```
% Matlab_intro: An attempt at a Quick tutorial for Matlab (Matlab Intro-1/4)
    The lines that start with the percent sign are comments.
    You don't have to type them. Matlab ignores anything after a %.
% starting up Matlab -- use the icon on the "Dock" at the bottom of the screen.
    A window should open with four "pane"s. The main one is the command window.
    Useful information here is:
    1) What folder is matlab looking in for files? (Current Folder)
    2) What variables are already stored in memory? (Workspace)
    NOTE: you might want to make the Command Window larger and the others smaller.
%%%%% The Command Window
% Try it Out! In the command window, type
2+2 % notice that matlab can simply be a calculator
x=10 % set x to 10
x=10; % the semicolon suppresses the output
x % to see what x is equal to
% special variables:
ans % the answer of the last unassigned expression.
pi % 3.1415.....
eps % the smallest positive number on this computer
% Vectors of numbers
x=[\begin{array}{lll}{2}&{3}&{6}\end{array}]
2*x % can multiply many numbers by a constant
2+x % can add a constant to many numbers
x=[2:2:10] % this notation is the same as [[2 4 6 % 8 10]
% it works as start:step:end
y=sin(x) % you can create a new list of values from the other list.
x=[0:.01:1] % This will give you a LONG output
% When the output scrolls off the top of your window, use the command "more on"
% and it will stop at each page and wait for a spacebar (or q to quit).
more on
% Arrows go through your history: use the up arrow to repeat or edit a command.
x=[0:0.01:1] % try the "more" feature--press q to skip to the end.
more off % Use the up arrow and edit "on" to "off"
x=[-pi:.01:pi]; % Don't forget the semicolon!!! (it supresses output)
plot(x,sin(x)) % Plot two lists of values (they must be the same length)
x=linspace(-pi,pi,5) % 5 evenly spaced points between -pi and pi
% this is an alternative to start:step:end
% (there is also a function "logspace" which gives log spacing for log plots.)
plot(x,sin(x))
% Use the arrow keys to go back to the previous commands and change
% the number of points in the plot to 200. Use ; to suppress output.
%% Getting Help at the command line, type
help linspace % or "doc linspace" or use the Help Menu (question mark icon)
% MATRICES
A= [ 1 2; 3 4]
B= [ 1 1; 1 1]
A*B % * means MATRIX MULTIPLICATION
A.*B % .* means componentwise multiplication (each entry)
A^2 % Exponents work the same way!!!
A.^2
eye(5) % create the "identity matrix" of size 5
ones(5) % create a square matrix of ones
ones(5,1) % create a list of ones
zeros(5,1) % create a list of zeros
x=[\begin{array}{lll}{2}&{3}&{6}\end{array}]
average = x*ones(3,1)/3 % note: scalar division because 3 is a scalar (not matrix)
% Try the same line as above with ones(1,3) replacing ones(3,1). What happens?
%Punctuation: If you want to continue a line, use ... at the end
longone = 1+2+3+4+5+ ...
6+7+8+9+10
```

```
%Mathematical functions
(Matlab Intro-2/4)
x=[\begin{array}{ll}{0}&{1}\end{array}]
sqrt(x)
sin(x)
asin(x) % arcsin
exp(x)
log(x) % ?? Log of zero? What's that?
%%%%% The Workspace Window
%look in the "Workspace" tab to see what variables are defined.
% Double-click on an array--- this should open an array editor.
% you can update it and close the editor (use the "x" in upper left)
% OR you can use comands:
who % lists all variables
whos % tells how much memory they take up
clear x % removes the value of x
clear % removes the definitions of all variables (start over)
%%%%% Display Format
pi
format long
pi
format short
pi
format longE % long exponential
pi
format compact
pi
format loose
pi
% Which is the default way to show numbers?
% To change the default, create a new script (use icon) containing two lines:
format compact
format long
% Save the script as startup.m. This script (in your Documents/Matlab Folder)
% will be run each time you start Matlab.
% For this class always use format compact; format long (or format longE)
%%%%%% Working With Files %%%%%%
% You can traverse the Folder "tree" in the window pane named Current Folder.
% You can also use the command window if you prefer:
pwd % display the "present work directory" (current folder).
% Other useful commands to explore: mkdir, cd, ls, delete
% Matlab starts "in" your Documents/Matlab folder.
% Matlab looks in your current Folder to find your files.
% Create a subfolder named Unit0 for this tutorial. Go to that subfolder.
%%%%% Create a script file %%%%%%
% All commands can be entered into a file and run as a script.
% Try entering the commands needed to plot sin(x) from 0 to pi
% with grid spacings of .01 into a new file called plotsin.m
% You name it when you save it. Name it plotsin.m (Matlab needs the .m)
plotsin % (you don't need to type the .m, matlab only looks for .m files)
% While Loops:
n=10;
while n>1 % The "loop" of code between while and end repeats while n>1
        n=n-1
end % Try replacing > with >=
% There are also repeat loops (repeat...until) and for loops (for i=1:10)
% If conditions:
if x>1
    disp('x is greater than 1')
else
    disp('x is too small')
end
```

```
%%%%% Creating Your Own Functions
(Matlab Intro-3/4)
% Now make a file called "squared.m" which defines the following function
% The file should look something like:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function f = squared(x)
%
% Comments go here to say that it is a function to return x^2.
% These comments are shown when you type "help squared" in the
% command window.
%
f=x.^2;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Now see if your function works: in the command window, type
squared(10)
%% ??Did it work? (Yeah!)
% Check if "f" is now defined -- Functions protect their local variables.
% See if your help text works
help squared
%Try it on a vector:
squared([2 3 6])
% Go back into the editor and change the f=x.^2; line to f=x^2;
squared([2 3 6]) % ??? what is the error?
% Go back to the editor window and change the function so that it
% returns the CUBE of a number (using .^ for exponentiation).
squared(10) % Despite the name, you should get 1000
% Now Quickly change the file back to be a real square function, or we'll
% get really confused! :)
% You can also define simple one-line functions like this in the Command Window:
f = @(x) x.^2;
f([2 2 3 6])
% f is a "function handle". It can be passed into other functions if needed.
% Download the file newton.m from the class webpage.
% Move it so Matlab can find it. (You can also cut and paste it into the editor.)
% Look at the file, the help text. In the command window define the functions
% and call newton to solve x^2=0.
%%%%%%%%% Timing programs (tic and toc)
% Now copy squared.m and rename it slowfunction.m to create a "slow function".
% We'll simply mimic a slow process by pausing the computation for 1 second.
% Add a line: pause(1) % and save
% Use the tic and toc commands to time the slow function
tic; slowfunction(10); toc % try with 3 separate lines too
%%%% Assignment scripts
% Create a script called unit0.m. The script should use Newton's method to solve
% x^2=0 starting at the guess x=1 and time how long that takes.
% You will need to pass in function handles. Use @squared for the f(x) function
% and use anonymous functions to define fprime(x).
% Run the script file to make sure it works:
unito
% now run it again and store the output in a file
diary('output.txt')
unit0
diary off
%%%%%%%%% WARNING: diary appends the output to the named file. You can write
% a lot of stuff there if you aren't paying attention. To create the file to
% hand in, delete old versions before running the diary command.
```

$\% \% \%$ Handing in assignments
\% Outside of Matlab, in a Finder window navigate to the folder for your assignment.
\% Put the files you wish to hand in into a Folder and Control-click on that folder.
\% Select the option to Compress the folder. This will create a zip file that you can
\% rename using your email address and assignment (e.g. dschultUl.zip) and attach to email.
\% Printing Numbers: How to format numbers and mix them with text. fprintf('Iteration \%2i: $x=\% 18.12 f, f(x)=\% 18.12 f\left(n ', 1,3.2,3.2^{\wedge} 2\right.$)

In Matlab, "print" sends figures to the printer.
fprintf() prints formatted numbers to the screen or to a file.
The first argument of fprintf() is a string (characters between single quotes)
Each time a \%-sign appears in the string, the value of an input variable is printed and formatted according to the code after the \%-sign. If you have
3 \%-signs you normally need to put three variables as arguments to fprintf(). The code after the \%-sign is described in the help system under "formatspec".
Basically \%2i integer with space for at least 2 digits.
$\% 18.12 \mathrm{f}$ floating point number with space for 18 characters and 12 digits to right of decimal place.
\%.12e exponential notation with 12 digits to right of decimal place. \%g "general": the more compact of 'e' or 'f' removing trailing zeros exponential notation is perhaps more exact but harder to read sometimes.
These same codes are used in Python, C, Java, etc. If you program you will see them.

```
    Function Handles: How to pass a function as an argument of a function.
Both Newton's method and Bisection can be applied to arbitrary functions.
So we implement them with the desired function as input to the routine.
That separates (abstracts) the choice of function from the root-finding method.
To pass the function into e.g. newton.m you refer to it using a function handle.
In these examples, f is the resulting function handle.
    anonymous functions: f=@(x) x^2; or f=@(x,y) sqrt(x^2+y^2);
    existing Matlab function: f=@sin or f=@newton (no space between @ and name)
Function handles can be called as if they are Matlab functions: f(10.2)
and they can be passed into other functions: bisection(f, 0.2, 1.2)
The @() notation only allows a single command. If your function is more complex
you MUST create a separate file for each such function. Most languages let you
define more than one function in a file.
when you write myf(2) Matlab looks for a function handle "myf" first.
Then it searches for files named myf.m in the current Folder.
Then it looks for Matlab commands with the name "myf".
```

