
HW #3 Solutions (Math 323)

8.1) a) Let ε > 0. Let N = 1
ε . Then n > N (i.e., 1

n < ε) implies that
∣∣∣∣
(−1)n

n
− 0

∣∣∣∣ =
1
n

< ε.

b) Let ε > 0. Let N = 1
ε3 . Then n > N (i.e., 1

n1/3 < ε) implies that
∣∣∣∣

1
n1/3

− 0
∣∣∣∣ =

1
n1/3

< ε.

c) Let ε > 0. Let N = 1
ε . Then n > N (i.e., 1

n < ε) implies that
∣∣∣∣
2n− 1
3n− 2

− 2
3

∣∣∣∣ =
∣∣∣∣
3(2n− 1)− (3n− 2)(2)

3(3n− 2)

∣∣∣∣ =

1
3(3n− 2)

≤ 1
3n− 2

≤ 1
n

< ε.

d) Let ε > 0. Let N = max(6, 4
ε ). Then n > N (i.e., 4

n < ε) gives
∣∣∣∣

n + 6
n2 − 6

− 0
∣∣∣∣ ≤
(n≥6)

2n
n2 − 6

≤
(n≥4)

2n
n2/2

=
4
n

< ε.

8.2) a) The limit is 0: Let ε > 0. Let N = 1
ε . Then n > N (i.e., 1

n < ε) implies that
∣∣∣∣

n

n2 + 1
− 0

∣∣∣∣ ≤
n

n2
=

1
n

< ε.

b) The limit is 7
3 : Let N = 12

ε . Then n > N (i.e., 12
n < ε) implies that

∣∣∣∣
7n− 19
3n + 7

− 7
3

∣∣∣∣ =
106

3(3n + 7)
≤ 106

9n
≤ 12

n
< ε.

c) The limit is 4
7 . Let N = max(5, 1

ε ). Then n > N gives
∣∣∣∣
4n + 3
7n− 5

− 4
7

∣∣∣∣ =
41

7(7n− 5)
≤

(n≥5)

41
7(7n− n)

≤ 1
n

< ε.

d) The limit is 2
5 : Let N = 1

ε . Then n > N (i.e., 1
n < ε) implies that

∣∣∣∣
2n + 4
5n + 2

− 2
5

∣∣∣∣ =
16

5(5n + 2)
≤ 16

25n
≤ 1

n
< ε.

e) The limit is 0: Let N = 1
ε . Then n > N (i.e., 1

n < ε) implies that
∣∣∣∣
sin(n)

n
− 0

∣∣∣∣ =
| sin(n)|

n
≤ 1

n
< ε.

8.3) We have (sn)→ 0 and will show (
√

sn)→ 0. Given ε > 0, there exists N such that for all n > N , |sn| = sn < ε.
Let ε be given and choose N̂ so that for all n > N̂ we have sn < ε2. This gives us

√
sn < ε as needed.

8.4) Find N such that ∀n > N we have |sn| < ε
M . Then |sntn − 0| = |sntn| ≤M |sn| ≤M · ε

M = ε.

8.5) a) Let ε > 0. Let N1 be such that for all n > N1 we have |an − s| < ε. Let N2 be such that for all n > N2

we have |bn − s| < ε. Let N = max(N1, N2). Then, for all n > N , we have an, bn ∈ (s − ε, s + ε). Hence,
s− ε < an ≤ sn ≤ bn < s + ε so that |sn − s| < ε for all n > N .

b) Apply part (a) with an = −tn and bn = tn.

8.6) a) If sn → 0, then for ε > 0 we have |sn−0| = |sn| < ε for all n > N . Consider ||sn|−0| = ||sn|| = |sn|, which
is less than ε for all n > N . Now assume, |sn|→ 0. We want to show that sn → 0. We have −|sn| ≤ sn ≤ |sn|, so
by exercise 8.5a, we have sn → 0.

b) So part (a) only holds if the limit is 0, not just any real number.

8.7) a) For n a multiple of 3, the sequence value at n is either 1 or −1. Thus, for any possible limit s we have
|sn − s| ≥ 1 for infinitely many values of n.

b) Assume this has a limit, say s ∈ R. Consider |(−1)nn − s| ≥ |(−1)nn| − |s| = n − |s|. Now let N = |s| + 1.
Then, for all n > N we have |(−1)nn− s| ≥ n− |s| > |s| + 1− |s| = 1.

c) For n a multiple of 2, the sequence value at n is either
√

3
2 or −

√
3

2 . Thus, for any possible limit s we have
|sn − s| ≥

√
3

2 for infinitely many values of n.

8.8) a) Let ε > 0. Let N = 1
2ε . Then n > N (i.e., 1

2n < ε) implies that
∣∣∣
√

n2 + 1− n− 0
∣∣∣ =

1√
n2 + 1 + n

≤ 1
2n

< ε.

b) Let ε > 0. We may assume ε < 1
2 by the following argument. If ε ≥ 1

2 , we need only find N such that for all

1



n > N we have
∣∣√n2 + n− n− 1

2

∣∣ < 1
2 . We have

∣∣∣∣
√

n2 + n− n− 1
2

∣∣∣∣ =
∣∣∣∣

n√
n2 + n + n

− 1
2

∣∣∣∣ =

∣∣∣∣∣
n−

√
n2 + n

2(
√

n2 + n + n)

∣∣∣∣∣ =
√

1 + 1/n− 1
2(

√
1 + 1/n + 1)

<

√
2− 1
4

<
1
2
.

So, let ε < 1
2 . Let N =

((
1+2ε
1−2ε )

2 − 1
)−1

. Then n > N implies that 1
n <

(
1+2ε
1−2ε

)2
−1 so that

√
1 + 1/n <

(
1+2ε
1−2ε

)
.

With some algebra this gives us
√

1+1/n−1

2(
√

1+1/n+1)
< ε. Hence, we have

∣∣∣∣
√

n2 + n− n− 1
2

∣∣∣∣ =
√

1 + 1/n− 1
2(

√
1 + 1/n + 1)

< ε.

c) Let ε > 0. We may assume ε < 1
4 by the following argument. If ε ≥ 1

4 , we need only find N such that for all
n > N we have

∣∣√4n2 + n− 2n− 1
4

∣∣ < 1
4 . We have

∣∣∣∣
√

4n2 + n− 2n− 1
4

∣∣∣∣ =
∣∣∣∣

n√
4n2 + n + 2n

− 1
4

∣∣∣∣ =

∣∣∣∣∣
2n−

√
4n2 + n

4(
√

4n2 + n + 2n)

∣∣∣∣∣ =
√

1 + 1/4n− 1
4(

√
1 + 1/4n + 1)

<

√
2− 1
4

<
1
4
.

So, let ε < 1
4 . Let N = 1

4

((
1+4ε
1−4ε )

2 − 1
)−1

. Then n > N gives 1
4n <

(
1+4ε
1−4ε

)2
− 1 so that

√
1 + 1/4n <

(
1+4ε
1−4ε

)
.

With some algebra this gives us
√

1+1/4n−1

4(
√

1+1/4n+1)
< ε. Hence, we have

∣∣∣∣
√

4n2 + n− 2n− 1
4

∣∣∣∣ =
√

1 + 1/4n− 1
4(

√
1 + 1/4n + 1)

< ε.

8.9) a) Assume, for a contradiction, that lim sn = s < a. Let ε = a−s
2 . Then, there exists N so that n > N ⇒

|sn − s| < ε = a−s
2 . Hence, for all n > N we have sn < a, i.e., for all but finitely many n, sn < a, a contradiction.

b) Assume, for a contradiction, that lim sn = s > b. Let ε = s−b
2 . Then, there exists N so that n > N implies

|sn − s| < ε = s−b
2 . Hence, for all n > N we have sn > b, i.e., for all but finitely many n, sn > b, a contradiction.

c) This is immediate from (a) and (b).

8.10) Let sn → s > a. Let ε = s−a
2 . Then, ∃N so that n > N ⇒ |sn − s| < ε. By choice of ε, this gives us sn > a.

9.1) a) We have n+1
n = 1 + 1

n . Since the limit of a sum is the sum of limits, and 1
n → 0, we are done.

b) We have 3+7/n
6−5/n . Use 3 + 7/n→ 3, 6− 5/n→ 6, and the limit of a quotient is the quotient of the limits.

c) Divide through by n5: 17+73/n−18/n3+3/n5

23+13/n2 . Use numerator → 17, denominator → 23, and Theorem 9.6.

9.2) a) 10 b)18
49

9.3) Since an → a we have (an)3 → a3 and 4an → 4a. Hence, since limit of a sum is the sum of limits (when the
sequences are convergent) we have (an)3 + 4an → a3 + 4a. Similarly, (bn)2 + 1→ b2 + 1. Since the numerator and
denominator both converge, the limit is the quotient of the limits and we are done.

9.4) a) 1,
√

2,
√√

2 + 1,
√√√

2 + 1 + 1

b) Let L = lim sn. Let we have lim sn+1 = lim
√

sn + 1. Since we are assuming sn converges, lim
√

sn + 1 =√
lim(sn) + 1 =

√
L + 1. Hence, L =

√
L + 1, i.e., L2 − L − 1. Using the quadratic formula gives us 1±

√
5

3 . We
disregard 1−

√
5

2 since it is negative and we clearly have a positive limit (assuming we have a limit).

9.5) The justification for the following is very similar to that in Exercise 9.4b. Let t be the limit. Then t = t2+2
2t

so that 2t2 = t2 + 2, i.e., t2 = 2. Hence, t =
√

2.

9.6) Under this assumption, we would have a = 3a2 so that a = 0 or a = 1
3 . Since xn is clearly increasing at

x1 = 1, neither limit makes sense.

b) No, xn diverges to ∞.

c) The method used in these last 3 problems assumes the sequence converges. This problem shows that you can use
the method and get and answer, but that answer is only justified if you have first shown that the series converges.
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9.7) Let ε > 0. Let N = 1 + 2
ε2 . Then n > N implies that n − 1 ≥ 2

ε2 , i.e.,
√

2
n−1 < ε. Hence, since sn is

nonnegative, |sn − 0| = sn <

√
2

n− 1
< ε, which shows that sn → 0, as desired.

9.8) a) ∞ b) −∞ c) NOT EXIST d) ∞ e) ∞
9.9 a) Let M > 0. There exists N1 so that n > N1 ⇒ sn > M . Let N = max(N0, N1). Then tn > M, ∀n > N .

b) Let m < 0. There exists N1 so that n > N1 ⇒ tn < m. Let N = max(N0, N1). Then sn < m for all n > N .

c) Consider xn = tn − sn. For all n > N0 we have xn ≥ 0. Since lim tn and lim sn exist, so does there difference.
Clearly limxn ≥ 0. Hence, lim(tn − sn) = lim tn − lim sn ≥ 0 and we are done.

9.10 a) We have that, given M
k , there exists N so that for all n > N , sn > M

k . Thus, ksn > M as needed.

b) Assume lim sn =∞ so that for any M > 0, there exists N so that n > N gives us sn > M . Hence, −sn < −M .
Thus, for any m < 0, there exists N so that n > N gives us −sn < m.

c) Sketch: We have sn >
∣∣M

k

∣∣ so that ksn < M .

9.11 a) We can’t have inf tn = ∞, so let inf tn = x ∈ R. Then tn ≥ x for all n ∈ Z+. Hence, there exists N so
that n > N ⇒ sn > M − x (since lim sn =∞). Thus, sn + tn > M for all n > N , showing that lim(sn + tn) =∞.

b) Let lim tn = t ∈ R. The case t =∞ is essentially the arguement in part (a). Since tn converges, there exists N
so that n > N ⇒ tn ≥ t− 1 (using ε = 1 in the definition). Repeat the argument in part (a) with x = t− 1.

c) If tn is bounded then there exists x ∈ R such that tn ≥ x. Repeat the argument in part (a).

9.12) Use the hint. Since
∣∣∣ sn+1

sn

∣∣∣ converges, we take ε = a−L
2 in the definition to see that

∣∣∣
∣∣∣ sn+1

sn

∣∣∣− L
∣∣∣ < a−L

2 for

all n ≥ N (for some N). This implies that for all n ≥ N ,
∣∣∣ sn+1

sn

∣∣∣ ∈ (L− (a−L)/2, L+(a−L)/2). By construction,

L + (a − L)/2 < a (since L < a). Hence, for all n ≥ N , we have
∣∣∣ sn+1

sn

∣∣∣ < a which gives |sn+1| < a|sn|. At N

we have |sN+1| < a|sN |. In turn, we have |sN+2| < a|sN+1|. Continuing, |sn| < an−N |sN | = |sN |
aN for any n > N .

Since N is fixed, we have |sn| < kan for some constant k > 0. Since an → 0 we see that |sn|→ 0 so that sn → 0.

b) The argument is just like part (a), except we choose ε = L−a
2 and reverse all inequalities to get |sn| > kan.

Since an diverges to ∞, by Exercise 9.10a, so must |sn|.

9.13) a) Let |a| < 1. By Exercise 9.12a, since
∣∣∣an+1

an

∣∣∣ =
∣∣∣an+1

an

∣∣∣ = |a| < 1, we have an → 0.

b) If |a| = 1, clearly an → 1 since it is the constant sequence.

c) If |a| > 1, by Exercise 9.12b, we have lim |an| = ∞. In the case when a > 1, |an| = an so lim an = ∞. In the
case when a < 1, we clearly have lim a2n =∞ while lim a2n+1 = −∞ so that the limit doesn’t exist.

9.14) Let |a| < 1 and let sn denote the given sequence. By Exercise 9.12a, since
∣∣∣ sn+1

sn

∣∣∣ =
∣∣∣ an+1np

an(n+1)p

∣∣∣ = |a|·
(

n
n+1

)p
≤

|a| < 1, we have sn → 0. If |a| = 1, we have sn = 1
np which is easily shown (via the standard ε-proof) to have

limit 0. Hence, sn → 0 for |a| ≤ 1.

b) If a > 1, by Exercise 9.12b we have
∣∣∣ sn+1

sn

∣∣∣ =
∣∣∣ an+1np

an(n+1)p

∣∣∣ = |a| ·
(

n
n+1

)p
> |a| · 1

a = 1 (since
(

n
n+1

)p
→ 1 and

1
a < 1). Since lim

∣∣∣ sn+1
sn

∣∣∣ > 1 we have sn diverges to ∞.

c) If a < −1, again lim |sn| =∞, but we have lim s2n =∞ while lim s2n+1 = −∞, so that lim sn does not exist.

9.15) Use 9.12a. Let sn be the sequence. Then
∣∣∣ sn+1

sn

∣∣∣ =
∣∣∣ an+1(n)!
an(n+1)!

∣∣∣ =
∣∣∣ a
n+1

∣∣∣→ 0 (for any a). Thus, sn → 0.

9.16) a) Let sn be the given sequence. Note that sn > 0 for all n. Hence, consider 1
sn

. We have 1
sn

= n2+9
n4+8n >

n2

n4+8n > n2

n4+n4 = 1
2n2 → 0 (by Exercise 9.14 with a = 1 and p = 2). By Theorem 9.10, lim sn =∞.

b) We have inf{(−1)n :n ∈ Z+}=1 and by Exercise 9.14, 2n

n2 →∞. Hence, by Exercise 9.11, lim
(
(−1)n + 2n

n2

)
=∞.

c) Using Exercises 9.14 and 9.15 we have 3n

n3 diverges to ∞ while −3n

n! → 0. Let tn = −3n

n! , which is always

3



negative. Since tn → 0, there exists an N such that for all n > N , |tn| < 1 (letting ε = 1 in the definition). Let
m = min{t1, t2, . . . , tN ,−1}. Then inf tn ≥ m > −∞. By Exercise 9.11, lim

(
3n

n3 + tn
)

=∞.

9.17) Let M > 0. Let N =
√

M . Then for all n > N , since n >
√

M we have n2 > M .

9.18) a) Let S be the given sum. Note that S − aS = S(1 − a) = 1 − an+1. If a += 1, we divide both sides by
(1− a) to obtain the resulut.

b) If |a| < 1, we have an+1 → 0 so the limit is 1
1−a . c) Use your answer to (b) with a = 1/3 to get 3/2.

d) If a ≥ 1, the sum is at least n. Since limn =∞, the given limit is ∞.

10.1) Nondecreasing: c Nonincreasing: a, f Bounded: a, b, d, f

10.4) The Completeness Axiom doesn’t hold over Q, so sup (inf) may not exist. Both proofs rely on this existence.

10.6) a) First note that, for m > n,

|sm − sn| = |sm − sm−1 + sm−1 − sm−2 + · · · + sn+1 − sn| ≤ |sm − sm−1| + |sm−1 − sm−2| + · · · + |sn+1 − sn|

< 2−m + 2−m+1 + · · · + 2−n−1

= 2−m(1 + 2 + 4 + · · · + 2m−n+1)

= 2−m 1−2m−n+2

1−2 = 1
2m · (2m−n+2 − 1) (by Ex. 9.18)

< 4
2n .

Now, let ε > 0. Let N = log2(4/ε) = 2− log2(ε). Then n > N implies that 2n > 4
ε so that 4

2n < ε. Let m > n > N .
Then |sm − sn| < 4

2n < ε and we are done (it is Cauchy and hence convergent).

b) No. Consider sn+1 = sn + 1
2n with s1 = 0. We have sm = sm−1 + 1

2(m−1) = sm−2 + 1
2(m−1) + 1

2(m−2) .

Continuing this we get sm = 1
2

(
1 + 1

2 + 1
3 + · · · + 1

m−1

)
. You may recognize this from calculus: for large m,

sm ≈ 1
2 log(1 + m), which diverges to ∞. Since lim sm =∞, it cannot be Cauchy (else it would be convergent).

10.7) Let s = supS. First, note that, for any given ε > 0, there must be infinitely many t ∈ S with t ∈ (s− ε, s).
Otherwise, if (s − ε, s) contained only finitely many such t’s, say t1, . . . , tn, we could let m = max(t1, . . . , tn) so
that t ≤ m for all s ∈ S. Since m < s, this would be a contradiction since s is the sup. We define our sequence
as follows. Choose any s1 ∈ (s − 1, s) (taking ε = 1). Next, choose s2 ∈ (s − s1, s). Then s2 > s1. Continue by
choosing sn ∈ (s− sn−1, s). We have constructed an increasing sequence that converges to s.

10.8) We need to show that σn+1 ≥ σn. Substituting in, we need to show that s1 + s2 + · · · + sn+1 ≥ n+1
n (s1 +

s2 + · · · + sn), i.e., we want sn+1 ≥ 1
n (s1 + · · · + sn). Note that s1 ≤ s2 ≤ · · · ≤ sn so that 1

n (s1 + · · · + sn) ≤
1
n (sn + sn + · · · + sn) = sn. Since sn+1 ≥ sn ≥ 1

n (s1 + · · · + sn) we are done.

10.10) a) s2 = 2
3 ; s3 = 5

9 ; s4 = 14
27

b) s1 = 1 > 1/2 so assume the result for n. We will show it for n + 1: sn+1 = 1
3 (sn + 1) > 1

3

(
1
2 + 1

)
= 1

2 .

c) We’ll show sn+1 ≤ sn, i.e., 1
3 (sn + 1) ≤ sn ⇔ 1 ≤ 2sn ⇔ sn ≥ 1

2 , which was shown to be true in part (b).

d) This is a nonincreasing sequence bounded from below so it converges. To find the limit, let L = lim sn. Hence,
L = 1

3 (L + 1) so that L = 1
2 .

10.11) a) Clearly tn+1 ≤ tn so the sequence is nonincreasing. It is bounded below by 0. This is a nonincreasing
sequence bounded from below so it converges.

b) Find the first few terms (1, 3/4, 45/1575/2304, 99225/147456). An (educated) guess: 2
3 .

10.12) a) Clearly tn+1 ≤ tn so the sequence is nonincreasing. It is bounded below by 0. This is a nonincreasing
sequence bounded from below so it converges.

b) First few terms: 1, 3/4, 24/36, 360/576, 8640/14400. This one is less than 2
3 , so let’s guess 1

2 .

c&d) This is true for n = 1 so let’s assume it is true for n and show for n + 1. We have tn+1 =
(
1− 1

(n+1)2

)
tn =

(
(n+1)2−1
(n+1)2

)
n+1
2n = 1

2(n+1)

(
(n+1)2−1
n(n+1)

)
= 1

2(n+1) · n2+2n
n = n+2

2(n+1) →
1
2 and we are done.
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