1) SHOOTING

Consider the equation: $\quad y^{\prime} '+2 y^{\prime}+3 y=0 \quad y(0)=1, \quad y(10)=0$
Create a Matlab derivative file-function to solve this:
function [dvars] = bvpexample(t, vars)
y1=vars(1);
y2=vars(2);
dy1=y2;
dy $2=-2 * y 2-3 * y 1$;
dvars $=$ [dy1; dy2];
Use ode45 and shooting to find a solution by guessing the initial velocity. [t,vars]=ode45(@bvpexample, [0 10], [1 GUESS]);
Note, you can print the value of y 1 at the right boundary with the command vars(end, 1)

Use ode45 and shooting to find a solution which matches the boundary condition at $t=10$ to less than $10^{\wedge}-5$. Try this by guessing initial values. How many significant digits did you need for $y^{\prime}(0)$ to get this accuracy for $y(10)$?
2) Consider the same equation with the conditions $y(0)=1, y(10)=2$.

Use shooting again to find a solution which matches the boundary condition at
$t=10$ to less than $10^{\wedge}-5$. How many significant digits did you need for y'(0)
to get this accuracy for $y(10)$?
3) FINITE DIFFERENCE METHODS

Solve the same equation as for number 1 above with the methods of finite differences. Look at the example script bvpfd.m from our webpage.
First read it. Is it setting up diagonal matrices like in class?
Next, get a feel for it.
Uncomment the lines $\% n=5$ and $\% f u l l(L H S)$ Then run the script.
Is LHS what you expected for $n=5$?
Plot the solution: plot(x,y_fd)
Now comment out the full(LHS) line again and repeat with a more realistic resolution, say $n=100$. It might be convenient to set n from the command line. So, comment out the line setting n and run something like: n=100; bvpfd; plot(x,y_fd)
What is the value of $y(10)$ for this solution?
Plot the shooting and finite diff solutions on the same graph.
Do they agree? Increase the accuracy until they agree visually.
4) VARIABLE COEFFICIENTS

Consider the equation: $\left.y^{\prime} '+2\left(x^{\wedge} 2\right) y^{\prime}+(2 x+1) 3 y=\cos (x * p i / 10)\right) \quad y(0)=1, y(10)=0$
Now the diagonals have to depend on x. So, let's create some more helpful
sparse matrices such as the following:
$\mathrm{n}=5$; $\mathrm{x}=\mathrm{linspace}(0,10, \mathrm{n})$; \% To check that this is working
xID $=\operatorname{sparse}(2: n-1,2: n-1, x(2: n-1), n, n)$;
$x 2 I D=\operatorname{sparse}(2: n-1,2: n-1, x(2: n-1) . \wedge 2, n, n)$; $\%$ or $x 2 I D=x I D . * x I D ;$
$\cos x=\operatorname{sparse}(2: n-1,2: n-1, \cos (x(2: n-1) * p i / 10)), n, n) ;$
Check that these commands did what you expect.
full (xID)
full(x2ID)
full (cosx)
Now try combinations: what does $2 * x I D+1$ look like?
These matrices are suppose to help us solve variable coefficient problems. We multiply the derivative matrices by these.
So now: solve the ODE...
LHS = ??? \# (something like secderv +2*x2ID*derv + ...)
RHS= ??? \# put in the cos(x*pi/10) function as a vector.
\# Then overwrite the boundary values with RHS(1)=... and RHS(n)=...
Y_fd= ??? \# solve for the solution

