HW \#3 Solutions (Math 323)

8.1) a) Let $\epsilon>0$. Let $N=\frac{1}{\epsilon}$. Then $n>N$ (i.e., $\frac{1}{n}<\epsilon$) implies that $\left|\frac{(-1)^{n}}{n}-0\right|=\frac{1}{n}<\epsilon$.
b) Let $\epsilon>0$. Let $N=\frac{1}{\epsilon^{3}}$. Then $n>N$ (i.e., $\frac{1}{n^{1 / 3}}<\epsilon$) implies that $\left|\frac{1}{n^{1 / 3}}-0\right|=\frac{1}{n^{1 / 3}}<\epsilon$.
c) Let $\epsilon>0$. Let $N=\frac{1}{\epsilon}$. Then $n>N$ (i.e., $\frac{1}{n}<\epsilon$) implies that $\left|\frac{2 n-1}{3 n-2}-\frac{2}{3}\right|=\left|\frac{3(2 n-1)-(3 n-2)(2)}{3(3 n-2)}\right|=$ $\frac{1}{3(3 n-2)} \leq \frac{1}{3 n-2} \leq \frac{1}{n}<\epsilon$.
d) Let $\epsilon>0$. Let $N=\max \left(6, \frac{4}{\epsilon}\right)$. Then $n>N$ (i.e., $\frac{4}{n}<\epsilon$) gives $\left|\frac{n+6}{n^{2}-6}-0\right| \underset{(n \geq 6)}{\leq} \frac{2 n}{n^{2}-6} \underset{(n \geq 4)}{\leq} \frac{2 n}{n^{2} / 2}=\frac{4}{n}<\epsilon$.
8.2) a) The limit is 0 : Let $\epsilon>0$. Let $N=\frac{1}{\epsilon}$. Then $n>N$ (i.e., $\frac{1}{n}<\epsilon$) implies that $\left|\frac{n}{n^{2}+1}-0\right| \leq \frac{n}{n^{2}}=\frac{1}{n}<\epsilon$.
b) The limit is $\frac{7}{3}$: Let $N=\frac{12}{\epsilon}$. Then $n>N$ (i.e., $\frac{12}{n}<\epsilon$) implies that $\left|\frac{7 n-19}{3 n+7}-\frac{7}{3}\right|=\frac{106}{3(3 n+7)} \leq \frac{106}{9 n} \leq \frac{12}{n}<\epsilon$.
c) The limit is $\frac{4}{7}$. Let $N=\max \left(5, \frac{1}{\epsilon}\right)$. Then $n>N$ gives $\left|\frac{4 n+3}{7 n-5}-\frac{4}{7}\right|=\frac{41}{7(7 n-5)} \underset{(n \geq 5)}{\leq} \frac{41}{7(7 n-n)} \leq \frac{1}{n}<\epsilon$.
d) The limit is $\frac{2}{5}$: Let $N=\frac{1}{\epsilon}$. Then $n>N$ (i.e., $\frac{1}{n}<\epsilon$) implies that $\left|\frac{2 n+4}{5 n+2}-\frac{2}{5}\right|=\frac{16}{5(5 n+2)} \leq \frac{16}{25 n} \leq \frac{1}{n}<\epsilon$.
e) The limit is 0 : Let $N=\frac{1}{\epsilon}$. Then $n>N$ (i.e., $\frac{1}{n}<\epsilon$) implies that $\left|\frac{\sin (n)}{n}-0\right|=\frac{|\sin (n)|}{n} \leq \frac{1}{n}<\epsilon$.
8.3) We have $\left(s_{n}\right) \rightarrow 0$ and will show $\left(\sqrt{s_{n}}\right) \rightarrow 0$. Given $\epsilon>0$, there exists N such that for all $n>N,\left|s_{n}\right|=s_{n}<\epsilon$. Let ϵ be given and choose \hat{N} so that for all $n>\hat{N}$ we have $s_{n}<\epsilon^{2}$. This gives us $\sqrt{s_{n}}<\epsilon$ as needed.
8.4) Find N such that $\forall n>N$ we have $\left|s_{n}\right|<\frac{\epsilon}{M}$. Then $\left|s_{n} t_{n}-0\right|=\left|s_{n} t_{n}\right| \leq M\left|s_{n}\right| \leq M \cdot \frac{\epsilon}{M}=\epsilon$.
8.5) a) Let $\epsilon>0$. Let N_{1} be such that for all $n>N_{1}$ we have $\left|a_{n}-s\right|<\epsilon$. Let N_{2} be such that for all $n>N_{2}$ we have $\left|b_{n}-s\right|<\epsilon$. Let $N=\max \left(N_{1}, N_{2}\right)$. Then, for all $n>N$, we have $a_{n}, b_{n} \in(s-\epsilon, s+\epsilon)$. Hence, $s-\epsilon<a_{n} \leq s_{n} \leq b_{n}<s+\epsilon$ so that $\left|s_{n}-s\right|<\epsilon$ for all $n>N$.
b) Apply part (a) with $a_{n}=-t_{n}$ and $b_{n}=t_{n}$.
8.6) a) If $s_{n} \rightarrow 0$, then for $\epsilon>0$ we have $\left|s_{n}-0\right|=\left|s_{n}\right|<\epsilon$ for all $n>N$. Consider $\left|\left|s_{n}\right|-0\right|=\left|\left|s_{n}\right|\right|=\left|s_{n}\right|$, which is less than ϵ for all $n>N$. Now assume, $\left|s_{n}\right| \rightarrow 0$. We want to show that $s_{n} \rightarrow 0$. We have $-\left|s_{n}\right| \leq s_{n} \leq\left|s_{n}\right|$, so by exercise 8.5 a , we have $s_{n} \rightarrow 0$.
b) So part (a) only holds if the limit is 0 , not just any real number.
8.7) a) For n a multiple of 3 , the sequence value at n is either 1 or -1 . Thus, for any possible limit s we have $\left|s_{n}-s\right| \geq 1$ for infinitely many values of n.
b) Assume this has a limit, say $s \in \mathbb{R}$. Consider $\left|(-1)^{n} n-s\right| \geq\left|(-1)^{n} n\right|-|s|=n-|s|$. Now let $N=|s|+1$. Then, for all $n>N$ we have $\left|(-1)^{n} n-s\right| \geq n-|s|>|s|+1-|s|=1$.
c) For n a multiple of 2 , the sequence value at n is either $\frac{\sqrt{3}}{2}$ or $-\frac{\sqrt{3}}{2}$. Thus, for any possible limit s we have $\left|s_{n}-s\right| \geq \frac{\sqrt{3}}{2}$ for infinitely many values of n.
8.8) a) Let $\epsilon>0$. Let $N=\frac{1}{2 \epsilon}$. Then $n>N$ (i.e., $\frac{1}{2 n}<\epsilon$) implies that $\left|\sqrt{n^{2}+1}-n-0\right|=\frac{1}{\sqrt{n^{2}+1}+n} \leq \frac{1}{2 n}<\epsilon$.
b) Let $\epsilon>0$. We may assume $\epsilon<\frac{1}{2}$ by the following argument. If $\epsilon \geq \frac{1}{2}$, we need only find N such that for all
$n>N$ we have $\left|\sqrt{n^{2}+n}-n-\frac{1}{2}\right|<\frac{1}{2}$. We have

$$
\left|\sqrt{n^{2}+n}-n-\frac{1}{2}\right|=\left|\frac{n}{\sqrt{n^{2}+n}+n}-\frac{1}{2}\right|=\left|\frac{n-\sqrt{n^{2}+n}}{2\left(\sqrt{n^{2}+n}+n\right)}\right|=\frac{\sqrt{1+1 / n}-1}{2(\sqrt{1+1 / n}+1)}<\frac{\sqrt{2}-1}{4}<\frac{1}{2}
$$

So, let $\epsilon<\frac{1}{2}$. Let $N=\left(\left(\frac{1+2 \epsilon}{1-2 \epsilon}\right)^{2}-1\right)^{-1}$. Then $n>N$ implies that $\frac{1}{n}<\left(\frac{1+2 \epsilon}{1-2 \epsilon}\right)^{2}-1$ so that $\sqrt{1+1 / n}<\left(\frac{1+2 \epsilon}{1-2 \epsilon}\right)$. With some algebra this gives us $\frac{\sqrt{1+1 / n}-1}{2(\sqrt{1+1 / n}+1)}<\epsilon$. Hence, we have $\left|\sqrt{n^{2}+n}-n-\frac{1}{2}\right|=\frac{\sqrt{1+1 / n}-1}{2(\sqrt{1+1 / n}+1)}<\epsilon$.
c) Let $\epsilon>0$. We may assume $\epsilon<\frac{1}{4}$ by the following argument. If $\epsilon \geq \frac{1}{4}$, we need only find N such that for all $n>N$ we have $\left|\sqrt{4 n^{2}+n}-2 n-\frac{1}{4}\right|<\frac{1}{4}$. We have

$$
\left|\sqrt{4 n^{2}+n}-2 n-\frac{1}{4}\right|=\left|\frac{n}{\sqrt{4 n^{2}+n}+2 n}-\frac{1}{4}\right|=\left|\frac{2 n-\sqrt{4 n^{2}+n}}{4\left(\sqrt{4 n^{2}+n}+2 n\right)}\right|=\frac{\sqrt{1+1 / 4 n}-1}{4(\sqrt{1+1 / 4 n}+1)}<\frac{\sqrt{2}-1}{4}<\frac{1}{4}
$$

So, let $\epsilon<\frac{1}{4}$. Let $N=\frac{1}{4}\left(\left(\frac{1+4 \epsilon}{1-4 \epsilon}\right)^{2}-1\right)^{-1}$. Then $n>N$ gives $\frac{1}{4 n}<\left(\frac{1+4 \epsilon}{1-4 \epsilon}\right)^{2}-1$ so that $\sqrt{1+1 / 4 n}<\left(\frac{1+4 \epsilon}{1-4 \epsilon}\right)$. With some algebra this gives us $\frac{\sqrt{1+1 / 4 n}-1}{4(\sqrt{1+1 / 4 n}+1)}<\epsilon$. Hence, we have $\left|\sqrt{4 n^{2}+n}-2 n-\frac{1}{4}\right|=\frac{\sqrt{1+1 / 4 n}-1}{4(\sqrt{1+1 / 4 n}+1)}<\epsilon$. 8.9) a) Assume, for a contradiction, that $\lim s_{n}=s<a$. Let $\epsilon=\frac{a-s}{2}$. Then, there exists N so that $n>N \Rightarrow$ $\left|s_{n}-s\right|<\epsilon=\frac{a-s}{2}$. Hence, for all $n>N$ we have $s_{n}<a$, i.e., for all but finitely many $n, s_{n}<a$, a contradiction.
b) Assume, for a contradiction, that $\lim s_{n}=s>b$. Let $\epsilon=\frac{s-b}{2}$. Then, there exists N so that $n>N$ implies $\left|s_{n}-s\right|<\epsilon=\frac{s-b}{2}$. Hence, for all $n>N$ we have $s_{n}>b$, i.e., for all but finitely many $n, s_{n}>b$, a contradiction.
c) This is immediate from (a) and (b).
8.10) Let $s_{n} \rightarrow s>a$. Let $\epsilon=\frac{s-a}{2}$. Then, $\exists N$ so that $n>N \Rightarrow\left|s_{n}-s\right|<\epsilon$. By choice of ϵ, this gives us $s_{n}>a$.
9.1) a) We have $\frac{n+1}{n}=1+\frac{1}{n}$. Since the limit of a sum is the sum of limits, and $\frac{1}{n} \rightarrow 0$, we are done.
b) We have $\frac{3+7 / n}{6-5 / n}$. Use $3+7 / n \rightarrow 3,6-5 / n \rightarrow 6$, and the limit of a quotient is the quotient of the limits.
c) Divide through by $n^{5}: \frac{17+73 / n-18 / n^{3}+3 / n^{5}}{23+13 / n^{2}}$. Use numerator $\rightarrow 17$, denominator $\rightarrow 23$, and Theorem 9.6.
9.2) a) 10
b) $\frac{18}{49}$
9.3) Since $a_{n} \rightarrow a$ we have $\left(a_{n}\right)^{3} \rightarrow a^{3}$ and $4 a_{n} \rightarrow 4 a$. Hence, since limit of a sum is the sum of limits (when the sequences are convergent) we have $\left(a_{n}\right)^{3}+4 a_{n} \rightarrow a^{3}+4 a$. Similarly, $\left(b_{n}\right)^{2}+1 \rightarrow b^{2}+1$. Since the numerator and denominator both converge, the limit is the quotient of the limits and we are done.
9.4) a) $1, \sqrt{2}, \sqrt{\sqrt{2}+1}, \sqrt{\sqrt{\sqrt{2}+1}+1}$
b) Let $L=\lim s_{n}$. Let we have $\lim s_{n+1}=\lim \sqrt{s_{n}+1}$. Since we are assuming s_{n} converges, $\lim \sqrt{s_{n}+1}=$ $\sqrt{\lim \left(s_{n}\right)+1}=\sqrt{L+1}$. Hence, $L=\sqrt{L+1}$, i.e., $L^{2}-L-1$. Using the quadratic formula gives us $\frac{1 \pm \sqrt{5}}{3}$. We disregard $\frac{1-\sqrt{5}}{2}$ since it is negative and we clearly have a positive limit (assuming we have a limit).
9.5) The justification for the following is very similar to that in Exercise 9.4 b . Let t be the limit. Then $t=\frac{t^{2}+2}{2 t}$ so that $2 t^{2}=t^{2}+2$, i.e., $t^{2}=2$. Hence, $t=\sqrt{2}$.
9.6) Under this assumption, we would have $a=3 a^{2}$ so that $a=0$ or $a=\frac{1}{3}$. Since x_{n} is clearly increasing at $x_{1}=1$, neither limit makes sense.
b) No, x_{n} diverges to ∞.
c) The method used in these last 3 problems assumes the sequence converges. This problem shows that you can use the method and get and answer, but that answer is only justified if you have first shown that the series converges.
9.7) Let $\epsilon>0$. Let $N=1+\frac{2}{\epsilon^{2}}$. Then $n>N$ implies that $n-1 \geq \frac{2}{\epsilon^{2}}$, i.e., $\sqrt{\frac{2}{n-1}}<\epsilon$. Hence, since s_{n} is nonnegative, $\left|s_{n}-0\right|=s_{n}<\sqrt{\frac{2}{n-1}}<\epsilon$, which shows that $s_{n} \rightarrow 0$, as desired.
9.8) a) ∞
b) $-\infty$
c) NOT EXIST
d) ∞
e) ∞
9.9 a) Let $M>0$. There exists N_{1} so that $n>N_{1} \Rightarrow s_{n}>M$. Let $N=\max \left(N_{0}, N_{1}\right)$. Then $t_{n}>M, \forall n>N$.
b) Let $m<0$. There exists N_{1} so that $n>N_{1} \Rightarrow t_{n}<m$. Let $N=\max \left(N_{0}, N_{1}\right)$. Then $s_{n}<m$ for all $n>N$.
c) Consider $x_{n}=t_{n}-s_{n}$. For all $n>N_{0}$ we have $x_{n} \geq 0$. Since $\lim t_{n}$ and $\lim s_{n}$ exist, so does there difference. Clearly $\lim x_{n} \geq 0$. Hence, $\lim \left(t_{n}-s_{n}\right)=\lim t_{n}-\lim s_{n} \geq 0$ and we are done.
9.10 a) We have that, given $\frac{M}{k}$, there exists N so that for all $n>N, s_{n}>\frac{M}{k}$. Thus, $k s_{n}>M$ as needed.
b) Assume $\lim s_{n}=\infty$ so that for any $M>0$, there exists N so that $n>N$ gives us $s_{n}>M$. Hence, $-s_{n}<-M$. Thus, for any $m<0$, there exists N so that $n>N$ gives us $-s_{n}<m$.
c) Sketch: We have $s_{n}>\left|\frac{M}{k}\right|$ so that $k s_{n}<M$.
9.11 a) We can't have $\inf t_{n}=\infty$, so let $\inf t_{n}=x \in \mathbb{R}$. Then $t_{n} \geq x$ for all $n \in \mathbb{Z}^{+}$. Hence, there exists N so that $n>N \Rightarrow s_{n}>M-x$ (since $\lim s_{n}=\infty$). Thus, $s_{n}+t_{n}>M$ for all $n>N$, showing that $\lim \left(s_{n}+t_{n}\right)=\infty$.
b) Let $\lim t_{n}=t \in \mathbb{R}$. The case $t=\infty$ is essentially the arguement in part (a). Since t_{n} converges, there exists N so that $n>N \Rightarrow t_{n} \geq t-1$ (using $\epsilon=1$ in the definition). Repeat the argument in part (a) with $x=t-1$.
c) If t_{n} is bounded then there exists $x \in \mathbb{R}$ such that $t_{n} \geq x$. Repeat the argument in part (a).
9.12) Use the hint. Since $\left|\frac{s_{n+1}}{s_{n}}\right|$ converges, we take $\epsilon=\frac{a-L}{2}$ in the definition to see that $\left|\left|\frac{s_{n+1}}{s_{n}}\right|-L\right|<\frac{a-L}{2}$ for all $n \geq N$ (for some N). This implies that for all $n \geq N,\left|\frac{s_{n+1}}{s_{n}}\right| \in(L-(a-L) / 2, L+(a-L) / 2)$. By construction, $L+(a-L) / 2<a($ since $L<a)$. Hence, for all $n \geq N$, we have $\left|\frac{s_{n+1}}{s_{n}}\right|<a$ which gives $\left|s_{n+1}\right|<a\left|s_{n}\right|$. At N we have $\left|s_{N+1}\right|<a\left|s_{N}\right|$. In turn, we have $\left|s_{N+2}\right|<a\left|s_{N+1}\right|$. Continuing, $\left|s_{n}\right|<a^{n-N}\left|s_{N}\right|=\frac{\left|s_{N}\right|}{a^{N}}$ for any $n>N$. Since N is fixed, we have $\left|s_{n}\right|<k a^{n}$ for some constant $k>0$. Since $a^{n} \rightarrow 0$ we see that $\left|s_{n}\right| \rightarrow 0$ so that $s_{n} \rightarrow 0$.
b) The argument is just like part (a), except we choose $\epsilon=\frac{L-a}{2}$ and reverse all inequalities to get $\left|s_{n}\right|>k a^{n}$. Since a_{n} diverges to ∞, by Exercise 9.10a, so must $\left|s_{n}\right|$.
9.13) a) Let $|a|<1$. By Exercise 9.12a, since $\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{a^{n+1}}{a^{n}}\right|=|a|<1$, we have $a^{n} \rightarrow 0$.
b) If $|a|=1$, clearly $a^{n} \rightarrow 1$ since it is the constant sequence.
c) If $|a|>1$, by Exercise 9.12 b , we have $\lim \left|a^{n}\right|=\infty$. In the case when $a>1,\left|a^{n}\right|=a^{n}$ so $\lim a^{n}=\infty$. In the case when $a<1$, we clearly have $\lim a^{2 n}=\infty$ while $\lim a^{2 n+1}=-\infty$ so that the limit doesn't exist.
9.14) Let $|a|<1$ and let s_{n} denote the given sequence. By Exercise 9.12a, since $\left|\frac{s_{n+1}}{s_{n}}\right|=\left|\frac{a^{n+1} n^{p}}{a^{n}(n+1)^{p}}\right|=|a| \cdot\left(\frac{n}{n+1}\right)^{p} \leq$ $|a|<1$, we have $s^{n} \rightarrow 0$. If $|a|=1$, we have $s_{n}=\frac{1}{n^{p}}$ which is easily shown (via the standard ϵ-proof) to have limit 0 . Hence, $s_{n} \rightarrow 0$ for $|a| \leq 1$.
b) If $a>1$, by Exercise 9.12 b we have $\left|\frac{s_{n+1}}{s_{n}}\right|=\left|\frac{a^{n+1} n^{p}}{a^{n}(n+1)^{p}}\right|=|a| \cdot\left(\frac{n}{n+1}\right)^{p}>|a| \cdot \frac{1}{a}=1$ (since $\left(\frac{n}{n+1}\right)^{p} \rightarrow 1$ and $\frac{1}{a}<1$). Since $\lim \left|\frac{s_{n+1}}{s_{n}}\right|>1$ we have s_{n} diverges to ∞.
c) If $a<-1$, again $\lim \left|s_{n}\right|=\infty$, but we have $\lim s_{2 n}=\infty$ while $\lim s_{2 n+1}=-\infty$, so that $\lim s_{n}$ does not exist.
9.15) Use 9.12a. Let s_{n} be the sequence. Then $\left|\frac{s_{n+1}}{s_{n}}\right|=\left|\frac{a^{n+1}(n)!}{a^{n}(n+1)!}\right|=\left|\frac{a}{n+1}\right| \rightarrow 0$ (for any a). Thus, $s_{n} \rightarrow 0$.
9.16) a) Let s_{n} be the given sequence. Note that $s_{n}>0$ for all n. Hence, consider $\frac{1}{s_{n}}$. We have $\frac{1}{s_{n}}=\frac{n^{2}+9}{n^{4}+8 n}>$ $\frac{n^{2}}{n^{4}+8 n}>\frac{n^{2}}{n^{4}+n^{4}}=\frac{1}{2 n^{2}} \rightarrow 0$ (by Exercise 9.14 with $a=1$ and $p=2$). By Theorem $9.10, \lim s_{n}=\infty$.
b) We have $\inf \left\{(-1)^{n}: n \in \mathbb{Z}^{+}\right\}=1$ and by Exercise $9.14, \frac{2^{n}}{n^{2}} \rightarrow \infty$. Hence, by Exercise 9.11 , $\lim \left((-1)^{n}+\frac{2^{n}}{n^{2}}\right)=\infty$.
c) Using Exercises 9.14 and 9.15 we have $\frac{3^{n}}{n^{3}}$ diverges to ∞ while $-\frac{3^{n}}{n!} \rightarrow 0$. Let $t_{n}=-\frac{3^{n}}{n!}$, which is always
negative. Since $t_{n} \rightarrow 0$, there exists an N such that for all $n>N,\left|t_{n}\right|<1$ (letting $\epsilon=1$ in the definition). Let $m=\min \left\{t_{1}, t_{2}, \ldots, t_{N},-1\right\}$. Then $\inf t_{n} \geq m>-\infty$. By Exercise 9.11, $\lim \left(\frac{3^{n}}{n^{3}}+t_{n}\right)=\infty$.
9.17) Let $M>0$. Let $N=\sqrt{M}$. Then for all $n>N$, since $n>\sqrt{M}$ we have $n^{2}>M$.
9.18) a) Let S be the given sum. Note that $S-a S=S(1-a)=1-a^{n+1}$. If $a \neq 1$, we divide both sides by $(1-a)$ to obtain the resulut.
b) If $|a|<1$, we have $a^{n+1} \rightarrow 0$ so the limit is $\frac{1}{1-a}$. c) Use your answer to (b) with $a=1 / 3$ to get $3 / 2$.
d) If $a \geq 1$, the sum is at least n. Since $\lim n=\infty$, the given limit is ∞.
10.1) Nondecreasing: c Nonincreasing: a, f Bounded: a, b, d, f
10.4) The Completeness Axiom doesn't hold over \mathbb{Q}, so sup (inf) may not exist. Both proofs rely on this existence.
10.6) a) First note that, for $m>n$,

$$
\begin{aligned}
\left|s_{m}-s_{n}\right|=\left|s_{m}-s_{m-1}+s_{m-1}-s_{m-2}+\cdots+s_{n+1}-s_{n}\right| & \leq\left|s_{m}-s_{m-1}\right|+\left|s_{m-1}-s_{m-2}\right|+\cdots+\left|s_{n+1}-s_{n}\right| \\
& <2^{-m}+2^{-m+1}+\cdots+2^{-n-1} \\
& =2^{-m}\left(1+2+4+\cdots+2^{m-n+1}\right) \\
& \left.=2^{-m} \frac{1-2^{m-n+2}}{1-2}=\frac{1}{2^{m}} \cdot\left(2^{m-n+2}-1\right) \quad \text { (by Ex. } 9.18\right) \\
& <\frac{4}{2^{n}}
\end{aligned}
$$

Now, let $\epsilon>0$. Let $N=\log _{2}(4 / \epsilon)=2-\log _{2}(\epsilon)$. Then $n>N$ implies that $2^{n}>\frac{4}{\epsilon}$ so that $\frac{4}{2^{n}}<\epsilon$. Let $m>n>N$. Then $\left|s_{m}-s_{n}\right|<\frac{4}{2^{n}}<\epsilon$ and we are done (it is Cauchy and hence convergent).
b) No. Consider $s_{n+1}=s_{n}+\frac{1}{2 n}$ with $s_{1}=0$. We have $s_{m}=s_{m-1}+\frac{1}{2(m-1)}=s_{m-2}+\frac{1}{2(m-1)}+\frac{1}{2(m-2)}$. Continuing this we get $s_{m}=\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{m-1}\right)$. You may recognize this from calculus: for large m, $s_{m} \approx \frac{1}{2} \log (1+m)$, which diverges to ∞. Since $\lim s_{m}=\infty$, it cannot be Cauchy (else it would be convergent).
10.7) Let $s=\sup S$. First, note that, for any given $\epsilon>0$, there must be infinitely many $t \in S$ with $t \in(s-\epsilon, s)$. Otherwise, if $(s-\epsilon, s)$ contained only finitely many such t 's, say t_{1}, \ldots, t_{n}, we could let $m=\max \left(t_{1}, \ldots, t_{n}\right)$ so that $t \leq m$ for all $s \in S$. Since $m<s$, this would be a contradiction since s is the sup. We define our sequence as follows. Choose any $s_{1} \in(s-1, s)$ (taking $\epsilon=1$). Next, choose $s_{2} \in\left(s-s_{1}, s\right)$. Then $s_{2}>s_{1}$. Continue by choosing $s_{n} \in\left(s-s_{n-1}, s\right)$. We have constructed an increasing sequence that converges to s.
10.8) We need to show that $\sigma_{n+1} \geq \sigma_{n}$. Substituting in, we need to show that $s_{1}+s_{2}+\cdots+s_{n+1} \geq \frac{n+1}{n}\left(s_{1}+\right.$ $\left.s_{2}+\cdots+s_{n}\right)$, i.e., we want $s_{n+1} \geq \frac{1}{n}\left(s_{1}+\cdots+s_{n}\right)$. Note that $s_{1} \leq s_{2} \leq \cdots \leq s_{n}$ so that $\frac{1}{n}\left(s_{1}+\cdots+s_{n}\right) \leq$ $\frac{1}{n}\left(s_{n}+s_{n}+\cdots+s_{n}\right)=s_{n}$. Since $s_{n+1} \geq s_{n} \geq \frac{1}{n}\left(s_{1}+\cdots+s_{n}\right)$ we are done.
10.10) a) $s_{2}=\frac{2}{3} ; s_{3}=\frac{5}{9} ; s_{4}=\frac{14}{27}$
b) $s_{1}=1>1 / 2$ so assume the result for n. We will show it for $n+1: s_{n+1}=\frac{1}{3}\left(s_{n}+1\right)>\frac{1}{3}\left(\frac{1}{2}+1\right)=\frac{1}{2}$.
c) We'll show $s_{n+1} \leq s_{n}$, i.e., $\frac{1}{3}\left(s_{n}+1\right) \leq s_{n} \Leftrightarrow 1 \leq 2 s_{n} \Leftrightarrow s_{n} \geq \frac{1}{2}$, which was shown to be true in part (b).
d) This is a nonincreasing sequence bounded from below so it converges. To find the limit, let $L=\lim s_{n}$. Hence, $L=\frac{1}{3}(L+1)$ so that $L=\frac{1}{2}$.
10.11) a) Clearly $t_{n+1} \leq t_{n}$ so the sequence is nonincreasing. It is bounded below by 0 . This is a nonincreasing sequence bounded from below so it converges.
b) Find the first few terms $(1,3 / 4,45 / 1575 / 2304,99225 / 147456)$. An (educated) guess: $\frac{2}{3}$.
10.12) a) Clearly $t_{n+1} \leq t_{n}$ so the sequence is nonincreasing. It is bounded below by 0 . This is a nonincreasing sequence bounded from below so it converges.
b) First few terms: $1,3 / 4,24 / 36,360 / 576,8640 / 14400$. This one is less than $\frac{2}{3}$, so let's guess $\frac{1}{2}$.
c\&d) This is true for $n=1$ so let's assume it is true for n and show for $n+1$. We have $t_{n+1}=\left(1-\frac{1}{(n+1)^{2}}\right) t_{n}=$ $\left(\frac{(n+1)^{2}-1}{(n+1)^{2}}\right) \frac{n+1}{2 n}=\frac{1}{2(n+1)}\left(\frac{(n+1)^{2}-1}{n(n+1)}\right)=\frac{1}{2(n+1)} \cdot \frac{n^{2}+2 n}{n}=\frac{n+2}{2(n+1)} \rightarrow \frac{1}{2}$ and we are done.

