BOUNDS ON SOME VAN DER WAERDEN NUMBERS

Tom Brown

Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6

Bruce M. Landman

Department of Mathematics, University of West Georgia, Carrollton, GA 30118

Aaron Robertson

Department of Mathematics, Colgate University, Hamilton, NY 13346

Abstract

For positive integers s and k_1, k_2, \ldots, k_s , the van der Waerden number $w(k_1, k_2, \ldots, k_s; s)$ is the minimum integer n such that for every s-coloring of $\{1, 2, \ldots, n\}$, with colors $1, 2, \ldots, s$, there is a k_i -term arithmetic progression of color i for some i. We give an asymptotic lower bound for w(k, m; 2) for fixed m. We include a table of values of w(k, 3; 2) that are very close to this lower bound for m = 3. We also give a lower bound for $w(k, k, \ldots, k; s)$ that slightly improves previously-known bounds. Upper bounds for w(k, 4; 2) and $w(4, 4, \ldots, 4; s)$ are also provided.

1. Introduction

Two fundamental theorems in combinatorics are van der Waerden's Theorem [18] and Ramsey's Theorem [16]. The theorem of van der Waerden says that for all positive integers s and k_1, k_2, \ldots, k_s , there exists a least positive integer $n = w(k_1, k_2, \ldots, k_s; s)$ such that whenever $[1, n] = \{1, 2, \ldots, n\}$ is s-colored (i.e., partitioned into s sets), there is a k_i -term arithmetic progression with color i for some $i, 1 \le i \le s$.

Similarly, Ramsey's Theorem has an associated "threshold" function $R(k_1, k_2, \ldots, k_s; s)$ (which we will not define here). The order of magnitude of R(k, 3; 2) is known to be $\frac{k^2}{\log k}$ [11], while the best known upper bound on R(k, m; 2) is fairly close to the best known lower bound. In contrast, the order of magnitude of w(k, 3; 2) is not known, and the best known lower and upper bounds on w(k, k; 2) are

$$(k-1)2^{(k-1)} \le w(k,k;2) < 2^{2^{2^{2^{2^{(k+9)}}}}},$$

the lower bound known only when k-1 is prime. The lower bound is due to Berlekamp [1] and the upper bound is a celebrated result of Gowers [6], which answered a long-standing question of Ron Graham. Graham currently offers 1000 USD for a proof or disproof of $w(k, k; 2) < 2^{k^2}$ [2]. Several other open problems are stated in [14].

Recently, there have been some further breakthroughs in the study of the van der Waerden function w(k, m; 2). One was the amazing calculation that w(6, 6; 2) = 1132 by Kouril [12], extending the list of previously known values w(3, 3; 2) = 9, w(4, 4; 2) = 35, and w(5, 5; 2) = 178. A list of other known exact values of w(k, m; 2) appears in [15]. Improved lower bounds on several specific values of w(k, k; s) are given in [3] and [10].

In another direction, Graham [7] gives an elegant proof that if one defines $w_1(k,3)$ to be the least n such that every 2-coloring of [1, n] gives either k consecutive integers in the first color or a 3-term arithmetic progression in the second color, then

$$k^{c \log k} < w_1(k,3) < k^{dk^2},$$

for suitable constants c, d > 0. This immediately gives $w(k, 3; 2) < k^{dk^2}$ since we trivially have $w(k, 3; 2) \le w_1(k, 3)$. In view of Graham's bounds on $w_1(k, 3)$, it would be desirable to obtain improved bounds on w(k, 3; 2). Of particular interest is the question of whether or not there is a non-polynomial lower bound for w(k, 3; 2).

In this note we give a lower bound of $w(k,3;2) > k^{(2-o(1))}$. Although this may seem weak, we do know that $w(k,3;2) < k^2$ for $5 \le k \le 16$ (i.e., for all known values of w(k,3;2) with $k \ge 5$; see Table 1). More generally, we give a lower bound on w(k,m;2) for arbitrary fixed m. We also present a lower bound for the classical van der Waerden numbers $w(k,k,\ldots,k;s)$ that is a slight improvement over previously published bounds. In addition, we present an upper bound for w(k,4;2) and an upper bound for $w(4,4,\ldots,4;s)$.

2. Upper and Lower Bounds for Certain van der Waerden Functions

We shall need several definitions, which we collect here.

For positive integers k and n,

$$r_k(n) = \max_{S \subseteq [1,n]} \{ |S| : S \text{ contains no } k\text{-term arithmetic progression} \}.$$

For positive integers k and m, denote by $\chi_k(m)$ the minimum number of colors required to color [1, m] so that there is no monochromatic k-term arithmetic progression.

The function $w_1(k,3)$ has been defined in Section 1. Similarly, we define $w_1(k,4)$ to be the least n such that every 2-coloring of [1,n] has either k consecutive integers in the first color or a 4-term arithmetic progression in the second color.

We begin with an upper bound for $w_1(k, 4)$. The proof is essentially the same as the proof given by Graham [7] of an upper bound for $w_1(k, 3)$. For completeness, we include the proof here. We will make use of a recent result of Green and Tao [9], who showed that for some constant c > 0,

$$r_4(n) < ne^{-c\sqrt{\log\log n}} \tag{1}$$

for all $n \geq 3$.

Proposition 2.1 There exists a constant c > 0 such that $w_1(k,4) < e^{k^{c \log k}}$ for all $k \ge 2$.

Proof. Suppose we have a 2-coloring of [1, n] (assume $n \ge 4$) with no 4-term arithmetic progression of the second color and no k consecutive integers of the first color. Let $t_1 < t_2 < \cdots < t_m$ be the integers of the second color. Hence, $m < r_4(n)$. Let us define $t_0 = 0$ and $t_{m+1} = n$. Then there must be some $i, 1 \le i \le m$, such that

$$t_{i+1} - t_i > \frac{n}{2r_4(n)}.$$

(Otherwise, using $r_4(n) \ge 3$, we would have $n = \sum_{i=0}^m (t_{i+1} - t_i) \le \frac{n(m+1)}{2r_4(n)} \le \frac{n(r_4(n)+1)}{2r_4(n)} \le \frac{n}{2} + \frac{n}{6}$.)

Using (1), we now have an i with

$$t_{i+1} - t_i > \frac{n}{2r_4(n)} > \frac{1}{2}e^{c\sqrt{\log\log n}}.$$

If $n \ge e^{k^{d \log k}}$, $d = c^{-2}$, then $\frac{1}{2}e^{c\sqrt{\log \log n}} \ge k$ and we have k consecutive integers of the first color, a contradiction. Hence, $n < e^{k^{d \log k}}$ and we are done.

Clearly $w(k, 4; 2) \leq w_1(k, 4)$. Consequently, we have the following result.

Corollary 2.2 There exists a constant d > 0 such that $w(k, 4; 2) < e^{k^{d \log k}}$ for all $k \ge 2$.

Using Green and Tao's result, it is not difficult to obtain an upper bound for $w(4, 4, \dots, 4; s)$.

Proposition 2.3 There exists a constant d > 0 such that $w(4, 4, ..., 4; s) < e^{s^{d \log s}}$ for all $s \ge 2$.

Proof. Consider a $\chi_4(m)$ -coloring of [1, m] for which there is no monochromatic 4-term arithmetic progression. Some color must be used at least $\frac{m}{\chi_4(m)}$ times, and hence $\frac{m}{\chi_4(m)} \leq r_4(m)$ so that $\frac{m}{r_4(m)} \leq \chi_4(m)$. Let c > 0 be such that (1) holds for all $n \geq 3$, and let $m = e^{s^{d \log s}}$, where $d = c^{-2}$. Then $\chi_4(m) \geq \frac{m}{r_4(m)} > e^{c\sqrt{\log \log m}} = s$. This means that every s-coloring of [1, m] has a monochromatic 4-term arithmetic progression. Since $m = e^{s^{d \log s}}$, the proof is complete.

It is interesting that the bounds in Corollary 2.2 and Proposition 2.3 have the same form.

The following theorem gives a lower bound on $w(k,k,\ldots,k;s)$. It is deduced without too much difficulty from the Symmetric Hypergraph Theorem as it appears in [8], combined with an old result of Rankin [17]. To the best of our knowledge it has not appeared in print before, even though it is better, for large s, than the standard lower bound $\frac{cs^k}{k}(1+o(1))$ (see [8]), as well as the lower bounds $s^{k+1} - \sqrt{c(k+1)\log(k+1)}$ and $\frac{ks^k}{c(k+1)^2}$ due to Erdős and Rado [4], and Everts [5], respectively. We give the proof in some detail. The proof makes use of the following facts:

$$\chi_k(n) < \frac{2n\log n}{r_k(n)} (1 + o(1)),$$
(2)

which appears in [8] as a consequence of the Symmetric Hypergraph Theorem; and

$$r_k(n) > ne^{-c(\log n)\frac{1}{\lceil \log_2 k \rfloor + 1}},\tag{3}$$

which, for some constant c > 0, holds for all $n \ge 3$ (this appears in [17]).

Theorem 2.4 Let $k \geq 3$ be fixed, and let $z = \lfloor \log_2 k \rfloor$. There exists a constant d > 0 such that $w(k, k, \ldots, k; s) > s^{d(\log s)^z}$ for all sufficiently large s.

Proof. We make use of the observation that for positive integers s and m, if $s \ge \chi_k(m)$, then $w(k, k, \ldots, k; s) > m$, which is clear from the definitions. For large enough m, (2) gives

$$\chi_k(m) < \frac{2m \log m}{r_k(m)} \left(1 + \frac{1}{2} \right) = \frac{3m \log m}{r_k(m)}.$$
(4)

Now let $d = \left(\frac{1}{2c}\right)^{z+1}$, where c is from (3), and let $m = s^{d(\log s)^z}$, where s is large enough so that (4) holds. By (3), noting that $\log m = d(\log s)^{z+1} = \left(\frac{\log s}{2c}\right)^{z+1}$, we have

$$\frac{m}{r_k(m)} < e^{c(\log m)^{\frac{1}{z+1}}} = e^{c \cdot \frac{\log s}{2c}} = \sqrt{s}.$$

Therefore,

$$\frac{3m\log m}{r_k(m)} < 3d\sqrt{s}(\log s)^{z+1} < s$$

for sufficiently large s. Thus, for sufficiently large s,

$$\chi_k(m) < \frac{3m \log m}{r_k(m)} < s.$$

According to the observation at the beginning of the proof, this implies that $w(k, k, ..., k; s) > m = s^{d(\log s)^z}$, as required.

We now give a lower bound on w(k, m; 2). We make use of the Lovász Local Lemma (see [8] for a proof), which will be implicitly stated in the proof.

Theorem 2.5 Let $m \geq 3$ be fixed. Then for all sufficiently large k,

$$w(k, m; 2) > k^{m-1-\frac{1}{\log \log k}}$$
.

Proof. Given m, choose k > m large enough so that

$$k^{\frac{1}{2m\log\log k}} > \left(m - \frac{1}{2\log\log k}\right)\log k \tag{5}$$

and

$$6 < \frac{\log k}{\log \log k}.\tag{6}$$

Next, let $n = \lfloor k^{m-1-\frac{1}{\log\log k}} \rfloor$. To prove the theorem, we will show that there exists a (red, blue)-coloring of [1,n] for which there is no red k-term arithmetic progression and no blue m-term arithmetic progression.

For the purpose of using the Lovász Local Lemma, randomly color [1, n] in the following way. For each $i \in [1, n]$, color i red with probability $p = 1 - k^{\alpha - 1}$ where

$$\alpha \stackrel{\text{def}}{=} \frac{1}{2m \log \log k},$$

and color it blue with probability 1 - p.

Let \mathcal{P} be any k-term arithmetic progression. Then, since $1 + x \leq e^x$, the probability that \mathcal{P} is red is

$$p^k = (1 - k^{\alpha - 1})^k \le (e^{-k^{\alpha - 1}})^k = e^{-k^{\alpha}}.$$

Hence, applying (5), we have

$$p^k < \left(\frac{1}{e}\right)^{\left(m - \frac{1}{2\log\log k}\right)\log k} = \frac{1}{k^{m - \frac{1}{2\log\log k}}}.$$

Also, for any m-term arithmetic progression Q, the probability that Q is blue is

$$(1-p)^m = (k^{\alpha-1})^m = \frac{1}{k^{m-\frac{1}{2\log\log k}}}.$$

Now let $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_t$ be all of the arithmetic progressions in [1, n] with length k or m. So that we may apply the Lovász Local Lemma, we form the "dependency graph" G by setting $V(G) = \{\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_t\}$ and $E(G) = \{\{\mathcal{P}_i, \mathcal{P}_j\} : i \neq j, \mathcal{P}_i \cap \mathcal{P}_j \neq \emptyset\}$. For each $\mathcal{P}_i \in V(G)$, let $d(\mathcal{P}_i)$ denote the degree of the vertex \mathcal{P}_i in G, i.e., $|\{e \in E(G) : \mathcal{P}_i \in e\}|$. We now estimate $d(P_i)$ from above. Let $x \in [1, n]$. The number of k-term arithmetic progressions \mathcal{P} in [1, n] that contain x is bounded above by $k \cdot \frac{n}{k-1}$, since there are k positions that x may occupy in \mathcal{P} and since the gap size of \mathcal{P} cannot exceed $\frac{n}{k-1}$. Similarly, the number of m-term arithmetic progressions \mathcal{Q} in [1, n] that contain x is bounded above by $m \cdot \frac{n}{m-1}$.

Let \mathcal{P}_i be any k-term arithmetic progression contained in [1, n]. The total number of k-term arithmetic progressions \mathcal{P} and m-term arithmetic progressions \mathcal{Q} in [1, n] that may have non-empty intersection with \mathcal{P}_i is bounded above by

$$k\left(k \cdot \frac{n}{k-1} + m \cdot \frac{n}{m-1}\right) < kn\left(2 + \frac{2}{m-1}\right),\tag{7}$$

since k > m. Thus, $d(\mathcal{P}_i) < kn\left(2 + \frac{2}{m-1}\right)$ when $|\mathcal{P}_i| = k$. Likewise, $d(\mathcal{P}_i) < mn\left(2 + \frac{2}{m-1}\right)$ when $|\mathcal{P}_i| = m$. Thus, for all vertices \mathcal{P}_i of G, we have $d(\mathcal{P}_i) < kn\left(2 + \frac{2}{m-1}\right)$.

To finish setting up the hypotheses for the Lovász Local Lemma, we let X_i denote the event that the arithmetic progression \mathcal{P}_i is red if $|\mathcal{P}_i| = k$, or blue if $|\mathcal{P}_i| = m$, and we let $d = \max_{1 \leq i \leq t} d(\mathcal{P}_i)$. We have seen above that for all $i, 1 \leq i \leq t$, the probability that X_i occurs is at most

$$q \stackrel{\text{def}}{=} \frac{1}{k^{m - \frac{1}{2\log\log k}}},$$

while from (7) we have $d < 2kn\left(1 + \frac{1}{m-1}\right)$.

We are now ready to apply the Lovász Local Lemma, which says that in these circumstances, if the condition eq(d+1) < 1 is satisfied, then there is a (red, blue)-coloring of [1, n] such that no event X_i occurs, i.e., such that there is no red k-term arithmetic progression and no blue m-term arithmetic progression. This will imply

$$w(k, m; 2) > n = k^{m-1 - \frac{1}{\log \log k}},$$

as desired. Thus, the proof will be complete when we verify that eq(d+1) < 1. Using $m \ge 3$, we have d < 3kn, so that $d+1 < 3kn + 1 < e^2kn$. Hence, it is sufficient to verify that

$$e^3qkn < 1. (8)$$

Since $q = \frac{1}{k^{m-\frac{1}{2\log\log k}}}$ and $n \le k^{m-1-\frac{1}{\log\log k}}$, inequality (8) may be reduced to (6), and the proof is now complete.

Remark. As long as $k > e^{m^6}$, the inequality of Theorem 2.5 holds. To show this, we need only show that conditions (5) and (6) hold if $k > e^{m^6}$. That (6) holds is obvious. For (5), it suffices to have $k^{\frac{1}{2m\log\log k}} > m\log k$; that is $\log k > 2m\log\log k(\log m + \log\log k)$. When $k \geq e^{m^6}$, we have $2m\log\log k(\log m + \log\log k) \leq 2(\log k)^{1/6}\log\log k(\frac{1}{6}\log\log k + \log\log k) = \frac{7}{3}(\log k)^{1/6}(\log\log k)^2$. Since $(\log\log k) < (\log k)^{7/20}$ for $k \geq e^{m^6}$ we have $2m\log\log k(\log m + \log\log k) \leq \frac{7}{3}(\log k)^{13/15}$. Finally, since $(\log k)^{2/15} \geq \frac{7}{3}$ for $k \geq e^{m^6}$, condition (5) is satisfied.

We end with a table of computed values. These were all computed with a standard backtrack algorithm except for w(14,3;2), w(15,3;2), and w(16,3;2), which are due to Michal Kouril [13]. The values w(k,3;2), $k \le 12$, appeared previously in [15].

k	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
w(k, 3; 2)	6	9	18	22	32	46	58	77	97	114	135	160	186	218	238
$w_1(k,3)$	9	23	34	73	113	193	?	?	?	?	?	?	?	?	?

Table 1: Small values of w(k,3) and $w_1(k,3)$

References

- 1. E. Berlekamp, A construction for partitions which avoid long arithmetic progressions, *Canad. Math. Bull.* **11** (1968), 409-414.
- 2. F. Chung, P. Erdős, and R. Graham, On sparse sets hitting linear forms, Number theory for the millennium, I (Urbana, IL, 2000), 257-272, A. K. Peters, Natick, MA, 2002.
- 3. M.R. Dransfield, L. Liu, V.W. Marek, and M. Truszczynski, Satisfiability and computing van der Waerden numbers, *Elec. J. Combinatorics* **11** (2004), R41.
- 4. P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set, *Proc. London Math. Soc.* **3** (1952), 417-439.
- 5. F. Everts, Colorings of sets, Ph.D. thesis, University of Colorado, 1977.
- 6. W. T. Gowers, A new proof of Szemerédi's theorem, Geom. Funct. Anal. 11 (2001), no. 3, 465-588.
- 7. R. Graham, On the growth of a van der Waerden-like function, *Integers: Elec. J. Combinatorial Number Theory* 6 (2006), A29.
- 8. R. Graham, B. Rothschild, and J. Spencer, Ramsey Theory, Second Edition, Wiley, New York, 1990.
- 9. B. Green and T. Tao, New bounds for Szemerédi's theorem II: A new bound for $r_4(N)$, preprint: arXiv:math/0610604v1.
- 10. P.R. Herwig, M.J.H. Heule, P.M. van Lambalgen, and H. van Maaren, A new method to construct lower bounds for van der Waerden numbers, *Elec. J. Combinatorics* **14** (1), 2007, R6.
- 11. J. H. Kim, The Ramsey number R(3,t) has order of magnitude $t^2/\log t$, Random Structures and Algorithms 7 (1995), no. 3, 173-207.
- 12. M. Kouril, Ph.D. thesis, University of Cinncinati, 2007.
- 13. M. Kouril, private communication, 2007.
- 14. B. Landman and A. Robertson, <u>Ramsey Theory on the Integers</u>, American Mathematical Society, Providence, R.I., 2004.
- 15. B. Landman, A. Robertson, and C. Culver, Some new exact van der Waerden numbers, *Integers: Elec. J. Combinatorial Number Theory* **5(2)** (2005), A10.
- 16. F. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264-286.
- 17. R. Rankin, Sets of integers containing not more than a given numbers of terms in arithmetical progression, *Proc. Roy. Soc. Edinburgh Sect. A* **65** (1960/1961), 332-344.
- 18. B. L. Van der Waerden, Beweis einer baudetschen Vermutung, Nieuw Archief voor Wiskunde 15 (1927), 212-216.