Lab 2: Numerical Integration and Special Functions

In this lab, we will investigate functions whose anti-derivatives cannot be expressed in terms of elementary functions. We will also see how to approximate the value of these "special functions" using numerical integration.

1. Use Wolfram Alpha to find the anti-derivative of each of the following functions. Write down the anti-derivative as well as the definition of each special function you encounter.

- $e^{-x^{2}}$
- $\frac{\sin x}{x}$
- $\frac{\cos x}{x}$
- $\sin x^{2}$
- $\cos \left(\frac{\pi}{2} x^{2}\right)$
- $\tan x^{3}$
- $\frac{e^{x}}{x}$

2. Choose a combination of elementary functions (similar to those above) and use Wolfram Alpha to find its anti-derivative.
3. Now use Wolfram Alpha to approximate erf(1) by entering to following commands. Find an upper bound for the error in each approximation. How does it compare to the actual error?

- integrate $\{2 /$ sqrt (pi) $\} * e^{\wedge}\left\{-x^{\wedge} 2\right\}$ on $[0,1]$ using left endpoint method with 5 intervals
- integrate $\{2 /$ sqrt $(\mathrm{pi})\} * e^{\wedge}\left\{-\mathrm{x}^{\wedge} 2\right\}$ on $[0,1]$ using right endpoint method with 5 intervals
- integrate $\{2 /$ sqrt $(\mathrm{pi})\} * e^{\wedge}\left\{-\mathrm{x}^{\wedge} 2\right\}$ on $[0,1]$ using midpoint method with 5 intervals
- integrate $\{2 /$ sqrt (pi) $\} * e^{\wedge}\left\{-x^{\wedge} 2\right\}$ on $[0,1]$ using trapezoidal rule with 5 intervals

4. Use the midpoint method to estimate erf(1) so that the absolute error is less than 10^{-6}. How many intervals did you need to use (in theory and in practice)?
5. Now use Simpson's rule to estimate erf(1) so that the absolute error is less than 10^{-6}. Start by entering the following commands:

- integrate $\{2 /$ sqrt (pi) $\} * e^{\wedge}\left\{-x^{\wedge} 2\right\}$ on $[0,1]$ using Simpson's rule with 1 interval
- integrate $\{2 /$ sqrt $(\mathrm{pi})\} * \mathrm{e}^{\wedge}\left\{-\mathrm{x}^{\wedge} 2\right\}$ on $[0,1]$ using Simpson's rule with 2 intervals
- integrate $\{2 /$ sqrt (pi) $\} * e^{\wedge}\left\{-x^{\wedge} 2\right\}$ on $[0,1]$ using Simpson's rule with 3 intervals

How many intervals did you need to use (in theory and in practice)? [Note: The number n in the error bound formula is twice the number of intervals according to Wolfram Alpha.]
6. Use Wolfram Alpha to evaluate $\operatorname{erf}(1), \operatorname{erf}(2), \operatorname{erf}(3)$, and $\operatorname{erf}(4)$ to eight decimal places each.
7. What is $\lim _{x \rightarrow \infty} \operatorname{erf}(x)$?
8. Finally, enter the following command:

- integrate $x^{\wedge}\{1 / 3\} * e^{\wedge}\{-x\}$ on [0,infty]

What special function do you encounter? How is it defined?
9. Calculate $\Gamma(n)$ for $n=1, \ldots, 6$.
10. Predict the value of $\Gamma(7)$ and $\Gamma(8)$ before calculating the values using Wolfram Alpha. Were you predictions correct?

