
Math 329 Unit 2 Fall 2014
All the problems this week involve the computer. You should zip the files and send them
to me. The files should include: lusolve.m test lusolve.m unit2.m output unit2.txt. The
unit2.m file should run the test lusolve script and then proceed to answer questions 3-5.

1. LU-decomposition of A allows us to solve Ax = P ′LUx = b by solving three fast
problems instead of one slow problem (the slow part of the problem is done while
finding the LU–decomposition). This is helpful if you have many right hand sides b for
which to solve Ax = b. You can find P,L and U once and then only do the fast parts
for each b.

Download the file lusolve.m from our webpage and adapt it to solve for x given L,
U , P and b. It currently solves P ′Ux = b given U , P and b. It contains two internal
functions that perform permutation and back–substitution as well as the main function
which returns x. You will need to create a front substitution function (start with the
ideas from the back–substitution routine provided) and adjust the main function to
handle inputs L, U, P and b.

2. Write a test script (test lusolve.m) which uses the lusolve.m function. Consider the
matrix A from later in this assignment and let b be the first column of A. (Note that
you know what the solution x should be.) The Matlab command [L,U,P] = lu(A);
finds the matrices L,U, P for a given matrix A. Use it to compute the factorization
and then call your lusolve function to find the solution x.

Next create a 100x100 matrix A with random entries using rand(100,100). Similarly
create a random right hand side b. Factor, solve and then check your solution by
printing the norm of the residual.

3. Set up a linear system of equations which find the parabola through the points (2,3)
(3,7) and (4,5). Set up column vectors for the x-values (xpts) and the y-values
(ypts). You want coefficients a, b, and c so that y = ax2 + bx + c for each of these
points. Three equations and three unknowns. The unknowns are a, b, c so the coeffi-
cients are x^2, x and 1 respectively. The matrix for the equations can be created as
A=[xpts.^2 xpts ones(3,1)]; (What is the right hand side?) Use Matlab’s back-
slash operator to solve for the unknowns.

Create a plot of the parabola using 120 points for x between 1 and 6. On the same
figure plot the 3 points as circles. If coeff is the vector of coefficients, then code like
the following should work:

x=linspace(1,6,120)'; % Transpose to make a column

y=coeff(1)*x.^2 + coeff(2)*x + coeff(3);

plot(xpts, ypts, 'o' ) % formatting string 'o' draws circles at each point

hold on % future plot commands do not erase the figure

plot(x,y) % no formatting string -> connect the points

hold off % future plot commands erase the figure

title('Parabola through 3 points - Unit 2')

xlabel('x')

ylabel('y')



4. Find the sixth order polynomial through the points (0,1) (1,3) (2,2) (3,1) (4,3) (5,2)
and (6,1). Plot both the polynomial (using 100 points from -1 to 7) and the given
points (using circles) on the same graph. Do the plots agree?

Plotting curves to check agreement is sometimes called using the “eyeball norm”. What
“is” the eyeball norm of the error for this example?

5. Consider the following matrices:

A =

 2 4 −6
1 5 3
1 3 2

 B =


4424 978 224 20514
4424 978 224 54
224 978 1 54
54 14 4 224



C =


20514 4424 978 224
4424 978 224 54
978 224 54 14
224 54 14 4

 D =

 1 2 3
40 50 60
75 85 95


For each of the matrices, do the following:

a) Print the condition number for the matrix.

b) Set up a right hand side b with corresponding solution being a column vector of
ones. So the true solution xtrue is all ones. The solve for the computed solution x
using the backslash operator. Print the norm of the absolute error and the norm
of the residuals.

Your print statements can look similar to:

fprintf('For Matrix A:')

fprintf('a) Condition Number: %18.12e\n',condition)

fprintf('b) Absolute error norm: %18.12e\n',norm_abs_err);

fprintf(' Residual error norm: %18.12e\n',norm_resid));


