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Abstract

We give some history and recent results in the area of pattern restricted permutations. We
also present a new bijection between certain pattern restricted permutations.

Introduction

It was a great pleasure to have been given the opportunity to speak at the landmark 50th

meeting of the Séminaire Lotharingien de Combinatoire, held in March 2003, at Domaine
Saint Jacques, near Ottrott, France. The meeting was a wonderful celebration, replete with
wonderful company, wonderful food, and, of course, wonderful mathematics.

This article is an expanded version of the talk that I presented at the meeting. We give some
history and recent results in the area of pattern restricted permutations, as well as present
a pertinent new bijection.

1. Preliminaries

We first get the definitions and notation out of the way.

Let π ∈ Sn be a permutation of {1, 2, . . . , n} written in one-line notation. Let α ∈ Sm.
We say that π contains the pattern α if there exist indices i1 < i2 < . . . < im such that
πi1πi2 . . . πim is order-equivalent to α. By order-equivalent we mean that the usual order on
the integers is the same for both sequences. For example, 475 is order-equivalent to 132
since both have smallest element first, largest element second, and middle element last. If
π does not contain a pattern β, we say that π is β-avoiding. We write Sn(β) for the set of
permutations of Sn that are β-avoiding.

We next extend this notation. Let S =
⋃
n Sn. Let T ⊆ S and let R be a multisubset of

S. Then Sn(T ) is the set of permutations of Sn that avoid all patterns in T while Sn(T ;R)
is the set of permutations of Sn(T ) that contain each pattern (including multiplicities) in R
exactly once. If |T | = 1 or |R| = 1 then we drop the set notation.

So, for example, Sn(132, {123, 123}) is the set of 132-avoiding permutations in Sn that contain
exactly two 123 patterns. As a concrete example, 124635 ∈ S6(321; 213).

1Homepage: http://math.colgate.edu/∼aaron/
2000 Mathematics Subject Classification: 05A15, 68R15
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One last bit of notation: we let sn(R) = |Sn(R)| and sn(R;T ) = |Sn(R;T )|.

2. Some History

In 1838, Catalan [3] defined what we now call the Catalan numbers:

1

n+ 1

(
2n

n

)
= Cn.

In this paper he addressed the question

De combien de manières peut-on effectuer le produit de n facteurs différents?

and used essentially an argument that shows that sn(132) = Cn by proving that Cn =∑n
i=1 Ci−1Cn−i. This argument that shows sn(132) = Cn goes as follows. Let π = π1π2 . . . πn

and let πi = n. Then π1 . . . πi−1 must consist of the elements n− i+1, n− i+2, . . . , n−1 and
πi+1 . . . πn must consist of the elements 1, 2, . . . , n − i, for otherwise πj nπk would be a 132
pattern for some j, k, j < i < k. Next, π1 . . . πi−1 and πi+1 . . . πn must each be 132-avoiding
permutations themselves. Hence, we have

sn(132) =
n∑
i=1

si−1(132)sn−i(132),

which gives (using initial conditions) sn(132) = Cn.

Of course, Catalan did not consider sn(132). It was not until 1915 that sn(α) was determined
for the first time for some α ∈ S3. MacMahon [see 14] proved that sn(123) = Cn. This result
also gives us sn(321) = Cn by reading permutations from right-to-left instead of left-to-right.
This re-reading is called the reversal bijection, one of the three standard bijections.

2.1 Three Standard Bijections

There are three standard bijections that allow us to look at a smaller number of patterns
when considering pattern-avoiding permutations. We define the following bijections.

The reversal bijection: r : Sn → Sn, π1π2 . . . πn 7→ πn . . . π2π1.

The complement bijection: c : Sn → Sn, π1π2 . . . πn 7→ (n+1−π1)(n+1−π2) . . . (n+1−πn).

The inverse bijection i : Sn → Sn, π 7→ π−1 (group theoretic).

Using these bijections we see that π ∈ Sn(α) if and only if x(π) ∈ Sn(x(α)) where x is one
of r, c, i.
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2.2 More Recent History

It was not until 1973 that the first non-monotonic pattern restricted permutations were
considered. Knuth [12] showed that sn(231) = Cn. Now, since r(231) = 132, c(231) = 213,
and i(231) = 312, Knuth’s and MacMahon’s results show that sn(α) = Cn for any α ∈ S3.

This result leads us to the following definition.

Definition. We say that two patterns α and β are in the same Wilf class or are Wilf
equivalent if and only if sn(α) = sn(β) for all n.

Hence, there is one Wilf class for patterns of length 3. However, historically it was not shown
that sn(123) = sn(132) directly, rather that they are both equal to Cn. This leads us into
our next section.

3. Some Bijections

Using the three standard bijections we have sn(123) = sn(321) and sn(132) = sn(213) =
sn(231) = sn(312). The fact that sn(123) = sn(132) as well is surprising. Hence, we
will look at some bijections from Sn(123) to Sn(132), where 123 means any element from
{123, 321} and 132 means any element from {132, 213, 231, 312} since these are equivalent
by the standard bijections.

The first bijection (1975) is due to Rotem [26]. He used ballot sequences and binary trees as
an intermediate step from Sn(321) to Sn(231). The first direct bijection was given by Simion
and Schmidt [27] in 1985. In more recent years, West [30] has used generating trees while
Stanley [29] and Krattenthaler [13] have used Dyck paths.

3.1 A New Bijection

We give a new direct bijection γ : Sn(321) → Sn(132). In order to present γ we give a
definition.

Definition. Let k ≥ 2. Let α = α1 . . . αk and β = β1 . . . βk be two distinct occurrences
of 1k(k − 1) . . . 2 in π. We say α is smaller than β if there exists i, 1 ≤ i ≤ k, such that
π−1(αj) = π−1(βj) for all j < i and π−1(αi) < π−1(βi).

We can now describe the bijection γ : Sn(321) → Sn(132). Let π1π2 . . . πn = π ∈ Sn(321)
and let xzy = πp1πp2πp3 be the smallest 132 occurrence in π. If no such occurrence exists,
γ(π) = π. Otherwise, let M be the operation that creates the permutation Mπ where
Mπi = πi if i 6∈ {p1, p2, p3} and Mπp1 = z, Mπp2 = y, and Mπp3 = x. Now let xzy be the
smallest 132 occurrence inMπ and applyM again. Repeat until the resulting permutation
is 132-avoiding.

Example. Let π = 35612487 ∈ S8(321), a permutation that has eight 132 occurrences,
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the smallest one being 354. We apply M to get Mπ = 54612387. Notice that the 354
is changed to 543 in the same positions and all other elements are left untouched. Now,
in 54612387, 587 is the smallest occurrence. Apply M again to get M2π = 84612375.
Continuing, we get M3π = 86512374 and M4π = 86572341. Since 86572341 ∈ S8(132),
γ(35612487) = 86572341.

Of course, we must prove that this is a bijection. We start by showing that γ is well-defined.
Our approach is to show that, with respect to the indices of elements, the smallest 132
occurrence in Mτ is larger than the smallest 132 occurrence in τ . Hence, Mjτ must be
132-avoiding for some finite j.

Write τ = τ1τ2 . . . τn and let τiτjτk be the smallest 132 occurrence. Clearly, since τ has
no 132 occurrence τxτyτz with x < i, Mτ could only possibly have such an occurrence if
{i, j, k} ∩ {y, z} 6= ∅. Since τiτjτk is the smallest 132 occurrence in τ , τx > τk and thus
i, k 6∈ {y, z}. Hence, we must have j ∈ {y, z}. From the minimality of τiτjτk, clearly j 6= z.
Thus, τxτjτz with i < z < j is our only possibility. But, τz > τx > τk implies that τiτzτk is a
smaller 132 occurrence in τ than τiτjτk, a contradiction.

Next, assume, for a contradiction, that τjτxτy inMτ is a smaller 132 occurrence (with respect
to the indices) than τiτjτk is in τ . This implies that τiτxτk is a smaller 132 occurrence in τ
than τiτjτk, contradicting the minimality of τiτjτk.

We now show that γ is a bijection; it is enough to give γ−1. To do so, we make the following
definition.

Definition. Let k ≥ 2. Let α = α1 . . . αk and β = β1 . . . βk be two distinct occurrences
of k(k − 1) . . . 1 in π. We say α is larger that β if there exists i, 1 ≤ i ≤ k, such that
π−1(αj) = π−1(βj) for all j > i and π−1(αi) > π−1(βi).

We can now describe γ−1 : Sn(132) → Sn(321). Let π1π2 . . . πn = π ∈ Sn(132) and let
zyx = πp1πp2πp3 be the largest 321 occurrence in π. If no such occurrence exists, γ−1(π) = π.
Otherwise, let N be the operation that creates the permutation Nπ where Nπi = πi if
i 6∈ {p1, p2, p3} and Nπp1 = x, Nπp2 = z, and Nπp3 = y. Now let zyx be the largest 321
occurrence inNπ and applyN again. Repeat until the resulting permutation is 321-avoiding.

It is easy to check that γ−1γ(π) = π for any π ∈ Sn(321).

We can extend γ to a bijection Γk : Sn(k(k−1) . . . 1)→ Sn(1k(k−1) · · · 2) for any k ≥ 2. Let
π1π2 . . . πn = π ∈ Sn(k(k − 1) . . . 1) and let α = πp1πp2 . . . πpk be the smallest 1k(k − 1) . . . 2
occurrence in π. If no such occurrence exists, Γk(π) = π. Otherwise, let P be the operation
that creates the permutation Pπ where Pπi = πi if i 6∈ {p1, p2, . . . , pk} and Pπpi = πpi+1 (mod k)

for i = 1, 2, . . . , k.

Now let α be the smallest 1k(k− 1) . . . 2 occurrence in Pπ and apply P again. Repeat until
the resulting permutation avoids the pattern 1k(k − 1) . . . 2.

To prove that Γk is well-defined we show that, with respect to the indices of elements, the
smallest 1k . . . 2 occurrence in Pπ is larger than the smallest 1k . . . 2 occurrence in π. Hence,
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Pjτ has no 1k . . . 2 occurrence for some finite j.

Let τ be our permutation and let γ1 . . . γk be the smallest 1k . . . 2 occurrence in τ . Assume,
for a contradiction, that Pτ has a 1k . . . 2 occurrence σ = σ1 . . . σk with σ−1

1 < γ−1
1 . Since τ

has no such occurrence, we must have

{σ1, . . . , σk} ∩ {γ1, . . . , γk} 6= ∅.

Let γj be the minimal element in the above intersection such that there exists ` ≥ 1, `
maximal, where we have (in Pτ)

σ = σ1 . . . σi−1γjσi+1 . . . σi+`σi+`+1 . . . σk (1)

with
{σi+1, . . . , σi+`} ∩ {γ1, . . . , γk} = ∅ (2)

(so that {σi+`+1, . . . , σk} ⊆ {γ1, . . . , γk} where {σi+`+1, . . . , σk} is possibly empty). We may
further require that there do not exist γm+1, . . . , γm+` such that

σ1 . . . σi−1γjγm+1 . . . γm+`σi+`+1 . . . σk (3)

is also a 1k . . . 2 occurrence.

Since this is quite a bit to require of γj, we must prove its existence. Assume, for a con-
tradiction, that no such γj exists. Then, for all γi, 1 ≤ i ≤ k, we have no such ` satis-
fying (1) and (2), or there exist γm+1, . . . , γm+` such that (3) is also a 1k . . . 2 occurrence.
In either case, there exists a 1k . . . 2 occurrence of the form σ1 . . . σxγy . . . γz in Pτ with
{σ1, . . . , σx}∩ {γ1, . . . , γk} = ∅ and hence, σ1 . . . σxγy . . . γz is also in τ , a contradiction since
such an occurrence is smaller than γ1 . . . γk.

We rewrite (1) as
σ1 . . . σi−1γjσi+1 . . . σi+`γj+m+1 . . . σk. (4)

From (4) we must have, by assumption (3), |{γj+1, . . . , γj+m}| < |{σi+1, . . . , σi+`}|. But then

γ1 . . . γj−1σi+1 . . . σi+`γj+m+1 . . . γk

contains a smaller 1k . . . 2 occurrence in τ than γ1 . . . γk, a contradiction. Thus, Pτ contains
no 1k . . . 2 occurrence σ1 . . . σk with σ−1

1 < γ−1
2 (order in Pτ).

To finish proving that Γk is well-defined, assume, for a contradiction, that γ2β1 . . . βk−1 in
Pτ is a smaller 1k . . . 2 occurrence (with respect to the indices) than γ1 . . . γk is in τ . Then
we must have β−1

1 < γ−1
3 (order in Pτ). However, this implies that γ1β1γ3 . . . γk is a smaller

1k . . . 2 occurrence in τ than γ1 . . . γk, a contradiction. This concludes the proof that Γk is
well-defined.

To show that Γk is a bijection, note that Γk
−1 is found by using the operation Q where

Qπi = πi if i 6∈ {p1, p2, . . . , pk} and Qπpi = πpi−1 (mod k)
for i = 1, 2, . . . , k.

5



Using Γk, along with the standard bijections, we immediately have the following theorem.

Theorem. Let k ≥ 2. The following patterns are Wilf equivalent.

A. k(k − 1) · · · 1 B. 1k(k − 1) · · · 2
C. 12 · · · k D. 23 · · · k1
E. k12 · · · (k − 1) F. (k − 1)(k − 2) · · · 1k

Remark. Γ4 proves the Wilf equivalence of 1234 and 4123, a result of Stankova [28].

4. Enumeration Results

In this section we give some enumeration results along with their relevant references. The
first table gives the number of permutations that avoid a single pattern.

Avoid 1

Class W sn(T ), T ∈ W References

(123) Cn = 1
n+1

(
2n
n

)
[14], [12]

(1234) 2
∑n

k=0

(
2k
k

)(
n
k

)2 3k2−(2k+1)(n−1)
(k+1)2(k+2)(n−k+1)

[10]

(1342) (−1)n−1(7n2−3n−2)
2

+ 3
∑n

k=2(−1)n−k2k
(

2k−4
k−2

) (n−k+2)(n−k+1)
k(k+1)

[1]

(1324) ? open

(123) = S3; (1234) = {1234, 1243, 2134, 2143, 3412, 3421, 4312, 4321}; (1342) = {1342, 1423, 2341, 2413,
2431, 3124, 3142, 3241, 4132, 4213}; (1324) = {1324, 4231}.

We continue with a table giving the number of permutations that contain a given pattern
exactly once.

Contain 1

Class W sn(T ), T ∈ W Reference

(∅; 123) 3
n

(
2n
n−3

)
for n ≥ 3 [20]

(∅; 132)
(

2n−3
n−3

)
for n ≥ 3 [2]

(∅; 123) = {(∅; 123), (∅; 321)}; (∅; 132) = {(∅; 132), (∅; 213), (∅; 231), (∅; 312)}.

The penultimate table gives the number of permutations that avoid a given pattern and con-
tain a different given pattern exactly once. The last table gives the number of permutations
that contain each of two given (not necessarily distinct) patterns exactly once.
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Avoid 1, Contain 1

Class W sn(T ), T ∈ W Reference

(123; 321) 0 for n ≥ 6 —–

(123; 132) (n− 2)2n−3 for n ≥ 3 [20]

(123; 231) 2n− 5 for n ≥ 3 [17]

(132; 213) n2n−5 for n ≥ 4 [16]

(132; 231) 2n−3 for n ≥ 3 [16]

(123; 321) = {(123; 321), (321; 123)}; (123; 132) = {(123; 132), (123; 213), (132; 123), (213; 123), (231; 321),
(312; 321), (321; 231), (321; 312)}; (123; 231) = {(123; 231), (123; 312), (132; 321), (213; 321), (231; 123),
(312; 123), (321; 132), (321; 213)}; (132; 213) = {(132; 213), (213; 132), (231; 312), (312; 231)};
(132; 231) = {(132; 231), (132; 312), (213; 231), (213; 312), (231; 132), (231; 213), (312; 132), (312; 213)}.

Contain 2

Class W sn(T ), T ∈ W Reference

(∅; {123, 321}) 0 for n ≥ 6 —–

(∅; {123, 231}) 2n− 5 for n ≥ 5 [23]

(∅; {123, 132})
(
n−3

2

)
2n−4 for n ≥ 5 [22]

(∅; {132, 213}) (n2 + 21n− 28)2n−9 for n ≥ 7 [23]

(∅; {132, 231}) 2n−3 for n ≥ 4 [23]

(∅; {123, 123}) 59n2+117n+100
2n(2n−1)(n+5)

(
2n
n−4

)
for n ≥ 4 [9]

(∅; {132, 132}) (n−2)2(n+21)−4
2n(n−1)

(
2n−6
n−4

)
for n ≥ 4 [15]

(∅; {123,321}) = {(∅; {123, 321}), (∅; {321, 123})}; (∅; {123, 231}) = {(∅; {123, 231}), (∅; {123, 312}),
(∅; {132, 321}), (∅; {213, 321})}; (∅; {123, 132}) = {(∅; {123, 132}), (∅; {123, 213}), (∅; {231, 321}),
(∅; {312, 321})}; (∅; {132, 213}) = {(∅; {132, 213}), (∅; {231, 312})}; (∅; {132, 231}) = {(∅; {132, 231}),
(∅; {132, 312}), (∅; {213, 231}), (∅; {213, 312})}; (∅; {123, 123}) = {(∅; {123, 123}), (∅; {321, 321})};
(∅; {132, 132}) = {(∅; {132, 132}), (∅; {213, 213}), (∅; {231, 231}), (∅; {312, 312})}.
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5. An Interesting Generating Function

An interesting generating function can be obtained when we consider {sn(132; {(123)r})}n.
To this end, let

f(x, y; k) =
∑
n,r

sn(132, {(123 . . . k)r})xnyr.

In [25], the authors show that

f(x, y; 3) =
1

1−
x

1−
x

1−
xy

1−
xy3

1−
xy6

. . .

in which the nth numerator is xy(n−1
2 ). This result was the apparent impetus for several

papers, of which we note a few.

Let Fr(x; k) = [yr]f(x, y; k), i.e., the coefficient of yr in f(x, y; k). Let Un(x) denote the
Chebyshev polynomials of the second kind, defined by

Un(cos(x)) =
sin((n+ 1)x)

sin(x)
.

Mansour and Vainshtein [18] show that for any k ≥ 1 and 1 ≤ r ≤ k(k + 3)/2,

Fr(x; k) =
x
r−1

2 U r−1
k−1

(
1

2
√
x

)
U r+1
k

(
1

2
√
x

) b(r−1)/kc∑
j=0

(
r − kj + j − 1

j

) Uk

(
1

2
√
x

)
x
k−2
2k Uk−1

(
1

2
√
x

)
kj

.

(The case F0(x; k) had already been determined in terms of Chebyshev polynomials by Chow
and West [4].)

This result was followed closely by a result of Jani and Rieper [11], who give a bijection
between ordered trees and Sn(132; {(123 . . . k)r}).
We then come to a quote found in [13]:

Whenever you encounter generating functions which can be expressed in terms of
continued fractions or Chebyshev polynomials, then expect that Dyck or Motzkin
paths are at the heart of your problem, and will help to solve it.

- Krattenthaler
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In this paper, Krattenthaler reproves and extends all the above results as well as proves new
ones with continued fractions, Chebyshev polynomials of the second kind, and Dyck and
Motzkin paths.

6. Refined Restricted Permutations

Combinatorics without algebra ... is like sex without love.

- Anthony Joseph

We now move on to some very recent results on restricted permutations. In [24], the study
of restricted permutations refined by the number of fixed points was initiated (to the best
of my knowledge) in an attempt to combine the “purely combinatorial” with the algebraic
properties of permutations.

We first look at restricted permutations classified by cycle structure.

Cycle structure S6(123) S6(132) S6(213) S6(321) S6(231) S6(312)
16 0 1 1 1 1 1

1421 0 5 5 5 9 9
1331 0 8 8 8 12 12
1222 10 9 9 9 18 18
1241 8 12 12 12 17 17

112131 24 20 20 20 24 24
1151 24 20 20 20 20 20
23 10 5 5 5 4 4

2141 26 20 20 18 12 12
32 6 8 8 10 3 3
61 24 24 24 24 12 12

Sum 132 132 132 132 132 132

In this table, we see that S6(132) and S6(213) have the same cycle structure breakdown, and
that the same holds true for S6(231) and S6(312). This is fairly easy to explain.

Theorem (Robertson, Saracino, Zeilberger [24]) Let γ ∈ Sn be given by γi = n + 1− i for
1 ≤ i ≤ n. For π ∈ Sn, let π? = γπγ−1. The number of occurrences of the pattern 213 (resp.
312) in π equals the number of occurrences of the pattern 132 (resp. 231) in π?.

This is just the reversal bijection followed by the complement bijection. However, written in
the above form as a conjugation, we see that the cycle structure is preserved.

Digging a little deeper into the cycle structure breakdown, we notice that S6(321) has a
breakdown very close to that of S6(132). In fact, the only place where a difference occurs
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in the table is boxed in. And, if we look at the number of fixed points, we have the same
breakdown according to the number of fixed points.

Let Skn(S;T ) be the elements of Sn(S;T ) with exactly k fixed points and let skn(T ) = |Skn(T )|.
Robertson, Saracino, and Zeilberger [24] prove that for all n and all k, 0 ≤ k ≤ n,

• skn(132) = skn(231) = skn(321)

• skn(231) = skn(312)

• skn(123)

are the three classes, where we have

nÂk 0 1 2 3 4 5 6 7 8

0 1
1 0 1
2 1 0 1
3 2 2 0 1
4 6 4 3 0 1
5 18 13 6 4 0 1
6 57 40 21 8 5 0 1
7 186 130 66 30 10 6 0 1
8 622 432 220 96 40 12 7 0 1

nÂk 0 1 2 3 4 5 6 7 8

0 1
1 0 1
2 1 0 1
3 1 3 0 1
4 4 4 5 0 1
5 10 16 8 7 0 1
6 31 44 35 12 9 0 1
7 94 146 102 59 16 11 0 1
8 303 464 362 180 87 20 13 0 1

nÂk 0 1 2 3 4 5 6 7 8

0 1
1 0 1
2 1 0 1
3 2 3 0 0
4 7 4 3 0 0
5 20 20 2 0 0 0
6 66 48 18 0 0 0 0
7 218 183 28 0 0 0 0 0
8 725 552 153 0 0 0 0 0 0

sk
n(132) = sk

n(213) = sk
n(321) sk

n(231) = sk
n(312) sk

n(123)

It is quite amazing that skn(132) = skn(321). Robertson, Saracino, and Zeilberger [24] give a
fairly technical proof. This was followed by a proof due to Elizalde [7], a student of Stanley,
who refines this result further by showing that we have “number of excedances” in addition
to the number of fixed points. Pak and Elizalde [21] follow this up by giving a nice bijective
proof.

An interesting sequence appears when we consider 132-avoiding derangements. We see that

{s0
n(132)}n≥0 = 1, 0, 1, 2, 6, 18, 57, 186, 622, . . . .

This is Fine’s sequence, initially given in [8], which stems from similarity relations. (For a
good survey of Fine’s sequence, see [6].) Fine’s sequence {Fn}n≥0 is characterized by

2Fn + Fn−1 = Cn, (5)

which may be thought of as the defining equation for the sequence.

We now take a very brief sidestep to look at similarity relations.

Definition. A similarity relation, R, is a binary relation on an ordered set which is reflexive,
symmetric, but not necessarily transitive, with the condition that if iRk and i < j < k then
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iRj and jRk. R is said to have k isolated points if k is the number of i ∈ {1, 2, . . . , n}
such that there does not exist j 6= i with iRj. If k = 0, we say that the similarity relation
is nonsingular. We denote by SRn(k) the set of similarity relations on {1, 2, . . . , n} with k
isolated points.

In [24], the authors show that, skn(321) = |SRn(k)|, a somewhat unexpected connection
between two at-first-sight unrelated structures.

Stepping back to refined restricted permutations, in [24] we find that, for α ∈ {132, 213, 321},
0 ≤ k ≤ n:

skn(α) =
n−k∑
j=0

(−1)j
(
j + k + 1

n+ 1

)(
2n− k − j

n

)(
j + k

k

)
.

In particular we obtain a formula for the Fine numbers:

Fn =
n∑
j=0

(−1)j
(
j + 1

n+ 1

)(
2n− j
n

)
.

The worst thing you can do to a problem is solve it completely.

- Dan Kleitman

As such, there are no nontrivial enumerations of skn(α) for α ∈ {123, 231, 312} in [24].

Another unanswered question, begging for a solution, follows. For β ∈ {132, 213, 321} we
have from (5)

2s0
n(β) + s0

n−1(β) = sn(δ)

for any δ ∈ S3. Can this be explained bijectively by letting δ = β?

The next set of results on refined restricted permutations comes from [19]: following the
steps of Simion and Schmidt, Mansour and Robertson [19] provide enumerative results for
Skn(S) for all S ⊆ S3, |S| ≥ 2.

6.1 Refined Restricted Involutions

From the cycle structure breakdown table we notice that if we restrict our attention to
involutions it appears that we may have some more unexpected structure.

Define ikn(S;T ) to be the number of elements of Skn(S;T ) that are involutions.

Deutsch, Robertson, and Saracino [5] prove that

• ikn(132) = ikn(231) = ikn(321)
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• ikn(231) = ikn(312)

• ikn(123)

are the three classes. The proofs use the RSK correspondence as well as provide new bijec-
tions with Dyck paths.

One particularly nice formula follows. For α ∈ {132, 213, 321}, 0 ≤ k ≤ n,

ikn(α) =

{
k+1
n+1

(
n+1
n−k

2

)
for n+ k even

0 for n+ k odd .

Catalan strikes again!
i02n(132) = Cn = i12n−1(132).

Hence, the number of 132-avoiding permutations on n letters is the Catalan number; the
number of 132-avoiding derangements on n letters is the Fine number; and the number of
132-avoiding derangement involutions on 2n letters is the Catalan number.

Having gone from Catalan to Fine and back, we stop.
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