣∣∣ = 0 ,

so the radius of convergence is ∞.



Example. Consider

1
2 cot 1

x2 +
1

3 · 2
x3 +

1
4 · 3

+ · · · =
∑
n=0

∞ 1
(n+ 2)(n+ 1)

xn+2 .

Because

lim sup n

√
1

(n+ 2)(n+ 1)
= lim sup

1
n
√
n+ 2 n

√
n+ 1

= 1 ,

so the radius of convergence is 1. The series converges (absolutely) at x = 1 and x = −1, because
1/((n+ 2)(n+ 1)) < 1/n2. The derivative,

∞∑
n=0

1
n+ 1

xn+1 ,

diverges at x = 1 and converges (conditionally) at x = −1. The second derivative

∞∑
n=0

xn

diverges at both x = 1 and x = −1.

Example. By long division 1/(1 + x) = 1 − x + x2 − x3 + . . . , and because the right side is a
geometric series, it converges iff |x| < 1. Integrating (term by term) gives

ln(1 + x) = x− 1
2
x2 +

1
3
x3 − 1

4
x4 + . . .

The latter diverges at x = −1 and converges conditionally at x = 1.


