
A Case Study in Automated Theorem Proving:

Otter and EQP

by

Allen Lawrence Mann

B.A. Mathematics and French

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Arts

Department of Mathematics

2003

This thesis entitled:
A Case Study in Automated Theorem Proving: Otter and EQP

written by Allen Lawrence Mann
has been approved for the Department of Mathematics

Don Monk

Walter Taylor

Date

The final copy of this thesis has been examined by the signatories, and we find that
both the content and the form meet acceptable presentation standards of scholarly

work in the above mentioned discipline.

iii

Mann, Allen Lawrence (M.A., Mathematics)

A Case Study in Automated Theorem Proving: Otter and EQP

Thesis directed by Professor Don Monk

A complete proof of the Robbins conjecture is presented, along with a proof that

the equation DN1 axiomatizes Boolean algebra. We also provide a short discussion of

how the automated theorem provers Otter and EQP found the proofs.

Contents

Chapter

1 The Robbins Problem 1

1.1 Boolean algebra . 1

1.2 Huntington algebra . 3

1.3 Robbins algebra . 4

1.4 H ` B . 5

1.5 R + W1 ` H . 11

1.6 R ` W1 . 17

2 A Single Axiom for Boolean Algebra 22

2.1 B ` DN1 . 22

2.2 DN1 ` R . 23

3 How Otter and EQP work 33

3.1 A Language for Automated Theorem Provers 33

3.2 Inference Rules . 34

3.2.1 Unification . 34

3.2.2 Paramodulation . 39

3.2.3 Demodulation . 40

3.3 AC Unification . 41

v

Bibliography 42

Chapter 1

The Robbins Problem

1.1 Boolean algebra

The language of Boolean algebra consists of two binary function symbols ∪ and

∩, one unary function symbol , and two constants 0 and 1. The axioms of Boolean

algebra, as found in [4, pages 7–8], are:

(B1) x ∪ (y ∪ z) = (x ∪ y) ∪ z (B′
1) x ∩ (y ∩ z) = (x ∩ y) ∩ z

(B2) x ∪ y = y ∪ x (B′
2) x ∩ y = y ∩ x

(B3) x ∪ (x ∩ y) = x (B′
3) x ∩ (x ∪ y) = x

(B4) x ∩ (y ∪ z) = (x ∩ y) ∪ (x ∩ z) (B′
4) x ∪ (y ∩ z) = (x ∪ y) ∩ (x ∪ z)

(B5) x ∪ x = 1 (B′
5) x ∩ x = 0

I will refer to these axioms collectively as B. Axioms B1 and B′
1 are called the associa-

tivity of ∪ and ∩, respectively. Axioms B2 and B′
2 are called the commutativity of ∪ and

∩, respectively. Axioms B3 and B′
3 are called the absorption axioms. Axioms B4 and B′

4

are called the distributivity axioms. Axioms B5 and B′
5 are called the complementation

axioms. If one term can be obtained from another simply through applications of B1,

B′
1, B2, and B′

2, the two terms will be called AC identical. In most proofs, applications

of associativity and commutativity will go without mention.

It will aid our discussion to have at our disposal some of the well-known properties

of Boolean algebras.

2

Proposition 1 (Idempotence). B ` x ∪ x = x = x ∩ x.

Proof. By absorption, x∪x = x∪(x∩(x∪x)) = x, and x∩x = x∩(x∪(x∩x)) = x.

Proposition 2. B ` x ∪ y = y ↔ x ∩ y = x.

Proof. If x∪ y = y, then by absorption x∩ y = x∩ (x∪ y) = x. Conversely, if x∩ y = x,

then by absorption x ∪ y = (x ∩ y) ∪ y = y.

Proposition 3. B ` x ∪ 0 = x = x ∩ 1.

Proof. By B′
5 and B3, x∪0 = x∪(x∩x) = x. By B5 and B′

3, x∩1 = x∩(x∪x) = x.

Proposition 4. B ` x ∩ 0 = 0 ∧ x ∪ 1 = 1.

Proof. By B′
5 and idempotence, x∩ 0 = x∩x∩x = x∩x = 0. By B5 and idempotence,

x ∪ 1 = x ∪ x ∪ x = x ∪ x = 1.

Definition. Two elements x and y of a Boolean algebra are complements if x∪y = 1

and x ∩ y = 0.

Proposition 5. x is the unique complement of x.

Proof. The elements x and x are complements by B5 and B′
5. Suppose y and z are both

complements of x. Then

y = y ∩ 1 z = z ∩ 1 (by 3)

= y ∩ (x ∪ z) = z ∩ (x ∪ y) (by hypothesis)

= (y ∩ x) ∪ (y ∩ z) = (z ∩ x) ∪ (z ∩ y) (by B4)

= 0 ∪ (y ∩ z) = 0 ∪ (z ∩ y) (by hypothesis)

= y ∩ z. = z ∩ y. (by 3)

Hence y = z.

Proposition 6. B ` x = x.

3

Proof. Both x and x are complements of x.

Proposition 7. B ` x = y → x = y.

Proof. If x = y, then by the previous proposition, x = x = y = y.

Proposition 8. B ` 0 = 1 ∧ 1 = 0.

Proof. By Proposition 3, 0 ∪ 1 = 1 and 0 ∩ 1 = 0, so 0 and 1 are complements.

Proposition 9 (De Morgan). B ` x ∪ y = x ∩ y ∧ x ∩ y = x ∪ y.

Proof. By distributivity, B5, and Proposition 4 we have:

(x ∪ y) ∪ (x ∩ y) = (x ∪ y ∪ x) ∩ (x ∪ y ∪ y) = (y ∪ 1) ∩ (x ∪ 1) = 1 ∩ 1 = 1.

By distributivity, B′
5, and Proposition 4 we have:

(x ∪ y) ∩ (x ∩ y) = (x ∩ x ∩ y) ∪ (y ∩ x ∪ y) = (0 ∪ y) ∩ (0 ∩ x) = 0 ∩ 0 = 0.

Thus x ∪ y and x ∩ y are complements. The dual argument shows that x ∩ y and x ∪ y

are complements.

It follows immediately from De Morgan’s laws and Proposition 6 that x∪y = x ∩ y and

x ∩ y = x ∪ y.

1.2 Huntington algebra

In 1933, E.V. Huntington [3, 2] showed that the following three axioms, to which

I shall refer as H, form a basis for Boolean algebra. That is, any theorem of Boolean

algebra can be derived from the three, and none of the three can be derived from the

other two.

(H1) x ∪ (y ∪ z) = (x ∪ y) ∪ z (associativity)

(H2) x ∪ y = y ∪ x (commutativity)

(H3) x ∪ y ∪ x ∪ y = x (Huntington equation)

4

The term x ∪ y ∪ x ∪ y will be called the Huntington expansion of x by y. It is easy to

prove that every Boolean algebra satisfies Huntington’s axioms.

Theorem 10. B ` H.

Proof. Since H1 and H2 are identical to B1 and B2, all we need to prove is the Huntington

equation. We can restate the Huntington equation as:

(x ∩ y) ∪ (x ∩ y) = x.

By distributivity, B5, and Proposition 3,

(x ∩ y) ∪ (x ∩ y) = x ∩ (y ∪ y) = x ∩ 1 = x.

Observe that Huntington’s axioms use only one binary function symbol ∪, and

one unary function symbol . Strictly speaking, to show that H is a basis for Boolean

algebra, one must expand the language of Huntington algebra to include ∩, 0, and

1 by defining them in terms of ∪ and . On occasion, we will use the abbreviation

nx = x ∪ . . . ∪ x︸ ︷︷ ︸
n

.

1.3 Robbins algebra

Shortly after Huntington proved his result, Herbert Robbins conjectured that the

following three axioms, to which I shall refer as R, also form a basis for Boolean algebra.

(R1) x ∪ (y ∪ z) = (x ∪ y) ∪ z (associativity)

(R2) x ∪ y = y ∪ x (commutativity)

(R3) x ∪ y ∪ x ∪ y = x (Robbins equation)

The term x ∪ y ∪ x ∪ y will be called the Robbins expansion of x by y. It is equally easy

to prove that every Boolean algebra satisfies Robbins’ axioms.

5

Theorem 11. B ` R.

Proof. Since R1 and R2 are identical to B1 and B2, all we need to prove is the Robbins

equation. We can restate the Robbins equation as:

(x ∪ y) ∩ (x ∪ y) = x.

By distributivity, B′
5, and Proposition 3,

(x ∪ y) ∩ (x ∪ y) = x ∪ (y ∩ y) = x ∪ 0 = x.

The Robbins equation is simpler than the Huntington equation. It has one fewer

occurrence of . Despite the similarity of Huntington’s and Robbins’ axioms, Robbins

and Huntington were unable to find a proof that all Robbins algebras are Boolean. The

question “Are all Robbins algebras Boolean?” became known as the Robbins problem.

The problem remained unsolved for many years. According to McCune [5], the

first major step toward the solution came in the 1980s when Steve Winker proved several

conditions sufficient to make a Robbins algebra Boolean. That is, any Robbins algebra

that satisfies one of Winker’s conditions is a Boolean algebra. The problem was finally

solved in 1997 by EQP, a theorem prover created at Argonne National Laboratory,

which under the direction of William McCune proved that all Robbins algebras satisfy

what is known as Winker’s first condition.

For the rest of the chapter, we will present a complete proof that all Robbins

algebras are Boolean.

1.4 H ` B

First, we will prove some basic properties of .

Proposition 12. H ` x ∪ x = x ∪ x.

6

Proof. Use the Huntington equation to expand x and x by x:

x ∪ x =
(
x ∪ x ∪ x ∪ x

)
∪

(
x ∪ x ∪ x ∪ x

)
.

Likewise, use the Huntington equation to expand x and x by x:

x ∪ x =
(
x ∪ x ∪ x ∪ x

)
∪

(
x ∪ x ∪ x ∪ x

)
.

The right-hand sides of these two equations are AC identical. Therefore x∪x = x∪x.

Proposition 13. H ` x = x.

Proof. Use the Huntington equation to expand x by x, then simplify with Proposition 12

and the Huntington equation applied to x and x:

x = x ∪ x ∪ x ∪ x = x ∪ x ∪ x ∪ x = x.

Proposition 14. H ` x = y → x = y.

Proof. If x = y, then by the previous proposition, x = x = y = y.

Next, we define ∩ and prove some useful propositions such as De Morgan’s laws.

Definition. x ∩ y = x ∪ y.

Proposition 15. H ` x ∪ y = x ∩ y ∧ x ∩ y = x ∪ y.

Proof. By the definition of ∩ and Proposition 13, x ∩ y = x ∪ y = x ∪ y. Similarly,

x ∩ y = x ∪ y = x ∪ y.

Proposition 16. H ` x ∪ y = x ∩ y.

Proof. By Propositions 13 and 15, x ∪ y = x ∪ y = x ∩ y.

7

Proposition 16 shows that we could formulate the axioms of Huntington algebra

in terms of and ∩ instead of and ∪. We can also give a more intuitive formulation of

the Huntington equation in terms of all three symbols.

Proposition 17. H ` (x ∩ y) ∪ (x ∩ y) = x.

Proof. (x ∩ y) ∪ (x ∩ y) = x ∪ y ∪ x ∪ y = x ∪ y ∪ x ∪ y = x.

The associativity and commutativity of ∩ follow directly from the associativity

and commutativity of ∪.

Theorem 18. H ` B′
1.

Proof. By Proposition 15, x ∩ (y ∩ z) = x ∪ y ∩ z = x ∪ (y ∪ z) = (x ∪ y) ∪ z =

x ∩ y ∪ z = (x ∩ y) ∩ z.

Theorem 19. H ` B′
2.

Proof. x ∩ y = x ∪ y = y ∪ x = y ∩ x.

In any Huntington algebra, the function defined by f(x) = x ∪ x is constant.

Proposition 20. H ` x ∪ x = y ∪ y.

Proof. Use the Huntington equation to expand x and x by y:

x ∪ x =
(
x ∪ y ∪ x ∪ y

)
∪

(
x ∪ y ∪ x ∪ y

)
.

Likewise, use the Huntington equation to expand y and y by x:

y ∪ y =
(
y ∪ x ∪ y ∪ x

)
∪

(
y ∪ x ∪ y ∪ x

)
.

The right-hand sides of these two equations are AC identical. Therefore, x∪x = y∪y.

We can now extend the language of Huntington algebra to include the constants

0 and 1.

8

Definition. 1 = x ∪ x.

Definition. 0 = 1 = x ∪ x.

Observe that by the definition of 1 we have H ` B5.

Theorem 21. H ` B′
5.

Proof. By Proposition 13, x ∩ x = x ∪ x = x ∪ x = 0.

Proposition 22. H ` x ∪ 0 = x = x ∩ 1.

Proof. First, apply the Huntington equation to 0 and 0 to obtain:

1 = 0 = 0 ∪ 0 ∪ 0 ∪ 0 = 0 ∪ 0 ∪ 0 = 1 ∪ 1 ∪ 1. (22.1)

Second, use equation (22.1) to obtain:

1 = 1 ∪ 1 = 1 ∪
(
1 ∪ 1 ∪ 1

)
=

(
1 ∪ 1

)
∪

(
1 ∪ 1

)
= 1 ∪ 1 ∪ 1. (22.2)

Third, use equation (22.2) to obtain:

1 = (1 ∪ 1) ∪ 1 ∪ 1 = 1 ∪
(
1 ∪ 1 ∪ 1

)
= 1 ∪ 1. (22.3)

Fourth, use equations 22.1 and 22.3 to obtain:

0 = 1 = 1 ∪ 1 ∪ 1 = 1 ∪ 1 = 0 ∪ 0. (22.4)

Fifth, use the Huntington equation applied to x and x and equation (22.4) to obtain,

x ∪ 0 =
(
x ∪ x ∪ x ∪ x

)
∪ 0 = x ∪ x ∪ 0 ∪ 0 = x ∪ x ∪ 0 = x ∪ x ∪ x ∪ x = x. (22.5)

Finally, by equation (22.5) and 13, x ∩ 1 = x ∪ 1 = x ∪ 0 = x = x.

Proposition 23. H ` x ∪ x = x = x ∩ x.

Proof. By the Huntington equation applied to x and x, and Proposition 22,

x = x ∪ x ∪ x ∪ x = x ∪ x ∪ 0 = x ∪ x = x ∩ x.

Therefore, by Propositions 16 and 13 we have x ∪ x = x ∩ x = x = x.

9

Proposition 24. H ` x ∩ 0 = 0 ∧ x ∪ 1 = 1.

Proof. By Proposition 23, x ∪ 1 = x ∪ x ∪ x = x ∪ x = 1. Thus x ∩ 0 = x ∪ 0 = x ∪ 1 =

1 = 0.

Theorem 25. H ` B3.

Proof. Use the Huntington equation to expand x by y, then simplify with Proposition 23

and the Huntington equation applied to x and y:

x ∪ (x ∩ y) = x ∪ y ∪ x ∪ y ∪ x ∪ y = x ∪ y ∪ x ∪ y = x.

Theorem 26. H ` B′
3.

Proof. By Proposition 15, B3, and Proposition 13,

x ∩ (x ∪ y) = x ∪ x ∪ y = x ∪ (x ∩ y) = x = x.

Theorem 27. H ` B4.

Proof. First, use the Proposition 17 to expand x ∩ (y ∪ z) by y:

x ∩ (y ∪ z) = [x ∩ (y ∪ z) ∩ y] ∪ [x ∩ (y ∪ z) ∩ y],

which by B′
3 applied to y and z simplifies to:

x ∩ (y ∪ z) = [x ∩ y] ∪ [x ∩ (y ∪ z) ∩ y].

10

Now use Proposition 17 to expand each square-bracketed term by z,

x ∩ (y ∪ z) = [(x ∩ y ∩ z) ∪ (x ∩ y ∩ z)] ∪ [(x ∩ (y ∪ z) ∩ y ∩ z) ∪ (x ∩ (y ∪ z) ∩ y ∩ z)]

= [(x ∩ y ∩ z) ∪ (x ∩ y ∩ z)] ∪ [(x ∩ y ∩ z) ∪ (x ∩ (y ∪ z) ∩ y ∩ z)] (by B′
3)

= [(x ∩ y ∩ z) ∪ (x ∩ y ∩ z)] ∪ [(x ∩ y ∩ z) ∪ (x ∩ (y ∪ z) ∩ y ∪ z)] (by 15)

= [(x ∩ y ∩ z) ∪ (x ∩ y ∩ z)] ∪ [(x ∩ y ∩ z) ∪ (x ∩ 0)] (by B′
5)

= [(x ∩ y ∩ z) ∪ (x ∩ y ∩ z)] ∪ [(x ∩ y ∩ z) ∪ 0] (by 24)

= (x ∩ y ∩ z) ∪ (x ∩ y ∩ z) ∪ (x ∩ y ∩ z) (by 22)

= (x ∩ y ∩ z) ∪ (x ∩ y ∩ z) ∪ (x ∩ y ∩ z) ∪ (x ∩ y ∩ z) (by 23)

= (x ∩ y) ∪ (x ∩ z). (by 17)

Theorem 28. H ` B′
4.

Proof.

x ∪ (y ∩ z) = x ∪ y ∪ z (by 13)

= x ∩ (y ∪ z)

= (x ∩ y) ∪ (x ∩ z) (by B4)

= x ∪ y ∪ x ∪ z (by 15)

= (x ∪ y) ∩ (x ∪ z).

Theorem 29. H ` B.

Proof. By the definition of 1 and Theorems 18, 19, 25, 26, 21, 27, and 28.

11

1.5 R + W1 ` H

In 1992, Winker [8] proved that each of the following axioms is a sufficient condition for

a Robbins algebra to satisfy the Huntington equation, and therefore to be a Boolean

algebra.

(W−2) x = x (double negation)

(W−1) x ∪ 0 = x (zero)

(W0) a ∪ a = a (idempotent)

(W1) a ∪ b = b (absorption)

(W2) a ∪ b = b (absorption within negation)

Note that in the above equations, x is a variable, while 0, a, and b are constants.

Theorem 30. R + W−2 ` H.

Proof. Since H1 and H2 are identical to R1 and R2, all we need to prove is the Huntington

equation. Apply the Robbins equation to x and y to get x ∪ y ∪ x ∪ y = x. Then by

W−2,

x ∪ y ∪ x ∪ y = x ∪ y ∪ x ∪ y = x = x.

Commuting terms on the left yields the Huntington equation.

Theorem 31. R + W−1 ` W−2.

Proof. Use the Robbins equation to expand 0 by x, then simplify with W−1 to obtain:

0 = 0 ∪ x ∪ 0 ∪ x = x ∪ x. (31.1)

Use the Robbins equation to expand x by x, then simplify with equation (31.1) and

W−1 to obtain:

x = x ∪ x ∪ x ∪ x = 0 ∪ x ∪ x = x ∪ x.

12

Use the Robbins equation to expand x by x, then simplify with equation (31.1) applied

to x to obtain:

x = x ∪ x ∪ x ∪ x = x ∪ x ∪ 0 = x ∪ x.

Therefore x = x. Substitute x ∪ y ∪ x ∪ y in this equation, then apply the Robbins

equation to both sides to get:

x = x ∪ y ∪ x ∪ y = x ∪ y ∪ x ∪ y = x.

Theorem 32. R + W0 ` W−1.

Proof. Suppose a ∪ a = a, and define 0 = a ∪ a. We will show that x ∪ 0 = x.

Use the Robbins equation to expand a by a, then simplify with W0 to get:

a = a ∪ a ∪ a ∪ a = a ∪ 0. (32.1)

Use the Robbins equation to expand a ∪ x by a, then simplify with W0 to get:

a ∪ x = a ∪ x ∪ a ∪ a ∪ x ∪ a = a ∪ x ∪ a ∪ x ∪ a. (32.2)

Use the Robbins equation to expand x by a ∪ 0, then simplify with equation (32.1) to

get:

x = x ∪ a ∪ 0 ∪ x ∪ a ∪ 0 = x ∪ a ∪ 0 ∪ x ∪ a. (32.3)

Use the Robbins equation to expand a by a ∪ a, then simplify with equation (32.1) to

get:

a = a ∪ a ∪ a ∪ a ∪ a ∪ a = a ∪ a ∪ a ∪ a. (32.4)

Apply equation (32.3) to a, then simplify with W0 to get:

a = a ∪ a ∪ 0 ∪ a ∪ a = a ∪ a ∪ 0 ∪ a. (32.5)

13

Use the Robbins equation to expand a by a ∪ a ∪ a, then simplify with equation (32.4)

and W0 to get:

a = a ∪ a ∪ a ∪ a ∪ a ∪ a ∪ a ∪ a = a ∪ a ∪ a ∪ a. (32.6)

Use the Robbins equation to expand a ∪ a ∪ a by a, then simplify with equations (32.4)

and (32.6) to get:

a ∪ a ∪ a = a ∪ a ∪ a ∪ a ∪ a ∪ a ∪ a ∪ a = a ∪ a = 0. (32.7)

By equations (32.4) and (32.7):

a = a ∪ a ∪ a ∪ a = a ∪ 0. (32.8)

Apply equation (32.2) to 0, then simplify with equations (32.8) and (32.5) to get:

a ∪ 0 = a ∪ 0 ∪ a ∪ 0 ∪ a = a ∪ a ∪ 0 ∪ a = a. (32.9)

Use the Robbins equation to expand x∪0 by a, then simplify with equations (32.9) and

(32.3) to get:

x ∪ 0 = x ∪ 0 ∪ a ∪ x ∪ 0 ∪ a = x ∪ a ∪ x ∪ 0 ∪ a = x.

The proof of Theorem 32 was found by EQP. It is shorter than Winker’s original proof.

Lemma 33. R ` a ∪ b ∪ c = a ∪ b ∪ c → a ∪ b = a.

Proof. Use the Robbins equation to expand a ∪ b by c, then apply the hypothesis and

simplify with the Robbins equation applied to a and b ∪ c:

a ∪ b = a ∪ b ∪ c ∪ a ∪ b ∪ c = a ∪ b ∪ c ∪ a ∪ b ∪ c = a.

14

Lemma 34. R ` a ∪ b ∪ c = b ∪ a ∪ c → a = b.

Proof. Use the Robbins equation to expand a by b ∪ c, then apply the hypothesis and

simplify with the Robbins equation applied to b and a ∪ c:

a = a ∪ b ∪ c ∪ a ∪ b ∪ c = b ∪ a ∪ c ∪ b ∪ a ∪ c = b.

Lemma 35. R ` a ∪ b = c → a ∪ b ∪ c = a.

Proof. Use the Robbins equation to expand a by b, then apply the hypothesis:

a = a ∪ b ∪ a ∪ b = a ∪ b ∪ c.

Lemma 36. For every positive integer k, R ` a ∪ b = c → a ∪ b ∪ k(a ∪ c) = c.

Proof. By induction on k. Let b0 = b and bk = b ∪ k(a ∪ c). By hypothesis, a ∪ b0 = c.

Now assume a ∪ bk = c. Then by Lemma 35, a = a ∪ bk ∪ c, so we have

a ∪ bk+1 = a ∪ bk ∪ c ∪ bk ∪ a ∪ c = c,

by the Robbins equation applied to c and a ∪ bk.

Lemma 37. For every positive integer k, R ` a ∪ b ∪ b = a → b ∪ k(a ∪ a ∪ b) = b.

Proof. Let a ∪ b = c and bk = b ∪ k(a ∪ c). Then by Lemma 36,

a ∪ bk = a ∪ b ∪ k(a ∪ c) = c.

By hypothesis, c ∪ b = a, so by Lemma 36,

c ∪ bk = c ∪ b ∪ k(c ∪ a) = a.

Therefore,

bk ∪ b ∪ c = bk ∪ a = c = b ∪ a = b ∪ bk ∪ c,

so by Lemma 34 applied to bk, b, and c, we have bk = b.

15

This proof of Lemma 37 was discovered by an automated theorem prover [9].

Lemma 38. For every positive integer k, R ` a ∪ b = b → b ∪ k(a ∪ a ∪ b) = b.

Proof. Observe that by hypothesis, a ∪ b ∪ b = a ∪ b ∪ a ∪ b = a, so the conclusion

follows from Lemma 37.

Lemma 39. R ` 2a ∪ b = b = 3a ∪ b → 2a ∪ b = 3a ∪ b.

Proof. Applying Lemma 38 to 2a and b with k = 1 yields:

2a ∪ b ∪ 2a ∪ b = b ∪ 2a ∪ 2a ∪ b = b.

Applying Lemma 38 with k = 1 to a and 2a ∪ b yields:

2a ∪ b ∪ a ∪ a ∪ b = 2a ∪ b ∪ a ∪ a ∪ 2a ∪ b = 2a ∪ b = b.

Hence

2a ∪ b ∪ 2a ∪ b = 2a ∪ b ∪ a ∪ a ∪ b,

so by Lemma 33 we have 2a ∪ b = 2a ∪ b ∪ a.

Lemma 40. R ` (a ∪ b = b ∨ a ∪ b ∪ b = a) → b ∪ 2(a ∪ a ∪ b) = b ∪ 3(a ∪ a ∪ b).

Proof. Apply either Lemma 37 or 38 to obtain

b ∪ 2(a ∪ a ∪ b) = b = b ∪ 3(a ∪ a ∪ b).

Then use Lemma 39 applied to a ∪ a ∪ b and b to conclude b ∪ 2(a ∪ a ∪ b) = b ∪ 3(a ∪

a ∪ b).

Theorem 41. R + W1 ` W0.

Proof. Let a ∪ b = b. Define c = b ∪ 2(a ∪ b) and d = c ∪ c ∪ c. We will show that

3d ∪ 3d = 3d.

16

First observe that by W1,

a ∪ c = a ∪ b ∪ 2(a ∪ b) = b ∪ 2(a ∪ b) = c. (41.1)

By W1 we have a ∪ b = b, so by Lemma 38 and W1,

b = b ∪ 2(a ∪ a ∪ b) = b ∪ 2(a ∪ b) = c. (41.2)

By equation (41.2), W1, and Lemma 40,

c ∪ a ∪ c = b ∪ 2(a ∪ b) ∪ a ∪ b

= b ∪ 3(a ∪ b)

= b ∪ 3(a ∪ a ∪ b)

= b ∪ 2(a ∪ a ∪ b)

= b ∪ 2(a ∪ b)

= c (41.3)

By equations (41.1), (41.3), and the Robbins equation applied to c and a ∪ c we have

c ∪ c ∪ c = c ∪ a ∪ c ∪ c ∪ a ∪ c = c, (41.4)

which satisfies the hypothesis of Lemma 40 applied to c and c. Hence,

c ∪ 2d = c ∪ 2(c ∪ c ∪ c) = c ∪ 3(c ∪ c ∪ c) = c ∪ 3d. (41.5)

Therefore, 4d = 3d ∪ c ∪ c ∪ c = 2d ∪ c ∪ c ∪ c = 3d. Repeat twice more to obtain

6d = 3d.

Theorem 42. R + W1 ` H

Proof. By Theorems 30, 32, and 41.

17

1.6 R ` W1

Lemma 43. R ` x ∪ y ∪ x ∪ y = y.

Proof. This is just a restatement of the Robbins equation.

Lemma 44. R ` x ∪ y ∪ x ∪ y ∪ y = x ∪ y.

Proof. Applying Lemma 43 to x ∪ y and x ∪ y yields:

x ∪ y ∪ x ∪ y ∪ x ∪ y ∪ x ∪ y = x ∪ y.

Use Lemma 43 applied to x and y to simplify the left-hand side of the equation:

y ∪ x ∪ y ∪ x ∪ y = x ∪ y.

Commuting terms on the left-hand side yields the desired result.

Lemma 45. R ` x ∪ y ∪ x ∪ y ∪ y = x ∪ y.

Proof. Applying Lemma 43 to x ∪ y and x ∪ y yields:

x ∪ y ∪ x ∪ y ∪ x ∪ y ∪ x ∪ y = x ∪ y.

Use Lemma 43 applied to x and y to simplify the left-hand side of the equation:

y ∪ x ∪ y ∪ x ∪ y = x ∪ y.

Commuting terms on the left-hand side yields the desired result.

Lemma 46. R ` x ∪ y ∪ x ∪ y ∪ y ∪ x ∪ y = y.

Proof. Applying Lemma 43 to x ∪ y ∪ x ∪ y and y yields:

x ∪ y ∪ x ∪ y ∪ y ∪ x ∪ y ∪ x ∪ y ∪ y = y.

Use Lemma 45 applied to x and y to simplify the left-hand side of the equation:

x ∪ y ∪ x ∪ y ∪ x ∪ y ∪ y = y.

Commuting terms on the left-hand side yields the desired result.

18

Lemma 47. R ` x ∪ y ∪ x ∪ y ∪ y ∪ x ∪ y ∪ z ∪ y ∪ z = z.

Proof. Applying Lemma 43 to w and z yields:

w ∪ z ∪ w ∪ z = z.

Let w = x ∪ y ∪ x ∪ y ∪ y ∪ x ∪ y. Then by Lemma 46, w = y, so we have:

y ∪ z ∪ w ∪ z = z.

which expands to:

y ∪ z ∪ x ∪ y ∪ x ∪ y ∪ y ∪ x ∪ y ∪ z = z.

Commuting terms on the left-hand side yields the desired result.

Lemma 48. R ` x ∪ y ∪ x ∪ y ∪ y ∪ x ∪ y ∪ y ∪ z ∪ z ∪ z = y ∪ z.

Proof. Applying Lemma 43 to x ∪ y ∪ x ∪ y ∪ y ∪ x ∪ y ∪ z and y ∪ z yields:

x ∪ y ∪ x ∪ y ∪ y ∪ x ∪ y ∪ z ∪ y ∪ z ∪ x ∪ y ∪ x ∪ y ∪ y ∪ x ∪ y ∪ z ∪ y ∪ z = y ∪ z.

Use Lemma 47 applied to x, y, and z to simplify the left-hand side of the equation:

z ∪ x ∪ y ∪ x ∪ y ∪ y ∪ x ∪ y ∪ y ∪ z ∪ z = y ∪ z.

Commuting terms on the left-hand side yields the desired result.

Lemma 49.

R ` x ∪ y ∪ x ∪ y ∪ y ∪ x ∪ y ∪ y ∪ z ∪ z ∪ z ∪ u ∪ y ∪ z ∪ u = u.

Proof. Applying Lemma 43 to w and u yields:

w ∪ u ∪ w ∪ u = z.

Let w = x ∪ y ∪ x ∪ y ∪ y ∪ x ∪ y ∪ y ∪ z ∪ z ∪ z. Then by Lemma 48, w = y ∪ z, so we

have:

y ∪ z ∪ u ∪ w ∪ u = u,

19

which expands to:

y ∪ z ∪ u ∪ x ∪ y ∪ x ∪ y ∪ y ∪ x ∪ y ∪ y ∪ z ∪ z ∪ z ∪ u = u.

Commuting terms on the left-hand side yields the desired result.

Lemma 50. R ` 3x ∪ x ∪ 3x ∪ 3x ∪ x ∪ 5x = 3x ∪ x.

Proof. Applying Lemma 44 to 3x and 3x ∪ x ∪ 2x yields:

3x ∪ 3x ∪ x ∪ 2x ∪ 3x ∪ 3x ∪ x ∪ 2x ∪ 3x ∪ x ∪ 2x = 3x ∪ 3x ∪ x ∪ 2x,

which simplifies to:

3x ∪ x ∪ 5x ∪ 3x ∪ 3x ∪ x ∪ 2x ∪ 3x ∪ x ∪ 2x = 3x ∪ x ∪ 5x. (50.1)

Applying Lemma 49 to 3x, x, 2x, and 3x ∪ x yields:

3x ∪ x ∪ 3x ∪ x ∪ x ∪ 3x ∪ x ∪ x ∪ 2x ∪ 2x ∪ 2x ∪ 3x ∪ x ∪ x ∪ 2x ∪ 3x ∪ x = 3x ∪ x,

which simplifies to:

3x ∪ x ∪ 5x ∪ 3x ∪ x ∪ 3x ∪ 2x ∪ 2x ∪ 3x ∪ x ∪ 3x ∪ 3x ∪ x = 3x ∪ x.

Now use equation (50.1) to further simplify, yielding:

3x ∪ x ∪ 5x ∪ 3x ∪ 3x ∪ x = 3x ∪ x.

Commuting terms on the left-hand side yields the desired result.

Lemma 51. R ` 3x ∪ x ∪ 5x = 3x.

Proof. Applying Lemma 43 to 3x ∪ x ∪ 3x and 3x ∪ x ∪ 5x yields:

3x ∪ x ∪ 3x ∪ 3x ∪ x ∪ 5x ∪ 3x ∪ x ∪ 3x ∪ 3x ∪ x ∪ 5x = 3x ∪ x ∪ 5x.

Use Lemma 50 applied to x to simplify the left-hand side of the equation:

3x ∪ x ∪ 3x ∪ x ∪ 3x ∪ 3x ∪ x ∪ 5x = 3x ∪ x ∪ 5x. (51.1)

20

Applying Lemma 47 to 3x, x, and 3x yields:

3x ∪ x ∪ 3x ∪ x ∪ x ∪ 3x ∪ x ∪ 3x ∪ x ∪ 3x = 3x. (51.2)

The left-hand sides of equations (51.1) and (51.2) are AC identical. Therefore, 3x ∪ x ∪ 5x =

3x.

Lemma 52. R ` 3x ∪ x ∪ 3x ∪ 2x ∪ 3x = 3x ∪ x ∪ 2x.

Proof. Applying Lemma 43 to 3x and 3x ∪ x ∪ 2x yields:

3x ∪ 3x ∪ x ∪ 2x ∪ 3x ∪ 3x ∪ x ∪ 2x = 3x ∪ x ∪ 2x,

which simplifies to:

3x ∪ x ∪ 3x ∪ 2x ∪ 3x ∪ x ∪ 5x = 3x ∪ x ∪ 2x.

Use Lemma 51 to simplify the left-hand side of the equation:

3x ∪ x ∪ 3x ∪ 2x ∪ 3x = 3x ∪ x ∪ 2x.

Lemma 53. R ` 3x ∪ x ∪ 3x = x.

Proof. Applying Lemma 43 to 3x ∪ x ∪ 4x and x yields:

3x ∪ x ∪ 4x ∪ x ∪ 3x ∪ x ∪ 4x ∪ x = x,

which simplifies to:

3x ∪ x ∪ 4x ∪ x ∪ 3x ∪ x ∪ 5x = x.

Use Lemma 51 applied to x to simplify the left-hand side of the equation:

3x ∪ x ∪ 4x ∪ x ∪ 3x = x. (53.1)

Applying Lemma 45 to 3x and x yields:

3x ∪ x ∪ 3x ∪ x ∪ x = 3x ∪ x,

21

which simplifies to:

3x ∪ x ∪ 4x ∪ x = 3x ∪ x. (53.2)

Use equation (53.2) to simplify the left-hand side of equation (53.1), yielding:

3x ∪ x ∪ 3x = x.

Lemma 54. R ` 3x ∪ x ∪ 3x ∪ y ∪ x ∪ y = y.

Proof. Applying Lemma 43 to 3x ∪ x ∪ 3x and y yields:

3x ∪ x ∪ 3x ∪ y ∪ 3x ∪ x ∪ 3x ∪ y = y.

Use Lemma 53 applied to x to simplify the left-hand side of the equation:

x ∪ y ∪ 3x ∪ x ∪ 3x ∪ y = y.

Commuting terms on the left-hand side yields the desired result.

Theorem 55. R ` W1

Proof. Applying Theorem 54 to x and 2x yields:

3x ∪ x ∪ 3x ∪ 2x ∪ x ∪ 2x = 2x,

which simplifies to:

3x ∪ x ∪ 3x ∪ 2x ∪ 3x = 2x.

Use this equation to simplify the left-hand side of Theorem 52, yielding:

2x = 3x ∪ x ∪ 2x.

Theorem 56. R ` B.

Proof. By Theorems 29, 42, and 55.

Chapter 2

A Single Axiom for Boolean Algebra

The simplest possible axiomatization of Boolean algebra would be a single equa-

tion. For some time, such axiomatizations have been known to exist. McCune et al. [6]

write:

In 1973, Padmanabhan and Quackenbush [7] presented a method of
constructing a single axiom for any finitely based theory that has par-
ticular distributive and permutable congruences. Boolean algebra has
these properties. However, straightforward application of the method
usually yields a single axiom of enormous length (sometimes with tens
of millions of symbols).

According to McCune et al. [6], the following short single axiom for Boolean algebra

was discovered by “automatically generating and semantically filtering a great number

of equations, then sending the surviving candidates to the theorem prover Otter to

search for a proof of a known basis.”

(DN1) x ∪ y ∪ z ∪ x ∪ z ∪ z ∪ u = z.

A simple computation shows that DN1 holds in any Boolean algebra. Otter discovered

the following proof that DN1 proves R, presented with slight modifications.

2.1 B ` DN1

Theorem 57. B ` DN1.

23

Proof. First, rewrite DN1 as (x ∪ y ∪ z) ∩ (x ∪ (z ∩ (z ∪ u)) = z. Then

(x ∪ y ∪ z) ∩ (x ∪ (z ∩ (z ∪ u)) = (x ∪ y ∪ z) ∩ (x ∪ z) (by B′
3)

= (x ∪ y ∩ x) ∪ z (by B′
4)

= (x ∩ y ∩ x) ∪ z (by De Morgan)

= (0 ∩ y) ∪ z (by B′
5)

= 0 ∪ z (by 4)

= z. (by 3)

2.2 DN1 ` R

Lemma 58. DN1 ` x ∪ y ∪ z ∪ u ∪ x ∪ y ∪ y ∪ v = y.

Proof. Apply DN1 to z ∪ u ∪ x, z ∪ x ∪ x ∪ w, y, and v to get:

z ∪ u ∪ x ∪ z ∪ x ∪ x ∪ w ∪ y ∪ z ∪ u ∪ x ∪ y ∪ y ∪ v = y.

Then use DN1 applied to z, u, x, and w to simplify the left-hand side.

Lemma 59. DN1 ` x ∪ y ∪ z ∪ x ∪ y ∪ y ∪ u = y.

Proof. Let s = x ∪ z and t = y ∪ v ∪ x ∪ z ∪ z ∪ w. Apply Lemma 58 to x, y, s, t and

u to get:

x ∪ y ∪ s ∪ t ∪ x ∪ y ∪ y ∪ u = y.

By Lemma 58, s ∪ t = z.

Lemma 60. DN1 ` x ∪ x ∪ x = x.

Proof. Apply Lemma 58 to x, x, x, y, and x ∪ v to get:

x ∪ x ∪ x ∪ y ∪ x ∪ x ∪ x ∪ x ∪ v = x. (60.1)

24

Apply DN1 to x, y, x, and v to get:

x ∪ y ∪ x ∪ x ∪ x ∪ x ∪ v = x. (60.2)

Use equation (60.2) to simplify equation (60.1).

Lemma 61. DN1 ` x ∪ y ∪ z ∪ x ∪ y ∪ y ∪ y ∪ y ∪ u = y.

Proof. Use Lemma 60 applied to y to expand y in Lemma 59.

Lemma 62. DN1 ` x ∪ y ∪ z ∪ x ∪ y = y.

Proof. Apply Lemma 61 to x, y, z, and y ∪ y ∪ u to get:

x ∪ y ∪ z ∪ x ∪ y ∪ y ∪ y ∪ y ∪ y ∪ y ∪ u = y. (62.1)

Apply DN1 to y, y, y, and u to get:

y ∪ y ∪ y ∪ y ∪ y ∪ y ∪ u = y. (62.2)

Use equation (62.2) to simplify equation (62.1).

Theorem 63. DN1 ` x ∪ y ∪ x ∪ y = y.

Proof. Apply Lemma 62 to x, y, and x ∪ x to get:

x ∪ y ∪ x ∪ x ∪ x ∪ y = y.

Then use Lemma 60 applied to x to simplify the left-hand side.

Lemma 64. DN1 ` x ∪ y ∪ x ∪ x ∪ y = x.

Proof. Apply Lemma 61 to x ∪ y, x, x, and y to get:

x ∪ y ∪ x ∪ x ∪ x ∪ y ∪ x ∪ x ∪ x ∪ x ∪ y = x. (64.1)

Apply Lemma 62 to x, x ∪ y, and x ∪ x to get:

x ∪ x ∪ y ∪ x ∪ x ∪ x ∪ x ∪ y = x ∪ y. (64.2)

Use equation (64.2) to simplify equation (64.1).

25

Lemma 65. DN1 ` x ∪ x ∪ y ∪ x = x ∪ y.

Proof. Apply Lemma 64 to x ∪ y, and x to get:

x ∪ y ∪ x ∪ x ∪ y ∪ x ∪ y ∪ x = x ∪ y.

Use Lemma 64 to simplify the left-hand side.

Lemma 66. DN1 ` x ∪ y ∪ z ∪ x ∪ z = z.

Proof. Apply Lemma 62 to x ∪ y, z, and x ∪ y ∪ x to get:

x ∪ y ∪ z ∪ x ∪ y ∪ x ∪ x ∪ y ∪ z = z.

Use Lemma 64 to simplify the left-hand side.

Lemma 67. DN1 ` x ∪ y ∪ z ∪ y ∪ x = y ∪ x.

Proof. Apply Lemma 66 to y ∪ z, x, and y ∪ x to get:

y ∪ z ∪ x ∪ y ∪ x ∪ y ∪ z ∪ y ∪ x = y ∪ x. (67.1)

Apply Lemma 66 to y, z, and x to get:

y ∪ z ∪ x ∪ y ∪ x = x. (67.2)

Use equation (67.2) to simplify equation (67.1).

Lemma 68. DN1 ` x ∪ y ∪ z ∪ x ∪ y ∪ y = x ∪ y.

Proof. Apply Lemma 66 to x ∪ y, z, and x ∪ y to get:

x ∪ y ∪ z ∪ x ∪ y ∪ x ∪ y ∪ x ∪ y = x ∪ y.

Use Theorem 63 to simplify the left-hand side.

Lemma 69. DN1 ` x ∪ y ∪ z ∪ z ∪ x = z ∪ x.

26

Proof. Apply Lemma 67 to x, z, and y ∪ u ∪ y ∪ z to get:

x ∪ z ∪ y ∪ u ∪ y ∪ z ∪ z ∪ x = z ∪ x. (69.1)

Apply Theorem 67 to z, y and u to get:

z ∪ y ∪ u ∪ y ∪ z = y ∪ z. (69.2)

Use equation (69.2) to simplify equation (69.1).

Lemma 70. DN1 ` x ∪ y ∪ z ∪ x ∪ y ∪ u ∪ y = y.

Proof. Apply Lemma 59 to x, y, z and u ∪ v ∪ u ∪ y to get:

x ∪ y ∪ z ∪ x ∪ y ∪ y ∪ u ∪ v ∪ u ∪ y = y. (70.1)

Apply Theorem 67 to y, u and v to get:

y ∪ u ∪ v ∪ u ∪ y = u ∪ y. (70.2)

Use equation (70.2) to simplify equation (70.1).

Proposition 71. DN1 ` x ∪ y = y ∪ x.

Proof. Apply Lemma 69 to x, y ∪ x, and y to get:

x ∪ y ∪ x ∪ y ∪ y ∪ x = y ∪ x. (71.1)

Apply Theorem 64 to y and x to get:

y ∪ x ∪ y ∪ y ∪ x = y. (71.2)

Use equation (71.2) to simplify equation (71.1).

Lemma 72. DN1 ` x ∪ y ∪ y ∪ z ∪ z = y ∪ z.

27

Proof. By Proposition 71 and Lemma 69 applied to z, x, and y,

x ∪ y ∪ y ∪ z ∪ z = z ∪ x ∪ y ∪ y ∪ z = y ∪ z.

Lemma 73. DN1 ` x ∪ x ∪ y ∪ z ∪ z = x ∪ y ∪ z.

Proof. Apply Lemma 72 to x ∪ y ∪ x, x ∪ y, and z to get:

x ∪ y ∪ x ∪ x ∪ y ∪ x ∪ y ∪ z ∪ z = x ∪ y ∪ z.

Use Lemma 62 to simplify the left-hand side.

Lemma 74. DN1 ` x ∪ y ∪ x ∪ y = y ∪ y.

Proof. Apply Lemma 73 to x ∪ y, x, and y to get:

x ∪ y ∪ x ∪ y ∪ x ∪ y ∪ y = x ∪ y ∪ x ∪ y. (74.1)

Apply Lemma 62 to x, y, and x ∪ y to get:

x ∪ y ∪ x ∪ y ∪ x ∪ y = y. (74.2)

Use equation (74.2) to simplify equation (74.1).

Proposition 75. DN1 ` x ∪ x ∪ y = x.

Proof. Apply Lemma 70 to y, x, x, and y to get:

y ∪ x ∪ x ∪ y ∪ x ∪ y ∪ x = x.

Apply Lemma 67 to y ∪ x, x, and y, then use Proposition 71 to get:

y ∪ x ∪ x ∪ y ∪ x ∪ y ∪ x = x ∪ y ∪ x = x ∪ x ∪ y.

28

Lemma 76. DN1 ` x ∪ y ∪ x = x.

Proof. Apply Lemma 66 to y, x, and x to get:

y ∪ x ∪ x ∪ y ∪ x = x.

Use Propositions 71 and 75 to simplify the left-hand side.

Proposition 77. DN1 ` x ∪ x = x.

Proof. Apply Lemma 76 to x and y ∪ x to get:

x ∪ y ∪ x ∪ x = x.

Use Propositions 71 and 75 to simplify the left-hand side.

Lemma 78. DN1 ` x ∪ y ∪ x ∪ y = y.

Proof. Apply Lemma 77 to y to get y ∪ y = y. Then use Lemma 74 to expand the

left-hand side.

Proposition 79. DN1 ` x = x.

Proof. Apply Lemma 78 to x and x to get:

x ∪ x ∪ x ∪ x = x.

Apply Proposition 75 to x and x ∪ x to get:

x ∪ x ∪ x ∪ x = x.

By Proposition 71 the left-hand sides of these two equations are equal.

Corollary 80. DN1 ` x = y → x = y.

Proof. If x = y, then by Proposition 79, x = x = y = y.

Theorem 81. DN1 ` x ∪ y = y ∪ x.

29

Proof. By Proposition 71 and Corollary 80.

Lemma 82. DN1 ` x ∪ y ∪ x ∪ y = y.

Proof. By Lemma 78 and Corollary 80.

Lemma 83. DN1 ` x ∪ y ∪ y ∪ y = x ∪ y.

Proof. Apply Lemma 82 to x ∪ y and y to get:

y ∪ x ∪ y ∪ y ∪ x ∪ y = x ∪ y. (83.1)

Apply Lemma 76 to y and x to get:

y ∪ x ∪ y = y. (83.2)

Use equation (83.2) to simplify equation (83.1), then use Theorem 81 to commute terms

on the left-hand side.

Lemma 84. DN1 ` x ∪ y ∪ y ∪ y = x ∪ y.

Proof. Apply Lemma 82 to y and x ∪ y to get:

y ∪ x ∪ y ∪ y ∪ x ∪ y = x ∪ y.

Use Proposition 75 and Theorem 81 to simplify the left-hand side.

Lemma 85. DN1 ` (x ∪ y) ∪ y = y ∪ y.

Proof. Apply Lemma 72 to x, y, and y to get:

x ∪ y ∪ y ∪ y ∪ y = y ∪ y.

Use Propositions 83 and 79 to simplify the left-hand side.

Lemma 86. DN1 ` (x ∪ y) ∪ z ∪ y ∪ y ∪ y = y.

30

Proof. Apply Lemma 66 to x ∪ y, z, and y to get:

(x ∪ y) ∪ z ∪ y ∪ (x ∪ y) ∪ y = y.

Use Lemma 85 to simplify the left-hand side.

Lemma 87. DN1 ` x ∪ y ∪ z ∪ y ∪ x = y ∪ x.

Proof. By Proposition 67 and Corollary 80.

Lemma 88. DN1 ` x ∪ y ∪ z ∪ y ∪ x = z ∪ y ∪ x.

Proof. Apply Lemma 87 to x, z ∪ y, and y to get:

x ∪ z ∪ y ∪ y ∪ z ∪ y ∪ x = z ∪ y ∪ x.

Use Theorem 81 and Proposition 75 to simplify the left-hand side.

Lemma 89. DN1 ` x ∪ y ∪ x ∪ y ∪ x ∪ z ∪ y = y.

Proof. Apply Lemma 82 to x ∪ y ∪ x ∪ z and y to get:

x ∪ y ∪ x ∪ z ∪ y ∪ x ∪ y ∪ x ∪ z ∪ y = y. (89.1)

Apply Lemma 87 to y, x, and z to get:

y ∪ x ∪ z ∪ x ∪ y = x ∪ y. (89.2)

Use Theorem 81 and equation (89.2) to simplify equation (89.1).

Lemma 90. DN1 ` x ∪ (y ∪ x) ∪ z = x.

Proof. Apply Lemma 86 to y, x, and z to get:

(y ∪ x) ∪ z ∪ x ∪ x ∪ x = x.

Apply Lemma 84 to (y ∪ x) ∪ z and x to get:

(y ∪ x) ∪ z ∪ x ∪ x ∪ x = (y ∪ x) ∪ z ∪ x.

31

Therefore, by Theorem 81 and Proposition 79,

x ∪ (y ∪ x) ∪ z = (y ∪ x) ∪ z ∪ x = (y ∪ x) ∪ z ∪ x = x.

Lemma 91. DN1 ` x ∪ (y ∪ x) ∪ z = x.

Proof. Apply Lemma 90 to x, y, and z to get:

x ∪ (y ∪ x) ∪ z = x

then simplify with Proposition 79.

Lemma 92. DN1 ` x ∪ y ∪ x = x ∪ y.

Proof. Use Theorem 81 and Lemma 88 applied to x, y, and x to get:

x ∪ x ∪ y ∪ x ∪ y = x ∪ y ∪ x ∪ y ∪ x = x ∪ y ∪ x.

Use Lemma 82 to simplify the left-hand side.

Lemma 93. DN1 ` x ∪ x ∪ y = x ∪ y.

Proof. Use Lemma 92 to simplify Lemma 65.

Lemma 94. DN1 ` x ∪ y ∪ (x ∪ z) ∪ y = y.

Proof. Apply Lemma 93 to x ∪ y and x ∪ z to get:

x ∪ y ∪ x ∪ y ∪ (x ∪ z) = x ∪ y ∪ (x ∪ z).

Use this equation to simplify Lemma 89.

Lemma 95. DN1 ` x ∪ y ∪ z ∪ x ∪ y ∪ y = x ∪ y.

Proof. By Lemma 68 and Proposition 79.

Lemma 96. DN1 ` x ∪ (y ∪ x) ∪ (y ∪ z) ∪ (y ∪ z) = (y ∪ x) ∪ (y ∪ z).

32

Proof. Apply Lemma 95 to y ∪ x, y ∪ z, and x to get:

y ∪ x ∪ (y ∪ z) ∪ x ∪ y ∪ x ∪ (y ∪ z) ∪ (y ∪ z) = y ∪ x ∪ (y ∪ z). (96.1)

Apply Lemma 94 to y, x, and z to get:

y ∪ x ∪ (y ∪ z) ∪ x = x. (96.2)

Use equation (96.2) and Proposition 79 to simplify equation (96.1).

Lemma 97. DN1 ` x ∪ (y ∪ z) = (y ∪ x) ∪ (y ∪ z).

Proof. Apply Lemma 91 to x, y, and y ∪ z to get:

x ∪ (y ∪ x) ∪ (y ∪ z) = x.

Use this equation and Proposition 79 to simplify equation Lemma 96.

Lemma 98. DN1 ` z ∪ (y ∪ x) = (y ∪ z) ∪ (y ∪ x).

Proof. Apply Lemma 97 to z, y, and x to get:

z ∪ (y ∪ x) = (y ∪ z) ∪ (y ∪ x).

Theorem 99. DN1 ` x ∪ (y ∪ z) = (x ∪ y) ∪ z.

Proof. By Lemma 97, Theorem 81, and Lemma 98 we have:

x ∪ (y ∪ z) = (y ∪ x) ∪ (y ∪ z) = (y ∪ z) ∪ (y ∪ x) = z ∪ (y ∪ x) = (x ∪ y) ∪ z.

Theorem 100. DN1 ` R.

Proof. By Theorems 63, 81, and 99.

Chapter 3

How Otter and EQP work

Otter (Organized Techniques for Theorem-proving and Effective Reasoning) and EQP

(Equational Theorem Prover) are automated theorem proving programs for first-order

logic with equality developed by the Mathematics and Computer Science Division of

Argonne National Laboratory. They are coded in the C programming language and run

mostly on UNIX systems, but there are versions for both Macintosh and Windows.

Our presentation follows Wos et al. [10].

3.1 A Language for Automated Theorem Provers

A literal is an n-ary predicate symbol together with its arguments, possibly negated.

An unnegated literal is called a positive literal. A negated literal is called a negative

literal. A clause is a disjunction of literals. A clause containing only positive literals is

called a positive clause. A clause containing only negative literals is called a negative

clause. A clause containing both positive and negative literals is called a mixed clause.

A clause containing a single literal is called a unit clause. A clause containing more

than one literal is called a nonunit clause. A set of clauses is treated as the conjunction

of the clauses [10, pages 191–192].

Duplicate literals are automatically removed from clauses since the proposition

P ∨ P is logically equivalent to P [10, page 193].

All variables are universally quantified. Existentially quantified variables are re-

34

placed by functions (or constants). We will use the lowercase letters u, v, w, x, y, and

z to denote variables [10, page 193].

Equality is treated as a special binary predicate that obeys the laws of equality.

Thus an equation is a positive literal [10, page 192].

3.2 Inference Rules

An inference rule is an algorithm that, when successfully applied to a set of clauses (the

premises), yields a new clause (the conclusion) that follows logically from the premises.

Otter and EQP have several inference rules at their disposal. We will discuss only

those that were used to prove the results presented in this thesis.

3.2.1 Unification

Two literals can be unified if there exists a substitution that makes them identical,

except possibly for sign. For example, consider the set of clauses:

MALE(x) | FEMALE(x).
-MALE(Alice).

where | is the symbol for disjunction and - is the symbol for negation. The literals

MALE(x) and -MALE(Alice) can be unified by substituting the constant Alice for the

variable x, ultimately yielding the conclusion FEMALE(Alice) [10, pages 197–198].

Unification is recursive. There is an algorithm due to Robinson that, when given

two terms as inputs, will produce a substitution that makes them identical if possible,

and will fail otherwise. Moreover, the substitution produced is unique up to renaming

of variables and is the simplest substitution that will work. Our presentation of the

Unification algorithm follows [1, pages 139–145].

Definition. The length of a term t is the number of nodes in its tree representation.

For example, the term f(x, g(x, y)) has a length of 5.

35

Definition. A substitution is a function σ : V ariable → Term, where V ariable is

the set of variables and Term is the set of terms of our language. We will use postfix

notation for substitutions, i.e., if σ is a substitution that maps the variable x to the

term t, we will write xσ = t. We will use the symbol ε for the identity substitution.

Substitutions can be composed as functions, so that x(στ) = (xσ)τ . We can extend σ

to all terms by setting

cσ = c if c is a constant,

[f(t1, . . . , tn)]σ = f(t1σ, . . . , tnσ) if f is an n-ary function symbol.

Definition. The set of support of a substitution σ is the set of variables {x : xσ 6= x}.

A substitution has finite support if its set of support is finite. If a substitution σ has

finite support and maps the variable x1 to the term t1, the variable x2 to to the term

t2, and so on, we will use the notation σ = (x1 7→ t1, . . . , xn 7→ tn).

Definition. The range of variables of a substitution σ is the set of variables occuring

as subterms of terms in the range of σ.

Definition. A substitution σ is called a renaming of variables if σ is injective and

for every variable x the term xσ is a variable.

Definition. Two terms t1 and t2 are isomorphic if there exists a renaming of variables

σ such that t1σ = t2.

Proposition 101. If t is a term and σ is a substitution, then length(t) ≤ length(tσ).

Lemma 102. Let σ be a substitution. If there exists another substitution σ′ such that

σσ′ = ε, then σ is a renaming of variables.

Proof. Let x and y be variables. If xσ = yσ, then x = xσσ′ = yσσ′ = y. Therefore σ

is injective. The term xσ cannot be a constant, because then x = xσσ′ would also be

36

a constant. Furthermore, the term xσ cannot be of the form f(· · ·) for some function

symbol f , because then we would have

length(x) < length(xσ) ≤ length(xσσ′) = length(x).

Definition. Let σ1 and σ2 be substitutions. Define σ1 . σ2 if there exists a substitution

τ such that σ1τ = σ2. If σ1 . σ2 we will say that σ1 is more general than σ2. If σ1 . σ2

and σ2 . σ1 we will write σ1 ∼ σ2 and say that σ1 and σ2 are equally general.

Proposition 103. The relation . is a quasi-order.

Proof. The relation . is reflexive because for every substitution σ we have σε = σ. Let

σ1, σ2, and σ3 be substitutions. If σ1 . σ2 and σ2 . σ3 then there exist substitutions τ

and τ ′ such that σ1τ = σ2 and σ2τ
′ = σ3. Hence σ1ττ ′ = σ3. Thus σ1 . σ3. Therefore

. is transitive.

Proposition 104. If σ1 ∼ σ2 then there exists a renaming of variables τ on the range

of variables of σ1 such that σ1τ = σ2.

Proof. If σ1 ∼ σ2 then there exist substitutions τ and τ ′ such that σ1τ = σ2 and

σ2τ
′ = σ1. Hence σ1ττ ′ = σ1. Thus ττ ′ is the identity substitution on the range of

variables of σ1. Therefore by Lemma 102, τ is a renaming of variables on the range of

variables of σ1.

Definition. A substitution σ unifies two terms t1 and t2 if t1σ = t2σ. Such a substi-

tution is called a unifier of t1 and t2. Two terms are unifiable if they have a unifier.

A substitution σ is a most general unifier of t1 and t2 if σ unifies t1 and t2 and is

more general than every other unifier.

Definition. Given two distinct terms t1 and t2, a disagreement pair d1, d2 is a pair

of terms such that d1 is a subterm of t1, d2 is a subterm of t2, the symbols at the root

37

of their respective tree representations are distinct, but the paths leading from the root

of t1 to the root of d1 and from the root of t2 to the root of d2 are the same.

Unification Algorithm.

let σ := ε;
while t1σ 6= t2σ do

begin
choose a disagreement pair, d1, d2 for t1σ, t2σ;
if neither d1 nor d2 is a variable then FAIL;
let x be whichever of d1, d2 is a variable

(if both are, choose one),
and let t be the other one of d1, d2;

if x occurs in t then FAIL;
let σ := σ(x 7→ t)
end.

Lemma 105. Suppose a substitution τ unifies two terms u and v that have a disagree-

ment pair d1, d2. Then (1) at least one of d1 and d2 is a variable that does not occur in

the other. Call the variable x and the other term t. Then (2) (x 7→ t)τ = τ .

Proof. Since u and v are unifiable we must have d1τ = d2τ . If d1 and d2 were distinct

constants we would have d1τ = d1 6= d2 = d2τ . If d1 were a constant and d2 had the

form f(· · ·) for some function symbol f we would have length(d1τ) = length(d1) <

length(d2) ≤ length(d2τ). If d1 had the form f(· · ·) and d2 had the form g(· · ·) for

distinct function symbols f and g we would have d1τ = f(· · · τ) 6= g(· · · τ) = d2.

Therefore at least one of d1 and d2 must be a variable. Let x be the variable and t the

other term. If t is a constant or a variable other than x, then obviously x does not occur

in t. Suppose t has the form f(· · ·). If x were a proper part of t, then xτ would be a

proper part of tτ . Therefore x does not occur in t.

To show that (x 7→ t)τ = τ it suffices to show they have the same effect on every

variable. If y is a variable other than x, then y(x 7→ t)τ = yτ , and x(x 7→ t)τ = tτ =

xτ .

38

Theorem 106 (Unification Theorem). Let t1 and t2 be terms. If t1 and t2 are not

unifiable, the unification algorithm will FAIL. If t1 and t2 are unifiable, the unification

algorithm will terminate without FAILure, and the final value of σ will be a most general

unifier for t1 and t2.

Proof. First, we will show that the algorithm always terminates. Let S(σ) be the set of

variables that occur in either t1σ or t2σ. Each pass through the while loop that does

not FAIL decreases the size of S(σ) by at least 1 (because x is replaced by a term t that

cannot contain occurrences of x). Since t1 and t2 have only a finite number of variables,

termination is ensured.

If the algorithm does not FAIL, then it must terminate because of the while loop

condition, that is, because t1σ = t2σ. Now suppose t1 and t2 are unifiable, and let τ

be any unifier. We must show that the algorithm does not FAIL, and that the unifier σ

produced is more general than τ .

Consider the statement: στ = τ . When the while loop is first encountered this

statement is true, because σ is the identity substitution. If we show the statement is

loop invariant, then it will be true when the loop terminates, which will show that σ is

more general than τ . If we also show the loop can not terminate because of FAILure,

we are done.

Suppose we are the beginning of the loop body, and for the current value of σ,

t1σ 6= t2σ, and στ = τ . Then t1σ and t2σ are unifiable because t1στ = t1τ = t2τ = t2στ .

Let d1, d2 be a disagreement pair for t1, t2. By Lemma 105, at least one of d1 and d2

must be a variable that does not occur in the other. Therefore we do not exit the while

loop because of the first FAIL condition. Let x be the variable and t the other term.

Since x does not occur in t, we do not exit the while loop because of the second FAIL

condition either. Then we must execute the assignment statement at the bottom of the

loop. Let us denote the new value of σ by σ′, and continue to use σ for the old value;

39

thus σ′ = σ(x 7→ t). By Lemma 105, σ′τ = σ(x 7→ t)τ = στ = τ .

3.2.2 Paramodulation

Paramodulation is a type of equality substitution that procedes as follows. First, select

two clauses, one of which must contain a positive equality literal (i.e. an equation).

The clause containing the positive equality literal is called the from clause. The other

clause is called the into clause. Select one of the positive equality literals contained in

the from clause, and choose one of its arguments (i.e. one side of the equation). Next,

select a term of the into clause and attempt to unify it with the selected argument. If

unification is successful, replace the unified term with the unselected argument of the

positive equality literal (i.e. the other side of the equation). For example, suppose we

are given the equations:

n(n(x) + n(y)) + n(n(x) + y) = x.
x + x = x.

Select the second equation as the from clause and the first equation as the into clause.

Choose the left-hand side of the from clause (x + x) and the term n(x) + n(y) of

the into clause. We can unify the chosen argument and term by substituting x for the

variable y in the into clause, and n(x) for x in the from clause, yielding:

n(n(x) + n(x)) + n(n(x) + x) = x.
n(x) + n(x) = n(x).

Now substitute n(x) for n(x) + n(x) in the into clause, yielding:

n(n(x)) + n(n(x) + x) = x.

The final step of paramodulation is to form the disjunction of all literals in the from

and into clauses, except the selected positive equality literal [10, pages 201–203].

40

3.2.3 Demodulation

Demodulation is the process of rewriting expressions using unit equality clauses (equa-

tions) designated for this purpose, called demodulators. Typically, all terms of all

newly generated clauses are examined for possible demodulation. A term is demodu-

lated if it can be unified with one of the arguments of a demodulator, in which case the

term is replaced by the other argument of the demodulator. The original clause is then

discarded, being replaced by the demodulated clause [10, page 206].

The set of demodulators can change over time, depending on the instructions

given to the progam. When a new unit equality clause (equation) is added to the set of

demodulators, all previously retained clauses are examined for possible demodulation

by the new demodulator. Such a process is called back demodulation. Typically,

a successful demodulation is followed immediately by further attempts to apply other

demodulators [10, pages 206–207]. For example, the equation:

n(n(x + y)) = n(n(y + x)).

can be simplified by two applications of the demodulator:

n(n(x)) = x.

First, substitute x + y for the variable x in the demodulator to get:

n(n(x + y)) = x + y.

then unify with the left-hand side of the original equation, yielding:

x + y = n(n(y + x)).

Second, substitute y + x for the variable x in the demodulator to get:

n(n(y + x)) = y + x.

then unify with the right-hand side of the previously demodulated equation to obtain:

41

x + y = y + x.

Demodulation is closely related to paramodulation. Both are forms of equality

substitution. Let us highlight the differences. First, demodulation requires the positive

equality literal to belong to a unit clause, while paramodulation does not. Second, de-

modulation allows substitution only in the demodulator (the “from” clause), whereas

paramodulation allows substitution in both the from and the into clause. Third, de-

modulation discards the original clause; paramodulation retains both the original clause

and the new clause. Fourth, successful demodulation immediately triggers further de-

modulation attempts, while paramodulation stops after one equality substitution [10,

page 207–208].

3.3 AC Unification

EQP is a variant of Otter. The two major differences between them are that EQP

is restricted to first-order equational logic, and that EQP has associative-commutative

(AC) unification built in to the inference process. That is, all binary operations are

assumed to be associative and commutative, so that (in the case of +) the equations:

x + (y + z) = (x + y) + z.
x + y = y + x.

need not be present as explicit axioms [5].

Bibliography

[1] M. Fitting. First-Order Logic and Automated Theorem Proving, volume 14 of
Texts and Monographs in Computer Science. Springer-Verlag, 1990.

[2] E. V. Huntington. Boolean algebra. A correction. Transactions of the American
Mathematical Society, 35(2):557–558, Apr. 1933.

[3] E. V. Huntington. New sets of independent postulates for the algebra of logic, with
special reference to Whitehead and Russell’s Principia Mathematica. Transactions
of the American Mathematical Society, 35(1):274–304, Jan. 1933.

[4] S. Koppelberg. General Theory of Boolean Algebras, volume 1 of Handbook of
Boolean Algebras. North Holland, 1989.

[5] W. McCune. Solution of the Robbins problem. Journal of Automated Reasoning,
19:277–318, Dec. 1997.

[6] W. McCune et al. Short single axioms for Boolean algebra. Journal of Automated
Reasoning, 29:1–16, 2002.

[7] R. Padmanabhan and R. W. Qwackenbush. Equational theories of algebras with
distributive congruences. Proceedings of the American Mathematical Society,
41(2):373–377, Dec. 1973.

[8] S. Winker. Absorption and idempotency criteria for a problem in near-Boolean
algebras. Journal of Algebra, 153:414–423, 1992.

[9] L. Wos. Solving open questions in mathematics with an automated theorem-proving
program. Abstracts of the American Mathematical Society, 2:336, 1981.

[10] L. Wos et al. Automated Reasoning: Introduction and Applications. McGraw-Hill,
2nd edition, 1992.

