- RADONUMBERS:
a zip file of a C++ program that accompanies
Some Two Color,
Four Variable Rado Numbers.
It was written by Kellen Myers and Joseph Parrish.
It determines, given k and j,
the minimum integer N such that
any 2-coloring of [1,N] admits
a monochromatic solution to
x+y+kz=jw.
- FVR:
is a (very short) Maple package that accompanies
Some Two Color,
Four Variable Rado Numbers.
It determines, given a 2-coloring, those
values of k for which
x+y+kz=(k+c)w has a monochromatic
solutions (when c is given).
- PABLO:
is a Maple package that accompanies
On the Asymptotic
Minimum Number of Monochromatic 3-Term
Arithmetic Progressions.
It verifies the lower bounds given
in the article.
- SCHAAL:
is a Maple package that accompanies
Two Color
Off-diagonal Rado-type numbers.
It determines bounds for the
Rado numbers of certain
linear homogeneous equations.
- AB.f:
is a Fortran77 program that accompanies
the article
On the Degree of Regularity of
Generalized van der Waerden Triples
In particular, it proves that the degree
of regularity of (2,2) is not 1,
2, or infinity.
- AARON:
AARON is a Maple package written by Doron
Zeilberger with additions by me. It accompanies
the article
Refined Restricted Permutations.
One use is the enumeration, for small n, of the set of
permutations in Sn with
k fixed points which contain
r instances of a given pattern of length 3.
- DIFFSEQ.f:
DIFFSEQ.f is a Fortran program which accompanies the
article Avoiding Monochromatic Sequences
With Special Gaps. It will calculate
f(S,k;2) for many small values of k and
an inputted set S.
- VDW.f:
VDW.f is a Fortran program which accompanies the
article On Generalized
Van der Waerden Triples. It will calculate
N(a,b;2) for many small values of a and b by
a recursive search similar to that used in DF.f.
- AUTOISSAI:
AUTOISSAI is a Maple package which accompanies the
article Off-diagonal
Generalized Schur Numbers. It was used to help
determine the exact values of these numbers, and
is another step towards automated theorem proving.
- MIKLOS:
MIKLOS is a Maple package accompanying the article
Permutation Patterns and Continued Fraction.
It will find, quite quickly thanks to Herb Wilf,
the generating functions for the number of
permutations with either 0 or 1 (132)-patterns
and a prescribed number of (123)-patterns.
- DF.f,
DF3.f, and
ISSAI: DF.f
(and its 3-colored cousin DF3.f) is a Fortran program
which finds the maximal Difference Ramsey number.
ISSAI is a small Maple package for finding lower
bounds and exact values for the newly defined
Issai Numbers, also called Off-diagonal
Generalized Schur Numbers.
These programs accompany the article
Difference Ramsey Numbers and
Issai Numbers.
- RES: RES is a Maple package
accompanying the article New Lower Bounds
for Some Multicolored Ramsey Numbers. By mating the finite
field method of Greenwood and Gleason with today's computing
power, we are able to find good bounds for some large Ramsey numbers.
- RON, GENRON, and
SCHUR
: RON is a Maple package accompanying the
article A 2-Coloring of [1,N] Can Have
N2/22 + O(N) Monochromatic Schur Triples, But Not Less!.
It will find the number of Schur Triples (asymptotically) of any
coloring you enter, along with many other useful tools to
attact this problem posed by Ron Graham. GENRON is a Maple package
which performs the same tasks as RON, except that we are
trying to find the minimum number of monochromatic solutions
of x+ay=z (if a=1 then we are counting Schur triples). This
extension was posed to me by Ron Graham.
|
|