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SUMMARY

In 2001, Fishburn, Tanenbaum, and Trenk published a pair of papers that

introduced the notions of linear and weak discrepancy of a partially ordered set or

poset. Linear discrepancy for a poset is the least k such that for any ordering of the

points in the poset there is a pair of incomparable points at least distance k away

in the ordering. Weak discrepancy is similar to linear discrepancy except that the

distance is observed over weak labelings (i.e. two points can have the same label

if they are incomparable, but order is still preserved). My thesis gives a variety of

results pertaining to these properties and other forms of discrepancy in posets. The

first chapter of my thesis partially answers a question of Fishburn, Tanenbaum, and

Trenk that was to characterize those posets with linear discrepancy two. It makes

the characterization for those posets with width two and references the paper where

the full characterization is given. The second chapter introduces the notion of t-

discrepancy which is similar to weak discrepancy except only the weak labelings with

at most t copies of any label are considered. This chapter shows that determining a

poset’s t-discrepancy is NP-Complete. It also gives the t-discrepancy for the disjoint

sum of chains and provides a polynomial time algorithm for determining t-discrepancy

of semiorders. The third chapter presents another notion of discrepancy namely total

discrepancy which minimizes the average distance between incomparable elements.

This chapter proves that finding this value can be done in polynomial time unlike

linear discrepancy and t-discrepancy. The final chapter answers another question of

Fishburn, Tanenbaum, and Trenk that asked to characterize those posets that have

equal linear and weak discrepancies. Though determining the answer of whether

the weak discrepancy and linear discrepancy of a poset are equal is an NP-Complete

x



problem, the set of minimal posets that have this property are given. At the end of the

thesis I discuss two other open problems not mentioned in the previous chapters that

relate to linear discrepancy. The first asks if there is a link between a poset’s dimension

and its linear discrepancy. The second refers to approximating linear discrepancy and

possible ways to do it.
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CHAPTER I

INTRODUCTION

1.1 Background

Partially ordered sets arise very frequently in everyday life. Often it becomes natural

and necessary to compute a ranking of these posets that respects the partial order’s

comparabilities. This ranking in some cases may allow ties and other times may not.

Additionally, this ranking introduces details that are not present in the poset, as such

certain incorrect observations may be made about the original poset. Specifically, two

elements that are not comparable may appear far apart in the ranking and this may

create an unfair bias between these two elements.

As an example, two baseball analysts want to publish a list of the top 25 baseball

players for the year. They each make their list separately and then take the inter-

section of the lists to create a partially ordered set. Thus, a player would be ranked

higher if and only if he was ranked higher under both analyst’s rankings. The goal

in compiling a final ranking would be to have players that were ranked in opposite

order be placed near each other so as not to favor either analyst’s particular ranking.

As a second example, at a medical triage many patients may be admitted with

a variety of different symptoms and as a result it may be unclear who are the most

important patients for the doctors to see first. Is it more important to see a patient

who has stomach pains versus a patient whose head hurts? Clearly, in this model a

patient who has been shot or is having a heart attack should be seen immediately and

before someone who has back pain. This model can be viewed as a partial ordered set

and again it would seem fair if the wait time between patients that are incomparable

(intake cannot determine which patient is more important to see first) is minimized.
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As one final example, suppose a manager wants to assign fair pay grades for

employees at his company. Some employees are clearly more essential to the company

and their work may be more specialized than others and as such should be paid more

than other staff. Having said this it may be impossible to determine whether a person

in HR is more important than an engineer working on a specific project. Again this

model is a partially ordered set and it would seem fair to put incomparable employees

in equivalent pay grades or as close as possible. This differs from the first two examples

as in this example incomparable employees can be assigned the same pay grade.

These three examples (drawn largely from [23]) all refer to finding “fair” rankings

in partially ordered sets. The goal of the first two examples is to find a ranking

that witnesses the linear discrepancy of the partial order. In the third example the

ranking refers to finding an ordering that witnesses the weak discrepancy of the

partially ordered set. An exact definition of these terms will be defined in the next

section.

1.2 Definitions and Notation

A partially ordered set (or poset) P = (X, P ) is a set X with a binary relation P

that is reflexive, antisymmetric, and transitive on the set X. We call X the ground

set of the poset P and refer to P as the partial order. When it is clear that there

is only one poset being discussed, often the reference to the partial order is dropped

and instead of writing x ∈ X as an element of the ground set, we will use x ∈ P.

When (x, y) ∈ P , we write x ≤ y or y ≥ x interchangeably. In the case (x, y) ∈ P

and x 6= y we may write x < y or y > x, again interchangeably. We say two elements

are comparable in P if either x ≤ y or y ≤ x. If two elements are not comparable,

then they are incomparable and we use the notation x||y. In the case that x < y and

there is no element z ∈ X such that x < z < y, we say y covers or is a cover of x and

use the notation x <· y or y >· x. We say x is a minimal element or simply minimal if
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x does not cover any element in P. Similarly, we define an element x to be a maximal

element or maximal if no elements covers it.

It is often the case that visualizing a poset will be necessary to facilitate the ideas

of a proof. In such cases we refer to a Hasse Diagram of a poset where elements of

the poset are drawn in the Cartersian plane with the following restrictions:

1 If x < y in the poset then the vertical coordinate of x must be less than the

vertical coordinate of y

2 If x <· y then there is a line connecting x and y in the plane.

Given a Hasse Diagram of a poset P = (X, P ), it is simple to determine if (x, y) ∈

P by seeing if there is a downward path from y to x in the diagram.

a1

b1

a2

b2

a3

b3

Figure 1: S3

The diagram shown in Figure 1 is a picture of poset called S3. From this Hasse

diagram one can see that each maximal element has a unique minimal element with

which it is incomparable and it is comparable to all other minimal elements. This

poset is a member of the class of standard example posets. In general, Sn is the

standard example with n maximal elements and n minimal elements such that each

maximal element has a unique minimal element with which it is incomparable.

Let P = (X, <P ) and Q = (Y,<Q) be two posets. If Y ⊆ X and for every a, b ∈ Y

a <P b ⇐⇒ a <Q b then Q is a subposet of P. The dual of P = (X, <P ) denoted

Pd has the same ground set X and x <P y is equivalent to y <P d x. Notice that

each member of the class of standard examples is isomorphic to its own dual, such

posets are called self-dual. Another such example of posets that are self-dual are
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sums of disjoint chains. Figure 2 shows such an example. We denote these posets by

boldfaced numbers (the number of points in each chain) separated by plus signs.

Figure 2: A 4 + 5

A chain or total order is a set of points that are pairwise comparable. The cardi-

nality of the largest chain in a poset is defined as the height of the poset. Similarly,

an antichain is a set of elements such that every pair of distinct points x, y from the

set is incomparable (x||y). The size of the largest antichain in a poset is defined as

the width of the poset.

If S is a subset of the groundset of a poset P, we define the downset, D(S), and

the upset of S, U(S), as follows:

D(S) = {x : x < s for some s ∈ S}

U(S) = {x : x > s for some s ∈ S}

Also, we denote the downset of an element y as D(y) in place of D({y}).

A critical pair in a poset P is a pair of incomparable elements x, y ∈ P such that

D(x) ⊆ D(y) and U(y) ⊆ U(x).

A linear extension L of a partial order P is a total order such that all relations

in the partial order are preserved. Using Figure 1 a sample linear extension of this

poset would be:

a1 ≤ a2 ≤ a3 ≤ b4 ≤ a4 ≤ b3 ≤ b2 ≤ b1

4



The set of all possible linear extensions of a poset P is denoted ε(P). The height

of an element x in L is denoted hL(x). Thus, for the above linear extension the height

of a4 is 5.

A realizer of a poset P is a set of linear extensions of P such that their intersection

is P. Thus, for all x, y ∈ P, if x||y then there exists at least one linear extension with

x over y and one with y over x. The dimension of P is the fewest number of linear

extensions needed in a realizer.

1.3 Interval Orders and Semiorders

Interval orders are a special class of posets that have a geometric representation. If

you take a set of intervals on the real line one can define an order relation between

intervals by saying one interval is less than another if it lies entirely to the left of the

other. The set of interval orders are those posets that have such an interval drawing

and such a drawing is called an interval representation. Thus, for example Figure 3

shows a set of labelled intervals and the corresponding poset.

a y c d
b

x

x

y

a

c

d

b

Figure 3: An interval order with interval representation

The following was originally proven by Fishburn [5] that gives a way to easily

determine if a poset is an interval order or not.

Lemma 1. Let P be a poset. The following four statements are equivalent

1 P is an interval order.
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2 P does not have a 2 + 2 as a subposet.

3 For every x, y ∈ P either D(x) ⊆ D(y) or D(y) ⊆ D(x)

4 For every x, y ∈ P either U(x) ⊆ U(y) or U(y) ⊆ U(x)

A subclass of interval orders is the class of semiorders. Posets that have an interval

representation in which every interval has equal length are exactly the members of

this class.

The following theorem was originally proven in a different form by Scott and

Suppes.[21]

Theorem 2. Let P be an interval order. P is a semiorder if and only if it does not

contain a 3 + 1 as a subposet.

1.4 The Different forms of Discrepancy in Posets

Discrepancy is the central theme of this dissertation, and there are a variety of dif-

ferent forms each with the central idea of looking to minimize the distance between

incomparable elements. With that in mind, the first form of discrepancy, weak dis-

crepancy was the first measure developed, and the idea is to minimize the maximum

distance between incomparable elements over all possible weak labellings.

Definition 3. (Weak Discrepancy) Let P = (V,≺) be a poset. An integer-valued

function f : V → Z is a k-weak-labelling of P if it satisfies the following two conditions

for every pair of elements x, y ∈ P:

1 If x < y then f(x) < f(y)

2 If x||y then |f(x)− f(y)| ≤ k

The minimum value of k such that there exists a k-weak-labelling is called the weak

discrepancy or P and is denoted wd(P).

6



The notion of weak discrepancy and the linear discrepancy were first described in

the following two papers [6, 23]. The difference between the two is that the labelling

of the poset for linear discrepancy must be an injective labelling, or simply a linear

extension.

Definition 4. Let P be a poset and L be a linear extension of P. The linear discrep-

ancy of L is the maximum difference in heights between two incomparable elements

in L and is denoted ld(P, L). Thus, ld(P, L) = maxx||y |hL(x) − hL(y)|. The linear

discrepancy of P is the minimum such value over all linear extensions and denoted

ld(P). Thus, ld(P) = minL∈ε(P) ld(P, L)

Thus, it is clear that the weak discrepancy of a poset is less than or equal to its

linear discrepancy, and in fact this inequality is tight. As an example, a 1 + 2d has

both linear discrepancy and weak discrepancy equal to d. In chapter 5 we give a

necessary condition for equality and give the minimal posets for which this equality

holds.

The next form of discrepancy is also very similar to weak discrepancy with the

added restriction of having a limit on the number of copies for any particular label.

This form of discrepancy is called t-discrepancy where t refers to the number of

allowable copies and is denoted dt(P) for a poset P. We give the formal definition

below.

Definition 5. Let P = (V,≺) be a poset and t be a positive integer. An integer-

valued function f : V → Z is called a (k, t)-labeling for P if it satisfies the following

three conditions for all x, y,∈ V :

(i) if x ≺ y then f(x) < f(y),

(ii) if x ‖ y then |f(x)− f(y)| ≤ k,

(iii) |f−1(i)| ≤ t for all i ∈ Z.

7



Definition 6. If k is the least integer for which poset P has a (k, t)-labeling, then we

write dt(P) = k and say that P has t-discrepancy equal to k. A (k, t)-labeling f for

which k = dt(P) is called a t-optimal labeling function (or just an optimal labeling

function).

This version of discrepancy is really a hybrid of weak and linear as the larger the

value for t the closer t-discrepancy is to weak discrepancy. Similarly, for small values

of t the property is closer to linear discrepancy. In particular we have the following

remark.

Remark 7. For and poset P and any integer t ≥ 1 we have ld(P) ≥ dt(P) ≥ wd(P).

The final definition of discrepancy measures the minimum average distance be-

tween incomparable pairs of a poset. This form of discrepancy is called total linear

discrepancy.

Definition 8. Let P = (V,≺) be a poset. The total linear discrepancy of P is denoted

by tl(P) given by the following formula:

tl(P) = minL∈ε(P)

∑
x||y

|hL(x)− hL(y)|

It should be noted and is straightforward to see that all forms of discrepancy are

monotonic.
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CHAPTER II

3-DISCREPANCY-IRREDUCIBLE POSETS OF WIDTH 2

Introduction The first result of this thesis deals with linear discrepancy. In a pair

of papers [6, 23], the notion of linear discrepancy was introduced and a variety of

results were proved about this property. In particular the linear discrepancy of the

boolean lattice on [n], where the relation between sets is by inclusion, was determined.

Also, the paper showed that in general, determining a poset’s linear discrepancy is

in the class of NP-Complete problems. At the end of [23], a series of eight open

questions was posed. The first of these questions was to characterize the set of posets

whose linear discrepancy is two. The main proof of this chapter characterizes the set

of posets whose linear discrepancy is two and whose width is two. In [12] the full

characterization is ultimately proven.

In [23] they characterize the posets of linear discrepancy zero and one. Clearly, the

only posets that have linear discrepancy zero are exactly those posets that have no

pair of incomparable elements, specifically chains. The posets of linear discrepancy

two are exactly the semiorders of width two. The proof is straightforward. First

notice if there is ever an antichain of size three, then in any linear extension two

points must be at distance at least two. Second notice that any poset with a 1 + 3

or 2 + 2 as a subposet must have linear discrepancy at least two. This shows that

the set of posets with linear discrepancy one must be inside the class of semiorders

of width two by Theorem 2. Finally, given any semiorder of width two, take the

linear extension that orders points by left endpoint. The distance between any two

incomparable points in this extension is exactly one, completing the proof.

In [3] the notion of k-discrepancy irreducibility was established in particular we
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have the following definition.

Definition 9. A poset P is k-discrepancy-irreducible if ld(P) = k and for every x ∈ P

ld(P− x) < k.

Also, Keller and Young have the following important lemma that helps to char-

acterize posets of linear discrepancy k[17].

Lemma 10. Let P be a poset whose linear discrepancy is k. There exists a point

x ∈ P such that ld(P− x) ≥ k − 1.

With this definition and lemma in place, characterizing the posets of linear dis-

crepancy k are those posets who do not have any k + 1-discrepancy-irreducible poset

as a subposet and must have a k-discrepancy-irreducible poset as a subposet. As just

explained, the posets with linear discrepancy one are the class of semiorders of width

two. Instead, this can be reworded as: a poset with linear discrepancy two must

have a 1-discrepancy irreducible poset (a two element antichain) and cannot contain

a 2-discrepancy-irreducible poset (3+ 1, 2+ 2, 1+ 1+ 1). We use this framework to

characterize those posets of linear discrepancy two.

The central idea of the chapter’s main proof is that a width two 3-discrepancy-

irreducible poset almost has linear discrepancy 2 and the subposet obtained by a

removal of a specific maximal point barely has linear discrepancy 2. Formally, in a

3-discrepancy-irreducible poset, there is a linear extension that has a specific pair of

incomparable elements whose difference in heights is 3, but for all other incomparable

elements the maximum distance is 2. On the other hand, with the removal of a

specific maximal point from a 3-discrepancy-irreducible poset, this subposet has a

unique linear extension that witnesses linear discrepancy 2.

In this chapter we prove Theorem 11 (the main theorem of the chapter) with an

inductive proof in which the base case is non-trivial. The key result in the proof

is Lemma 12, which states that 3-discrepancy-irreducible posets of width 2 other
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than 2 + 3 must have the minimal element of one chain being incomparable to the

bottom 4 elements of the other chain (a 1 + 4). This result serves as the basis on

which to inductively build our unique linear extension, since a 1 + 4 by itself has a

unique linear extension that shows this subposet has linear discrepancy 2. It is this

forcing property that gives rise to an inductive argument that will eventually lead to

the proof of Theorem 18 on 3-discrepancy-irreducible posets with a specific maximal

point removed. From Theorem 18 one can make an observation that this immediately

implies the main result Theorem 11.

Theorem 11. If P is a 3-discrepancy-irreducible poset of width 2, then either P is

2 + 3 or is a member of the family I2
3.

The special family I2
3 will be described in the next section.

Please note for the entirety of this chapter, in the figures we have the following:

• A solid line refers to a cover in the poset.

• A dashed line refers to an order relation between elements.

• A thick dotted line refers to an incomparability between elements.

This differs from a Hasse diagram as it is unclear whether certain pairs of elements

are comparable or incomparable and so there is no line connecting them.

2.1 The infinite family I2
3

We will denote by M2n (n ≥ 3) a special member of I2
3 on 2n points and describe

how the other members of the family on 2n points are obtained from M2n. Since

width (M2n) = 2, we consider it as being made of two chains, which we will call

L and R, with some comparisons added between the chains. The construction is

dependent on the parity of n. For n even, L has n points and R has n points, while

for n odd, L has n + 2 points and R has n − 2 points. Let the points of the chain
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L be a1 <· a2 <· · · · and the points of the chain R be b1 <· b2 <· · · · . The covering

relations we then add to construct M2n are

a3 <· b2 <· a5 <· b4 <· · · · <· bn−4 <· an−1 <· bn−2 for n even

and

a3 <· b2 <· a5 <· b4 <· · · · <· an−2 <· bn−3 <· an for n odd.

Note that for n = 3, there are no covering relations added by this construction, so M6

is isomorphic to 5 + 1. The construction of M2n is completed by adding all relations

implied by transitivity after adding the covering relations above. For illustration,

Figure 4 shows the posets M8, M10, and M12.

a1

a2

a3

a4

b1

b2

b3

b4

M8

a1

a2

a3

a4

a5

a6

a7

b1

b2

b3

M10

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

M12

Figure 4: Three members of the infinite family I2
3

We obtain the remaining 2n-element members of I2
3 from M2n by removing any

subset of the covering relations added above while retaining the comparabilities added

due to transitivity. For example, Figure 5 shows the 3-irreducible poset of width 2

derived from M8 by removing the only possible covering relation and the 3-irreducible

poset of width 2 derived from M10 by removing the covering relation a3 <· b2.

2.2 Proof of Theorem 11

For the remainder of this chapter, all posets are of width 2. Furthermore, we assume

that these posets do not contain 2 + 3 as a subposet.
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(a) (b)

Figure 5: Members of the infinite family I2
3 derived from (a) M8 and (b) M10

We begin this section with a series of claims that proves some structure about

3-discrepancy-irreducible posets of width 2 that are not 2 + 3. The purpose of these

claims is to help prove the following key lemma.

Lemma 12. A 3-discrepancy-irreducible poset of width 2 that is not 2+3 must have

one chain whose bottom 4 elements are incomparable to the minimum element of the

other chain (an induced 1 + 4).

Remark 13. The posets 2 + 3 and the 1 + 5 are 3-discrepancy-irreducible posets.

Claim 14. A 3-discrepancy-irreducible poset Q cannot be partitioned into two parts

P and P ′ where every element of P is over every element of P ′.

Proof. Suppose the claim is false and there exists such a partition into P and P ′.

If Q were irreducible, then one could find linear extensions L1 for P and L2 for P ′

such that the distance between any incomparable elements in L1 and L2 is 2 or less.

Placing L1 on top of L2 we have a linear extension of Q such that the distance between

any two incomparable elements is at most 2, as no incomparabilities exist between P

and P ′. This is a contradiction, as Q was given as a poset with linear discrepancy

3.

Claim 14 implies that a 3-discrepancy-irreducible poset of width 2 has a unique

chain decomposition into 2 chains. Thus, we can refer to the chains as “left” and

13



“right” chains. Also, we will refer to the initial elements of the left chain as [a1, a2, a3 . . .]

and the initial elements of the right chain as [b1, b2, b3, . . .].

Claim 15. The smallest two elements in each of the two chains of a 3-discrepancy-

irreducible poset of width 2 cannot form the poset shown in Figure 6.

b2

b1

a2

a1

Figure 6: Forbidden minimal element structure

Proof. Suppose the claim is false and there exists a linear extension with b1 removed

so that the maximum distance between any 2 incomparable elements is less than 3.

Note that any linear extension of linear discrepancy 2 must have a1 at position 1 or 2

from the bottom of the extension. Otherwise b2 would be in position 1 and a2 would

be in position 4 or higher, forcing the distance from a2 to b2 to be more than 2, a

contradiction. Putting b1 in position 0 gives a linear extension so that the maximum

distance between any two incomparable elements is less than 3 for the original poset.

This contradicts the fact that the linear discrepancy is 3.

Thus either a1, a2, b1, and b2 form a 2 + 2 or we have Figure 10, as Claim 14 and

Claim 15 take care of the other two cases.

Claim 16. If a 3-discrepancy-irreducible poset of width 2 is not 2+3 then the smallest

two elements in each of the two chains cannot form the poset 2 + 2.

Proof. Suppose otherwise. We separate into 2 cases as depicted in Figure 7 and

Figure 9.

In the first case, one of the chains (without loss of generality, we will say the right

chain) has only 2 elements as in Figure 7 (b2 is the maximum element of the right

chain). Then, by Claim 14, no element from the left chain can be above b2, and
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a2

a1

b2

b1

a3

Figure 7: 2 + 2 start with one chain being height 2 (not a 2 + 3)

further, no element can be below b2 in the left chain otherwise a1 would be below b2

violating the assumption of an initial 2 + 2. Thus b2 is incomparable to all elements

in the left chain, and as 1 + 5 is not a subposet, since it is 3-discrepancy-irreducible,

there can be at most 4 elements in the left chain. Additionally, a3 must be above b1;

otherwise, there would be a 2+3 as a subposet. Under these restrictions we have the

given poset in Figure 8, and as the labeling shows, this poset has linear discrepancy

2.

In the remaining case, each chain has at least 3 elements. As the poset does not

2 1

43

5

6

Figure 8: A 3-discrepancy-irreducible poset cannot begin as above.

contain a 2 + 3, a1 would be below b3 and b1 would be below a3 as in Figure 9. Now

by Claim 14, either b3 must be incomparable to a2, or a3 must be incomparable to

b2. We may assume a3 is incomparable to b2 by the symmetry of the poset. Take

a linear extension with b1 removed so that the maximum distance between any two

incomparable elements is less than 3. Note that the order a1 < b2 < b3 is not a viable

option, since the label for a3 and b2 would differ by more than 2. To show linear
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discrepancy 2, the linear extension must be ordered:

(i.) (a1, a2, b2, . . .)

(ii.) (a1, b2, a2, . . .)

(iii.) (b2, a1, a2, . . .)

For each case to keep the linear discrepancy at 2 (and hence arrive at a contradiction)

with the addition of b1 into the linear extension, do the following:

(i.) Let b1 be the lowest element in the extension.

(ii.) and (iii.) Start the chain a1, b1, b2, a2, . . .

a2

a1

b2

b1

a3 3b

Figure 9: A forbidden beginning

If we assume that we have a 3-discrepancy-irreducible poset of width 2 that is not

1 + 5 or 2 + 3, by Claim 15 and Claim 16 we have the two least elements of each

chain appear as in Figure 10. Combining this with Claim 14 we have Figure 11. Note

that in Figure 11, we may assume b1 is incomparable to a1, a2, and a3 otherwise this

would violate Claim 14. Also a3 could be less than or incomparable to b2.

Figure 10: If the 3-discrepancy-irreducible poset is not 1 + 5 or 2 + 3, the smallest
elements of the two chains must be in this configuration.

Claim 17. If the 3-discrepancy-irreducible poset of width 2 begins as in Figure 11,

then there must be a fourth element in the left chain.
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a2

a1

b

a3 2b

1

Figure 11: Since there is no unique maximum, we have this configuration.

Proof. Suppose the claim was false. Then a3 must be incomparable to the right chain

by Claim 14. In Figure 12, the position numbers for a linear extension have been

given to show that the poset has linear discrepancy less than 3. If one were to add

any more elements to the right chain, there would be a 1+5 as a subposet, and thus

the poset would not be irreducible.

1

2

5

3

4

6

7

Figure 12: This shows there must be more than 3 elements in the left chain.

As previously stated, the previous 4 claims have been stepping stones to help

prove Lemma 12 that will serve as the base case for inductively proving Theorem 18.

We now have 4 elements in one chain and 2 in the other, and we have proven the

following relations: b1 is incomparable to a1, a2, and a3, and b2 is over a2 and not

under a3. We now prove Lemma 12.

Proof. Suppose the lemma was false. If such a poset violated the lemma, it is not a

1 + 5 as that agrees with the lemma. Thus, by our previous claims, we must be in
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Figure 13: Supposing the 4th element in the left chain were comparable to the minimal
element in right chain

the case of Figure 13. (Again it is possible for a2 to be greater than b3, or a4 greater

than b2.)

Take a linear extension L with a1 removed so that the maximum distance be-

tween any 2 incomparable elements is less than 3. Unless a3 is below b1 in L as in

Figure 14(a), we can place a1 at the bottom of the linear extension showing the orig-

inal poset would have linear discrepancy 2. However, any extension with a3 below

b1, one can interchange a3 and b1 (as in Figure 14(b)) keeping the maximum distance

between incomparable elements at 2 with the addition of a1.

1

3

2

2

1 3

(a)                              (b)
Figure 14: (a) A possible labeling leaving bottom element out. (b) A relabeling of
(a)

From here on, we will assume that the left chain contains 4 elements at the bottom

that are incomparable to the first element in the right chain. By considering the dual
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of Lemma 12, a 3-discrepancy-irreducible poset must end with a 1 + 4, though the

4-chain of the 1 + 4 can occur on either the left or right chain. We will refer to the

maximal element of this 4-chain as t.

For the next theorem, we will inductively construct a linear extension for a 3-

discrepancy-irreducible poset with t removed. The theorem describes the very specific

structure of such a reduced poset. It is this rigidity that forces there to be a unique

linear extension that shows the reduced poset to have discrepancy 2.

Theorem 18. Let P be a 3-discrepancy-irreducible poset of width 2 that is not 2+3.

There exists a maximal point in P whose removal leaves a poset with a unique linear

extension witnessing linear discrepancy 2 (i.e. all other linear extensions will have a

larger maximum distance between incomparable elements).

In fact, we show that, the labeling of this extension must be as follows:

The two least elements of the left chain are labeled 1 and 2. The minimal element

of the right chain is labeled 3. We then alternately label the two smallest unlabeled

points from the left chain and the two smallest unlabeled points from the right chain

until all elements (except t) have been labeled. (The poset’s final 2 labeled elements

will be from the same chain).

Furthermore, if vi is the element with label i, then for all v2k+1 with k ≥ 2, v2k+1

and the two elements immediately below v2k+1 in its chain are incomparable to v2k−1

(see Figure 15).

The unique maximal point stated in the theorem refers to element t. We must

show that after labeling 2k + 1 elements then either P − t is completely labeled or

there exist at least 2 more elements in the opposite chain that are incomparable to

v2k+1. Thus these additional two elements must be given labels 2k + 2 and 2k + 3.

Proof. For the element labeled 5, the work is already done since by Lemma 12 the

poset must start with a 1 + 4 and there is unique labeling of a poset with a 1 + 4
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2k!2

2k!3
or

2k 2k!1

k >= 22k+1

Figure 15: Induction structure and labeling

keeping the linear discrepancy at 2 (see Figure 16). Notice that element 5 and the

two elements below it (the elements labeled 4 and 2) are incomparable to element 3.

5

3

1

2

4

Figure 16: The base case

At the inductive step we assume we have partially completed the labeling as in

Figure 15.

Inductive step: If t is the element above v2k+1 in P there can be no element above

v2k−1 as this would produce a 2+3. Note that if an element were above v2k−1 it would

have to be incomparable with the last four elements of the left chain by the dual of

Lemma 12. Thus we must be done with the labeling (by the dual of Lemma 12) as

we will have a 1 + 4 with t and the 3 elements below as the 4-chain and the 1-chain

will be v2k−1. If we are not done then there are two cases:

The first case is that there are no elements above element v2k+1 in the chain. We

note that any element under v2k−1 (if one exists) must be less than v2k+1 otherwise

20



the poset would have linear discrepancy 3. Thus as v2k+1 is the maximum of one of

the chains (and t is not above it) there must be two more elements above v2k−1 that

are incomparable to v2k+1 by the dual of Lemma 12. Furthermore, they are labeled

2k + 2 and 2k + 3 and exhaust the right chain as shown in Figure 17.

In the second case (the remainder of the proof), there is an element above v2k+1

vn!2

vn+1

vn+2

vn

t

<!If exists

1+4

Figure 17: If t is above elements with label 2k + 3

in the chain (that is not t). This point must be comparable to v2k−1, otherwise the

linear discrepancy would be greater than 2. This forces there to be another element

above v2k−1 by Claim 14, since otherwise there would be a unique maximum element.

Call this element v′. Then v′ must be incomparable to v2k+1 as otherwise we would

violate Claim 14. (See Figure 18).

v2k+1 v

v’

2k!1

Figure 18: This forbidden poset shows v′ is incomparable to v2k+1.

We claim that v′ is not the maximal element of a chain in P . To see why, suppose

that v′ is maximal. First notice that the element below v2k must be under v′ since

v′ would have label at least 2k + 2, and any element with label less than 2k must be
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v2k+1

v2k

2k+2

2k+4

2k+5

v2k!1

v2k+1

v2k v2k!1

v’

2k+4

2k+3

2k+2v’ 2k+3

Option 1                                                                               Option 2

Figure 19: The two options if v′ were to be the last element in a chain

comparable to v′. Now add back the element t to the poset. (The poset should again

have linear discrepancy 3). By the dual of Lemma 12, the irreducible poset must end

with a 1 + 4, and thus we have two cases described by Figure 19. In both cases the

given labeling will produce a linear extension where the maximum distance between

any 2 incomparable elements is less than 3, a contradiction.

To summarize, what remains is the case where in one chain there is an element

above v2k+1 that is greater than v2k−1. In the other chain there is an element v′ above

v2k−1 and an element above v′ which we will denote v′′ (notice that v′′ cannot be t).

Also we have that v′ is incomparable to v2k+1.

If v′′ is incomparable to v2k+1, v′ and v′′ must be labeled 2k + 2 and 2k + 3 re-

spectively, otherwise v′′ will have a label bigger than 2k + 3, causing P − t to have

linear discrepancy greater than 2. This will complete the induction as v2k+3 and the

2 elements below it will be incomparable to v2k+1.

Thus, suppose v′′ is comparable to, and therefore greater than, v2k+1 in the poset

as seen in Figure 20. Now the original poset P should have linear discrepancy 3.

Consider the subposet given by v2k and v2k−1 and those elements above them. This
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poset has linear discrepancy 2. Take a linear extension of this poset, and it must

begin in one of the following four ways.

(i.)(v2k, v2k+1, v2k−1, v
′, . . .)

(ii.)(v2k, v2k−1, v
′, v2k+1, . . .)

(iii.)(v2k, v2k−1, v2k+1, . . .)

(iv.)(v2k−1, v2k, v2k+1, . . .)

v’

v’’

v2k+1

v2k v2k!1

Figure 20: Supposing v′′ were comparable to v2k+1

Note that the labeling in case (i.) can be altered to that of case (iii.) without

increasing the maximum distance between any two incomparable elements. Addi-

tionally, case (ii.) and case (iii.) can be altered to case iv again without increasing

the maximum distance between two incomparable elements. In case (iv.), we can

append our labeling to that which we produced inductively, giving us a labeling of

the 3-discrepancy-irreducible poset with the maximum distance between any 2 in-

comparable elements less than 3, a contradiction.

As a result of this theorem, we can make an observation about 3-discrepancy-

irreducible posets that are not 2 + 3.

Theorem 18 nearly completely characterizes 3-discrepancy-irreducible posets of

width 2 that are not 2 + 3. In the following observation, we use the labeling of

Theorem 18 to refer to the elements of these posets and fill in the remaining compa-

rabilities.
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Observation 19. Labeling the points of a 3-discrepancy-irreducible poset as in The-

orem 18, we have two properties. First, we must have an even number of elements in

these posets. Second, any pair of elements whose labels differ by more than 3 must be

comparable (the larger labeled element being over the smaller one).

One notices that we have nearly completely characterized 3-discrepancy-irreducible

posets of width 2 that are not 2 + 3 by Theorem 18 and Observation 19. The only

remaining observation we must make is how consecutive even labeled elements relate

(except element labeled 2 who is always under element labeled 4). As we already have

a forced unique linear extension that witnesses linear discrepancy 2 (with t removed),

it is clear that the relation between consecutive even elements does not affect the

linear discrepancy. Thus consecutive evens (other than 2) can be comparable (the

higher labeled even element over the lower one) or incomparable.

Observation 20. The 3-discrepancy-irreducible posets that are characterized by The-

orem 18 and Observation 19 are exactly the members infinite family I2
3.

We leave Observation 20 to the reader thus concluding the proof of Theorem 11,

though we make one note. The subset of these 3-discrepancy-irreducible posets whose

consecutive even labeled elements are all comparable is the set {M2n : n ≥ 3} as

described in §2.1. Also, we have provided the four 3-discrepancy-irreducible posets

on 10 points with the forced labeling in Figure 21 to help see the observation.

2.3 Conclusion

As stated in the introduction the full characterization of 3-discrepancy-irreducible

posets has been proven in [12]. The characterization states that with four excep-

tions all of the 3-discrepancy-irreducible posets of width three arise from removing

particular comparabilities from posets in I2
3 or 2 + 3. These exceptions are given in

Figure 23.
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Figure 21: The four 3-discrepancy-irreducible posets on 10 points with the forced
labeling excluding t

Figure 22: 2 examples of 4-discrepancy-irreducible posets
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Figure 23: List of Exceptional 3-discrepancy-irreducible posets of width 3

The central idea of the proof involves reducing a 3-discrepancy-irreducible poset

of width three to a 3-discrepancy-irreducible poset of width two by adding particular

relations. The proof shows that unless the poset is one of the four notable exceptions

on width three one can always add a relation among antichains of size 3 and keep

the discrepancy fixed. Thus, it is enough to show which comparabilities among the

members of I2
3 can be removed to complete the characterization.

Originally it was conjectured that the list of 3-discrepancy-irreducible posets was

a small and finite list, surprisingly this turns out not to be the case although the

posets that generate this list are easily described. Furthermore, it may be possible

to determine similar results for higher linear discrepancy fixing the width at 2. At

first glance, however, it seems that the problem with characterizing higher linear

discrepancy valued posets would lead to a more difficult inductive proof. The posets in

Figure 22 are 4-discrepancy-irreducible (we leave this to the reader to prove), however

we point out that the induced starting structure differs. In one of the examples, there

is an initial induced 1 + 6, while the other begins with an induced 2 + 4, and in

some sense these structures are what is forcing the linear discrepancy of the poset

higher. For higher linear discrepancies, Lemma 12 would need to be in some sense

strengthened as the starting points would not necessarily have to be in such a binding

structure.
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CHAPTER III

t-DISCREPANCY

3.1 Introduction

The motivation for t-discrepancy was to find the fairest order of seeing patients in a

hospital. Clearly, it is more important to see a patient who has been involved in a car

accident over a patient that has a sinus infection; however, it is unclear if a patient

who has back pain or one who has shoulder pain should be seen first. As an added

factor there is a particular number of doctors t that staff a triage. Thus, the goal is

to find an ordering that keeps patients that are incomparable together. Additionally,

t people can be seen at the same time. An optimal order in which incomparable

patients would be seen as close together as possible would be answering the question

about finding a linear extension that witnesses a poset’s t-discrepancy.

This chapter surveys a variety of results for this property. It begins with giving

some elementary results such as the t-discrepancy of an antichain and properties that

you can assume when searching for an optimal labeling. Following this there is a

proof that t-discrepancy is not a comparability invariant. This means that there exist

posets that share a comparability graph but have different t-discrepancy values. This

is rather surprising as linear discrepancy and weak discrepancy have this property;

however, t-discrepancy as a hybrid of the two does not.

The final sections survey three more ideas. First, some common poset’s t-discrepancies

are determined, including the disjoint sum of chains and the standard example posets.

Then, a proof is given that determining t-discrepancy is NP-Complete for poset’s in

general. Finally, the t-discrepancy of semiorders is determined to take a polynomial
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amount of time to find. In fact, knowing the width of a semiorder forces the t-

discrepancy to be at most one of two values. The algorithm given in the final section

computes the t-discrepancy of a semiorder in O(n4 log n) complexity, where n is the

size of the poset.

3.2 Elementary Results

It is often convenient to have a (k, t)-labeling of poset P that satisfies one or both of

the following properties.

(a) The minimum value of f is a specified integer m.

(b) There is no integer gap in the range of f .

We say that a (k, t)-labeling of P is gap-free if it satisfies property (b) and prove

in Lemma 21 that every (k, t)-labeling of P can be transformed into a gap-free (k, t)-

labeling of P with any specified minimum value.

Lemma 21. Let m be any integer. If poset P = (V,≺) has a (k, t)-labeling then it

has a gap-free (k, t)-labeling with minimum value m.

Proof. Suppose f is a (k, t)-labeling of P . Adding a constant to every function value

yields another (k, t)-labeling of P . Thus we may assume the minimum value of a

(k, t)-labeling is m. Let M be the maximum value attained, and suppose there exists

a gap in the labeling, that is, an integer i with m < i < M so that f(v) 6= i for all

v ∈ V . Define a new function g : V → Z with g(v) = f(v) for all v with f(v) < i and

g(v) = f(v)− 1 for all v with f(v) > i.

Then |g(x) − g(y)| ≤ |f(x) − f(y)| for any pair of points x, y ∈ V and it is easy

to check that g is also (k, t)-labeling of P . Repeat this process if necessary until no

gaps remain.

Any gap-free (k, t)-labeling of a poset P = (V,≺) with minimum value m = 1 has

maximum value M ≤ |V |, and thus we have the following remark.
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Remark 22. For any poset P = (V,≺) and any integer t ≥ 1 we have dt(P ) ≤ |V |−1.

We collect several additional elementary results which we will need later. The

next remark follows because any (k, t)-labeling of a poset induces a (k, t)-labeling on

any subposet.

Remark 23. If P is an induced subposet of Q, then dt(P ) ≤ dt(Q).

Lemma 24. If A is an antichain, then dt(A) =
⌈
|A|
t

⌉
− 1.

Proof. The labeling function in which t points get label 1, t points get label 2, and

so on is t-optimal. The largest label used is
⌈
|A|
t

⌉
, the smallest is 1, and thus dt(A) =⌈

|A|
t

⌉
− 1.

3.3 Comparability Invariance

The comparability graph of a poset P = (V,≺) is the graph G = (V, E) where xy ∈ E

if and only if x and y are comparable in P . A parameter π defined for posets is

said to be a comparability invariant if for all posets P and Q, we have π(P ) = π(Q)

whenever the comparability graphs of P and Q are isomorphic. Some well-known

poset parameters, such as dimension, are known to be comparability invariants (see

[25]). Weak discrepancy is shown to be a comparability invariant in [8] and linear

discrepancy is shown to be a comparability invariant in [23]. The latter also follows

from the main result in [6] that all posets P satisfy

ld(P ) = bandwidth(G) (1)

where G is the incomparability graph of P , that is, the complement of the compara-

bility graph of P .

Surprisingly, for all integers t > 1, t-discrepancy is not a comparability invariant

even though we think of t-discrepancy as lying between linear and weak discrepancy.

This is proven below in Theorem 25.
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Figure 24: Two posets with the same comparability graph but with different t-
discrepancy.

Theorem 25. For any integer t > 1 there exist posets P and Q that have the same

comparability graph, but for which dt(P ) 6= dt(Q). Thus t-discrepancy is not a com-

parability invariant.

Proof. Fix an integer t > 1 and consider the posets P and Q shown in Figure 24. It

is easy to check that P and Q have the same set of comparabilities; thus they have

the same comparability graph. We next show dt(Q) = 1 and dt(P ) = 2.

Since Q has an antichain of size t + 1, Remark 23 and Lemma 24 imply that

dt(Q) ≥ 1. The function f defined by f(xi) = 1 for 1 ≤ i ≤ t, f(y) = f(w) = 2,

f(z) = 3 is a (1, t)-labeling for Q, thus dt(Q) ≤ 1. Together these imply that

dt(Q) = 1.

Next we show dt(P ) > 1. Suppose, for a contradiction, that dt(P ) ≤ 1 and let f

be a (1, t)-labeling for P . Without loss of generality, we may assume f(y) = 0, and

since w ‖ y we have f(w) ≤ 1 by (ii) of Definition 5.

If there exist 1 ≤ i, j ≤ t with f(xi) < f(xj), then since y ≺ xi and xj ≺ z,

using Definition 5 we have f(xi) ≥ 1, f(xj) ≥ 2 and f(z) ≥ 3. However, w ‖ z

and |f(z) − f(w)| ≥ f(z) − f(w) ≥ 3 − 1 = 2 which contradicts (ii) of Definition 5.

Otherwise, f(xi) = c for all 1 ≤ i ≤ t, where c ≥ 1 because y ≺ xi. Since y ≺

xi ≺ z and f(y) = 0, we know f(z) ≥ 2 by (i) of Definition 5. If f(w) ≤ 0, then

|f(z) − f(w)| ≥ f(z) − f(w) ≥ 2 − 0 = 2 violating (ii) of Definition 5. If f(w) = 1,

30



1 1 2

3 3 4

• • •

• • •���������

oooooooooooooo

?????????

���������

OOOOOOOOOOOOOO

?????????

1 1 2 2

3 3 4 4

• • • •

• • • •���������

oooooooooooooo

jjjjjjjjjjjjjjjjjjj

?????????

���������

oooooooooooooo

OOOOOOOOOOOOOO

?????????

���������

TTTTTTTTTTTTTTTTTTT

OOOOOOOOOOOOOO

?????????

Figure 25: The posets S3 and S4 together with 2-optimal labelings of them.

then c ≥ 2 and f(z) ≥ 3, so |f(z)− f(w)| ≥ f(z)− f(w) ≥ 3− 1 = 2 again violating

(ii) of Definition 5. Thus dt(P ) > 1. Indeed, the function f defined by f(y) = 0,

f(xi) = 1 for 1 ≤ i ≤ t, f(w) = 2, and f(z) = 3 is a (2, t)-labeling function; thus

dt(P ) = 2.

As a consequence of Theorem 25, we know there is no result analogous to equa-

tion (1) that relates the t-discrepancy of a poset to a parameter of its incomparability

graph.

3.4 Special Classes of Posets

In this section we find dt(P ) for two special classes of posets, the standard examples

of posets of dimension n and the disjoint sum of chains.

Let n ≥ 3 be an integer. The poset Sn = (X,≺) is called the standard example of

a poset of dimension n. It has as its ground set X = {a1, a2, . . . , an}∪{b1, b2, . . . , bn},

and the only comparabilities are ai ≺ bj for i 6= j. Figure 25 shows the posets S3

and S4 together with 2-optimal labelings of them. According to Theorem 26, we have

d2(S3) = 2 and d2(S4) = 2.

Theorem 26. Let Sn be the standard example of a poset of dimension n and let t be

an integer t ≥ 2, then dt(Sn) = dn/te.

Proof. Let Sn have ground set {a1, a2, . . . an, b1, b2, . . . bn} where the ai are minimal,

the bi are maximal, ai ‖ bi for each i and ai ≺ bj for each i 6= j. Write n = qt + a

where q is an integer and 0 < a ≤ t. Thus we seek to show dt(Sn) = q + 1.
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First we construct a (q + 1, t)-labeling f of Sn, showing dt(Sn) ≤ q + 1. Label

the minimal elements using the labels 1, 2, 3, . . . , q + 1. There will be sufficient labels

since n ≤ (q + 1)t. Let f(bi) = f(ai) + q + 1. This function f is a (q + 1, t)-labeling

of Sn, thus dt(Sn) ≤ q + 1 = dn/te.

For the reverse inequality, let f be a t-optimal labeling of Sn. By Lemma 24.

the antichain A of minimal elements has dt(A) = dn/te − 1 = q. If dt(Af ) ≥ q + 1

then dt(Sn) ≥ q + 1 and we are done. So instead we may assume dt(Af ) = q.

The antichain A of minimal elements requires at least q + 1 labels and they must

be consecutive to achieve dt(Af ) = q, so without loss of generality we may assume

f(a1) = 1 and f(an) = q + 1. Since an ≺ b1 we must have f(b1) ≥ q + 2 and then

|f(b1)−f(a1)| ≥ q+1. Since f was assumed to be t-optimal, we know dt(Sn) ≥ q+1.

Next we consider the t-discrepancy of the disjoint sum of chains. Figure 26 illus-

trates three examples. In each, we think of the points as fitting on a rectangular grid

where the height (i.e., y-coordinate) of a point is the value of the label assigned to

it. The width of the grid is t since each label can occur at most t times. The grid

must be tall enough to accommodate both the biggest chain in the poset and also

the total number of points in the poset. Whichever of these factors is more limiting

determines the part of the formula for dt(P ) in Theorem 27 that applies.

Theorem 27. Let P = r1 + r2 + · · ·+ rp where r1 ≥ r2 ≥ · · · ≥ rp, and let t ≥ 2 be

an integer. Furthermore, let s = r1 + r2 + · · ·+ rp, let s′ = r2 + · · ·+ rp, let q = d s
t
e,

let q′ =
⌈

s′

t−1

⌉
and let M = max{r2, q

′}. Then

dt(P ) =


q − 1, if q > r1

d(r1 + M)/2e − 1, if q ≤ r1.
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Figure 26: Optimal labeling functions for posets P1, P2, P3 when t = 3. In each, the
height of a point is the value of its label.

Before presenting the proof of Theorem 27, we illustrate the upper bound by

giving a (k, t)-labeling for three examples.

Example 28. For all three posets in this example, we use t = 3, and thus the grids

of points each have three columns.

For poset P1 = 4 + 4 + 3 + 3 + 3 we have s = 17, s′ = 13, q = 6, q′ = 7,

and M = 7, which falls in case 1 in the proof of Theorem 27. Here the height of the

grid is determined by q = 6 > 4 = r1. The labels assigned to r1 are 1, 2, 3, 4; to r2

are 5, 6, 1, 2; to r3 are 3, 4, 5; to r4 are 6, 1, 2; and to r5 are 3, 4, 5 as illustrated in

Figure 26. Thus dt(P1) ≤ 5.

For poset P2 = 5 + 4 + 2 + 2 we have s = 13, s′ = 8, q = 5, q′ = 4, and

M = 4, which falls in case 2a in the proof of Theorem 27. The height of the grid is

determined by r1 = 5 ≥ 5 = q. The labels assigned to r1 are 1, 2, 3, 4, 5; to r2 are

1, 2, 3, 4; to r3 are 5, 1; to r4 are 2, 3 as illustrated in Figure 26. Thus dt(P2) ≤ 4.

For poset P3 = 5 + 2 + 2 + 2 we have s = 11, s′ = 6, q = 4, q′ = 3, and

M = 3, which falls in case 2b in the proof of Theorem 27. The height of the grid is

determined by r1 = 5 ≥ 4 = q. The labels assigned to r1 are 1, 2, 3, 4, 5; to r2 are

2, 3; to r3 are 4, 2; to r4 are 3, 4 as illustrated in Figure 26. Thus dt(P3) ≤ 3.

Proof of Theorem 27. We consider two cases depending on whether the range of
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labels needed for P will be determined by the size of the largest chain or by the total

number of points in P .

Case 1: q > r1.

First we show the upper bound dt(P ) ≤ q − 1. Form a sequence of qt labels

consisting of the sequence 1, 2, 3, . . . , q repeated t times. Assign the first r1 numbers

in the sequence to be labels for the points in r1, the next r2 numbers in the sequence

to be labels for the points in r2, etc. In assigning labels to the points in ri, follow

rule (i) of Definition 5. This is illustrated in the labeling of poset P1 in Figure 26 as

detailed in Example 28. By the definition of q = ds/te, there are sufficient labels. In

this case, ri ≤ r1 < q for each i, and each chain ri is assigned ri distinct labels, so the

labeling is valid. The largest possible difference in label is q − 1, so dt(P ) ≤ q − 1.

Next we show the lower bound dt(P ) ≥ q − 1. For a contradiction, assume

dt(P ) ≤ q − 2 and using Lemma 21, let f be a gap-free, t-optimal labeling of P with

minimum value m = 1. If f(x) ≤ q − 1 for all points x in P , then there are at most

q− 1 labels, each appearing at most t times, for a total of at most (q− 1)t < s labels

available. Thus there are not enough labels for all the points in P . Hence there must

be a point of P with label at least q. For each label ` ≥ q that appears, we can only

have one point labeled ` − (q − 1), because two such points would be incomparable

to each other and thus one of them would be incomparable to the point labeled `,

contradicting dt(P ) ≤ q−2. So for each point with label q or bigger we lose t−1 ≥ 1

potential labels for points. Thus there will not be sufficient labels to label the s points

of P , a contradiction.

Case 2: q ≤ r1.

We begin by showing that

M ≤ r1. (2)

Since M = max{r2, q
′} and we already know r2 ≤ r1, it suffices to show q′ ≤ r1.

We know r1 ≥ q = ds/te ≥ s/t and thus r1t ≥ s = s′ + r1. Subtracting r1 from both
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sides yields r1(t − 1) ≥ s′ or equivalently r1 ≥ s′/(t − 1). Since r1 is an integer we

have, r1 ≥ ds′/(t− 1)e = q′ as desired.

Next we establish the upper bound dt(P ) ≤ d(r1 + M)/2e− 1. We give a labeling

of P as follows. Label the chain r1 using labels 1, 2, 3, . . . , r1. For the s′ elements in

the other chains, make t− 1 copies of the sequence

d(r1 + M)/2e −M + 1, d(r1 + M)/2e −M + 2, . . . , d(r1 + M)/2e

for a total of M(t−1) labels. Since s′ ≤ q′(t−1) ≤ M(t−1) we have sufficient labels.

As before, assign the first r2 elements of this sequence to the chain r2, the next r3

elements to be the labels for r3, etc. This is illustrated in the labeling of posets P2 and

P3 of Figure 26 as detailed in Example 28. For P2 we have M = r2 = 4 and for P3 we

have M = q′ = 3. Since ri ≤ r2 for each i ≥ 2, each sequence ri is assigned ri distinct

labels, so the labeling is valid. Any two elements of r2 + r3 + · · ·+ rp have labels that

differ by at most M − 1, and using equation (2) we have M − 1 ≤ d(r1 + M)/2e − 1.

The largest difference in label between a point in r1 and a point in r2 + r3 + · · ·+ rp

will occur between the highest label in one and the lowest in the other, thus will be

either d(r1 +M)/2e−1 or r1− (d(r1 + M)/2e −M + 1) ≤ r1− (r1 +M)/2+M −1 ≤

d(r1 + M)/2e − 1. Hence dt(P ) ≤ d(r1 + M)/2e − 1 as desired.

For the lower bound dt(P ) ≥ d(r1+M)/2e−1, we consider two subcases depending

on whether M = r2 or M = q′.

Subcase 2a: q′ ≤ r2 = M . We first use a theorem from [23] which gives a formula

for the weak discrepancy for sums of disjoint chains.

Theorem 29. If P = r1 + r2 + · · ·+ rp is the disjoint sum of p chains and r1 ≥ r2 ≥

· · · ≥ rp then wd(P ) =
⌈

r1+r2

2

⌉
− 1.

Using Theorem 29 and Remark 7 that says the t-discrepancy is bounded by weak

discrepancy we conclude
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dt(P ) ≥ wd(P ) = d(r1 + r2)/2e − 1 = d(r1 + M)/2e − 1.

Subcase 2b: r2 < q′ = M .

We have already shown the upper bound dt(P ) ≤ d(r1 + M)/2e − 1. Combining

this with equation (2) yields

dt(P ) ≤ r1 − 1. (3)

Let the points of the chain r1 be b1 ≺ b2 ≺ · · · ≺ br1 . Let f be an t-optimal

labeling of P with f(b1) = 1 and h = f(br1) as small as possible.

Claim: h = r1.

We know h ≥ r1 to accommodate the r1 points of the chain, so for a contradiction,

assume h ≥ r1 + 1. Since every point in P ′ is incomparable to both b1 and br1 , by

equation (3), the labels 1 and h can not appear on points in P ′. We will apply

the following algorithm to point x with label f(x) = c. Initially, let x = br1 , thus

f(x) = c = h. Lower x’s label by 1, that is, set f(x) := c − 1. Since we wish

the resulting labeling to be t-optimal, three potential problems could arise, (i) a

comparability problem – there is a point w with w ≺ x and f(w) = c − 1, (ii)

an overcrowding problem – there are already t points with label c − 1, and (iii) an

incomparability problem – there is a point z with x ‖ z and f(z) − c = dt(P ). We

will show below that (iii) never occurs. In case (i), there can only be one such w

since P is the sum of chains, and we then apply the algorithm to w. Since w’s

label will be lowered by 1, this also resolves any overcrowding problem at label c− 1

which may arise simultaneously. If there is no comparability problem, but there is an

overcrowding problem, we find another point y in P ′ with f(y) = c− 1 and apply the

algorithm to y. Note that such a y will exist since t ≥ 2. When no problems occur,

the algorithm terminates.
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Next we describe how the algorithm progresses and show it will terminate with

all labels between 1 and h − 1. The algorithm will stop at or before reaching a

point with label 1, since we’ve already shown that there is exactly one point (b1)

with label 1 in P . By our assumption that f(b1) = 1 and f(br1) = h ≥ r1 + 1,

we know the labels of points in r1 are not consecutive and hence there are one or

more gaps. The algorithm starts at br1 and continues considering points down r1

resolving comparability problems (i) until the first gap in labels is reached. If there

is no overcrowding problem, the algorithm terminates. If there is an overcrowding

problem, then from this point on, the algorithm is only applied to points in P ′, each

of which has label at least 2. Either the algorithm stops before reaching a point in

P ′ with label 2 or if one is reached, its label can be lowered to 1 without causing any

problems since b1 is the only point with label 1 and no points have label 0.

Finally, we show that an incomparability problem never occurs. It can not occur

when considering x in r1 since such an x has f(x) ≥ 2 and has the same incompa-

rabilities as b1 with f(b1) = 1. Likewise, it will not occur when considering x in P ′.

Any x ∈ P ′ is incomparable to br1 , and so f(br1)−f(x) = h−f(x) ≤ dt(P ). Initially,

br1 is the only point in P with label h, and after the first pass of the algorithm, all

points in P have labels at most h − 1. Thus for any point z with x ‖ z we have

f(z) − f(x) ≤ h − 1 − f(x) ≤ dt(P ) − 1 and so an incomparability problem never

occurs for x ∈ P ′.

When the algorithm terminates, none of the potential problems (i), (ii), (iii) occur

and thus the resulting labeling is still t-optimal. However, we have contradicted the

minimality of h. This justifies our claim that h = r1.

Now we know there exists a t-optimal labeling of P in which the points in the

chain r1 are labeled 1, 2, 3, . . . , r1. Let m2 be the largest label that appears in P ′

and m1 be the minimum such label. We know 1 ≤ m1 and m2 ≤ r1 by equation (3).

We also know q′ − 1 ≤ m2 −m1 in order to have enough labels to accommodate the
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points in P ′. Thus dt(P ) = max{r1 −m1, m2 − 1}. If these two quantities differ by

2 or more, we could add one to each label in P ′ (if the first is larger) or subtract one

from each label in P ′ (if the second is larger) to get a smaller value of dt(P ). Thus

|(r1 −m1)− (m2 − 1)| ≤ 1 and

dt(P ) = max{r1 −m1, m2 − 1} =

⌈
(r1 −m1) + (m2 − 1)

2

⌉
≥

⌈
r1 + q′ − 2

2

⌉
and so dt(P ) ≥

⌈
r1+q′

2

⌉
− 1 as desired.

3.5 Computing dt(P ) is NP-Complete

In this section we show that the problem of deciding whether a poset P = (V,≺) has

a (k, t)-labeling is NP-complete. We accomplish this by constructing its t-duplicated

poset P ′ = (V ′,≺′) as follows. Let V ′ consist of t points v1, v2, . . . , vt for each v ∈ V .

For each x, y ∈ V and each i, j ∈ {1, 2, . . . , t} we have xi ≺′ yj if and only if x ≺ y in

P . Thus each point of P is replaced by an antichain of t points in P ′. We call this

antichain the cluster corresponding to the point v ∈ V . Figure 27 shows a poset P

and its 3-duplicated poset P ′.

Suppose g is a (k, t)-labeling function for the t-duplicated poset poset P ′. If Cv is

the cluster of points in P ′ corresponding to v ∈ V we define min(Cv) = min{g(vi) :

vi ∈ Cv} and max(Cv) = max{g(vi) : vi ∈ Cv}. A cluster Cv is uniform if max(Cv) =

min(Cv).

The next remark follows because two points in a cluster together have the same

comparabilities and incomparabilities.

Remark 30. Let g be a (k, t)-labeling of the t-duplicated poset P ′ in which points vi

and vj are in the same cluster. If there are fewer than t points with label g(vj) then

setting the value of g(vi) to equal that of g(vj) also results in a (k, t)-labeling of P ′.

Theorem 31. Let P = (V,≺) be a poset and t, k be positive integers. The decision

problem dt(P ) ≤ k is NP-complete.
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Figure 27: A poset P and its 3-duplicated poset P ′.

Proof. Construct the t-duplicated poset P ′ from P . We will show that dt(P
′) = ld(P ).

The result in Theorem 31 then follows since the decision problem ld(P ) ≤ k is NP-

complete [6] and constructing P ′ from P can be accomplished in polynomial time.

Recall from Definition 6 from chapter 1 that dt(Pf ) measures the maximum dif-

ference in function values between pairs of incomparable points for the (k, t)-labeling

f . In the case t = 1, t-discrepancy is linear discrepancy and we denote d1(Pf ) by

ld(Pf ).

First we show dt(P
′) ≤ ld(P ). Let k = ld(P ) and take an optimal 1-labeling of

P . We obtain a (k, t)-labeling g of P ′ by setting g(xi) = f(x) for each x ∈ V and

i = 1, 2, . . . , t.

Next we show the reverse inequality ld(P ) ≤ dt(P
′). If there exists a (k, t)- labeling

g of P ′ in which all clusters are uniform, we immediately obtain a 1-labeling f of P ,

namely f(v) = g(v1) for each v ∈ V , with dt(P
′
g) = ld(Pf ). When g is t-optimal, we

have ld(P ) ≤ ld(Pf ) = dt(P
′
g) = dt(P

′) as desired.

Otherwise, let j be the maximum so that P ′ has an t-optimal labeling g in which

the points labeled i are in a cluster together for i = 1, 2, 3, . . . , j− 1. By our assump-

tion, j ≤ |V |. We will show that we can swap some labels to arrive at a (k, t)-labeling

g′ of P ′ so that points labeled i are in a cluster together for i = 1, 2, 3, . . . , j, contra-

dicting the maximality of j.

By Remark 30, we can make the clusters containing the points with labels less

than j into uniform clusters and still have a t-optimal labeling. Since all points with
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labels less than j are in uniform clusters, these clusters include all such points. Thus

any point with label j is in a cluster with other points whose labels are at least j. If, in

fact, the points labeled j are now all in a cluster together, we violate the maximality

of j. Thus we may assume there are at least two clusters containing points with label

j. Among all such clusters choose one Cv for which max(Cv) is largest and another,

Cw for which max(Cw) is smallest. If there are r points in Cv with label j then at

most t − r points in Cw have label j, and thus at least r points in Cw have a label

greater than j. For each point in Cv with label j, switch its label with that of a

point in Cw whose label is greater than j. Note that this new labeling of P ′ is still

t-optimal since all points in a cluster have the same set of incomparabilities. Yet the

new labeling has one fewer cluster containing a point with label j. Continue this

process until all the points labeled j are in the same cluster. The resulting labeling

function is t-optimal, contradicting the maximality of j.

3.6 Semiorders

There are several equivalent definitions of a semiorder. One involves forbidden posets:

P is a semiorder if and only if it does not contain a 2 + 2 or a 3 + 1 as a subposet.

Alternatively, semiorders are also known as unit interval orders: P = (V,≺) is a

semiorder if we can assign a unit interval I(v) in the real line to each v ∈ V so that

x ≺ y in P precisely when I(x) is completely to the left of I(y). Such unit interval

representations can always be found so that the interval endpoints are distinct (see,

for example, [9]). In what follows, we will always choose interval representations with

distinct endpoints.

Since Theorem 31 shows that computing dt(P ) is NP-complete in general, we seek

special classes of posets for which dt(P ) can be computed in polynomial time. A

natural class to consider are the semiorders since both the linear discrepancy and the
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weak discrepancy can be computed efficiently for semiorders (see Tanenbaum, Trenk

and Fishburn [23]).

Theorem 32. ([23]) Let P be a semiorder, Then

(a) ld(P ) = width(P )− 1 and

(b) wd(P ) ≤ 1.

In particular, wd(P ) = 1 if P contains a 2 + 1 and wd(P ) = 0 otherwise.

The following result gives bounds on the t-discrepancy of a semiorder P = (V,≺).

The upper and lower bounds differ by less than two, so Theorem 33 restricts the value

of dt(P ) to at most two integers. Note that if t = 1, then dt(P ) = ld(P ) and indeed

Theorem 33 reduces to Theorem 32(a). Similarly, if t ≥ |V |, then dt(P ) = wd(P ) and

in this case Theorem 33 reduces to Theorem 32(b).

Theorem 33. If P = (V,≺) is a semiorder and t is a positive integer, then⌈
width(P )

t
− 1

⌉
≤ dt(P ) ≤

⌊
width(P )

t
+ 1− 2

t

⌋
.

Proof. First we establish the lower bound. Let A be an antichain in P of size

width(P ), thus |A| = width(P ). Using Remark 23 and Lemma 24 we have dt(P ) ≥

dt(A) =
⌈
|A|
t

⌉
− 1 =

⌈
|width(P )|

t

⌉
− 1 =

⌈
|width(P )|

t
− 1

⌉
.

Next we establish the upper bound. If P is a chain then width(P ) = 1 and

dt(P ) = 0 so the result holds. Otherwise, P has at least one pair of incomparable

elements. We label the elements of V according to the following greedy algorithm.

Greedy Algorithm for Labeling Semiorders:

Fix a unit interval representation of P in which endpoints are distinct. Consider

the elements of V = {x1, x2, . . . , xn} indexed by their left endpoint (and therefore

also by their right endpoint) in this representation. Initialize: Let f(x1) = 0.

Iterate for i = 1, 2, . . . , n − 1: Assume that x1, x2, . . . , xi have been labeled and let

j = f(xi). If there are fewer than t elements labeled j and xi+1 is incomparable to

all of them, then let f(xi+1) = j. Otherwise, let f(xi+1) = j + 1.
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Example 34 shows the greedy algorithm applied to the representation of the

semiorder given in Figure 28.

Note that by construction, the function f satisfies (i) and (iii) of Definition 5. Let

k be the largest value for which there exists x, y ∈ V with x ‖ y and |f(x)−f(y)| = k.

Then by construction, the function f is a (k, t)-labeling of P and hence dt(P ) ≤ k.

Choose integers r, s with 1 ≤ r < s ≤ n so that xr ‖ xs and f(xs) − f(xr) = k.

Thus the intervals assigned to xr and xs intersect in an interval we call I. Since

our representation of P is a unit interval representation with points indexed by left

endpoints, the intervals assigned to xr, xr+1, . . . , xs all intersect the interval I and

thus the points xr, xr+1, . . . xs form an antichain A.

By the definition of f , we know there are t points in A that received the label

f(xr) + i for i = 1, 2, . . . , k − 1 and two additional points, xr and xs in A. Thus

width(P ) ≥ |A| ≥ t(k− 1) + 2 ≥ t(dt(P )− 1) + 2. Isolating the term dt(P ) yields the

inequality dt(P ) ≤ width(P )
t

+ 1− 2
t
, and because dt(P ) is an integer, we may take the

floor of the right hand side to achieve the desired inequality.

Example 34. Let t = 2 and consider the semiorder P and its representation from

Figure 28. The semiorder P has width(P ) = 6 and Theorem 33 gives the inequalities

2 ≤ d2(P ) ≤ 3. The greedy algorithm assigns the labeling f(x1) = 0, f(x2) = 0,

f(x3) = 1, f(x4) = 1, f(x5) = 2, f(x6) = 2, f(x7) = 3. This is a (3, 2)-labeling of

P , so d2(P ) ≤ 3. The value k = 3 is attained uniquely at x = xr = x2, y = xs = x7

and the antichain formed is A = {x2, x3, x4, x5, x6, x7} with |A| = 6. We will see in

Section 3.6 that d2(P ) = 2.

We next develop a polynomial-time algorithm for finding the t-discrepancy of a

semiorder. Given any poset P = (V,≺), a linear extension L = (x1 ≺ x2 ≺ · · · ≺ xn)

of P and an integer-valued function f defined on V , we get a sequence of integers

s(L, f) : f(x1), f(x2), · · · , f(xn). If the sequence s(L, f) is non-decreasing, we say f

is nondecreasing on L. If not, we say s(L, f) first fails at position r if there exists
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x1 x2 x3 x4 x5

x6 x7

I(x1)

I(x2)

I(x3)

I(x4)

I(x5)

I(x6)

I(x7)

Figure 28: A semiorder P and a representation of it as a unit interval order.

s > r so that f(xr) > f(xs) but whenever i < r, we have i < j implies f(xi) ≤ f(xj).

For example, the sequence 1, 1, 2, 3, 3, 4, 5, 2 first fails at position 4 with f(x4) = 3 >

2 = f(x8).

In Example 34 with L = (x1 ≺ x2 ≺ · · · ≺ x7), the sequence s(L, f) is 0, 0, 1, 1, 2, 2, 3

which is non-decreasing. More generally, any sequence s(L, f) arising from the greedy

algorithm for labeling semiorders will be non-decreasing by construction. However,

as we saw in Example 34, a labeling arising from the greedy algorithm is not always

optimal. The next lemma shows that for any semiorder P and the linear extension

L given by the left endpoint ordering of any unit interval representation of P , there

exists an optimal labeling function f for which s(L, f) is non-decreasing. This lemma

is crucial in proving the correctness of our algorithm for computing the t-discrepancy

of a semiorder.

Lemma 35. Let P = (V,≺) be a semiorder and fix a unit interval representation of

P with distinct endpoints. Let L be the linear extension of P given by the left endpoint

ordering of this representation. Then there exists a labeling f of P that is t-optimal

and is non-decreasing on L.

Proof. Let n = |V | and I(v) be the unit interval assigned to v in the representation.

Let L be the linear extension x1 ≺L x2 ≺L · · · ≺L xn of P given by the left endpoint
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ordering in this representation. We wish to show a t-optimal labeling function f of

P exists that is non-decreasing on L. For a contradiction, assume no such t-optimal

labeling exists and let f be a t-optimal labeling that first fails at position r where r

is maximum. By assumption, r ≤ n− 1. To reach a contradiction, we will construct

a labeling function g of P that is t-optimal and first fails at position ` > r.

Let f(xr) = b, let a = min{f(xi) : i ≥ r + 1}, and let xs be any point with

f(xs) = a and s ≥ r + 1. Since s(L, f) first fails at position r, we know f(xs) = a <

b = f(xr). Create a new labeling function g by swapping the labels of xr and xs, that

is, g(xi) = f(xi) for i 6∈ {r, s} and g(xr) = a and g(xs) = b. We next show that g is

a t-optimal labeling function of P .

First note that g satisfies condition (iii) of Definition 5 because f is a (k, t)-labeling

for P and g simply swaps two of these labels. Similarly, for any points xi, xj 6∈ {xr, xs},

we know that (i) and (ii) are satisfied for g because they are satisfied for f . Thus we

need only show that conditions (i) and (ii) are satisfied when one or both of xi, xj are

in the set {xr, xs}.

Since f(xr) > f(xs), by condition (i) of Definition 5 we know that xr 6≺ xs. In

addition, xs 6≺ xr because xr ≺L xs and L is a linear extension of P . Thus

xr ‖ xs and |g(xr)− g(xs)| = |f(xs)− f(xr)| ≤ k. (4)

It remains to consider a point xi ∈ V −{xr, xs} and to check that the pairs xi, xr and

xi, xs satisfy (i) and (ii) of Definition 5 for the function g.

First consider xi with xi ≺ xr. By the definition of L, the left endpoint of

I(xr) comes before the left endpoint of I(xs), so xi ≺ xr implies xi ≺ xs. Since f is

a (k, t)-labeling for P , we know g(xi) = f(xi) < f(xs) = g(xr) and g(xi) = f(xi) <

f(xr) = g(xs) as desired.

Next consider xi with xr ≺ xi. In this case, b = f(xr) < f(xi) = g(xi) and

thus g(xr) = a < b < g(xi) so the pair xi, xr satisfies condition (i) of Definition 5 for

g. We next consider the pair xs, xi. If xs ≺ xi then g(xs) = b < g(xi) as desired. If
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xi ≺ xs then transitivity yields xr ≺ xs, contradicting xr ‖ xs from (4). Otherwise,

xs ‖ xi and since f satisfies (ii) of Definition 5 we have |f(xi) − a| ≤ k. Now

|g(xi) − g(xs)| = |f(xi) − b| ≤ |f(xi) − a| ≤ k where the inequality follows because

a < b < f(xi).

Finally, consider xi with xr ‖ xi. If xs ≺ xi we show a contradiction arises.

Given that r < s and our representation is unit, we know the right endpoint of I(xr)

is smaller than the right endpoint of I(xs). Then xs ≺ xi would imply xr ≺ xi, a

contradiction. If xs ‖ xi then |g(xr)−g(xi)| = |f(xs)−f(xi)| ≤ k and |g(xs)−g(xi)| =

|f(xr) − f(xi)| ≤ k because f is a (k, t)-labeling of P . Lastly consider xi ≺ xs. In

this instance, f(xi) < f(xs) = a < b so g(xi) = f(xi) < b = g(xs) and g satisfies (i)

for the pair xi, xs. For the pair xi, xr we show |g(xi)− g(xr)| ≤ k. Since this is a unit

representation and xi ≺ xs, xi ‖ xr and xr ‖ xs, we know the left endpoint of I(xi)

comes before the left endpoint of I(xr), thus i < r. By our assumption that f first

fails at position r, f(xi) ≤ f(xs) = a. Now |g(xi)−g(xr)| = |f(xi)−a| < |f(xi)−b| =

|f(xi)− f(xr)| ≤ k with the inequality following from f(xi) ≤ a < b.

We next present an algorithm that determines whether a semiorder has a (k, t)-

labeling and in the affirmative case, constructs such a labeling. This algorithm is a

modification of the algorithm for determining whether a poset has weak discrepancy

at most k in [24]. As we will see in Corollary 40, this can be used to calculate dt(P ).

We discuss correctness and complexity afterwards.

Algorithm (k, t)-Labeling for Semiorders

Input: An ordered set P = (V,≺), integers k ≥ 0 and t ≥ 1.

Output: A (k, t)-labeling function f : V → Z of P , or the statement that no such

labeling exists.

The algorithm:
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Step 1: Construct a unit interval representation of P with distinct endpoints in

which xi ∈ V is assigned the unit interval I(xi). This can be accomplished in linear

time (see [7]).

Consider the elements of V = {x1, x2, . . . , xn} indexed by their left endpoint in

the representation.

Step 2: [Initialization Step] Let f(x1) = 0 and let U = {2, 3, . . . , n}.

Form a {0, 1}-matrix M whose rows and columns are indexed by U . Initialize:

Mij =

 1 if i = j,

0 otherwise.

Step 3: [Assign Initial Ranges] Assign the range for x1 as R(x1) = [`(x1), u(x1)] =

[0, 0] and the range R(xi) = [`(xi), u(xi)] for each i ∈ U as follows:

• If x1 ≺ xi set R(xi) = [1, n− 1].

• If x1 ‖ xi set R(xi) = [0, k].

Since we indexed the elements of V by left endpoints in the unit interval repre-

sentation of P , we can not have xi ≺ x1.

Step 4: [Narrowing the Ranges]

Narrowing Steps (NS): Pick two distinct indices 2 ≤ i < j ≤ n with Mij = 0.

Thus either xi ≺ xj or xi ‖ xj.

(a) If xi ≺ xj and `(xj) ≤ `(xi), increase `(xj) to `(xi) + 1.

(b) If xi ≺ xj and u(xi) ≥ u(xj), decrease u(xi) to u(xj)− 1.

(c) If xi ‖ xj and u(xj) ≥ u(xi) + k + 1, decrease u(xj) to u(xi) + k.

(d) If xi ‖ xj and u(xi) ≥ u(xj) + k + 1, decrease u(xi) to u(xj) + k.

(e) If xi ‖ xj and `(xj) ≤ `(xi)− k − 1, increase `(xj) to `(xi)− k.
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(f) If xi ‖ xj and `(xi) ≤ `(xj)− k − 1, increase `(xi) to `(xj)− k.

If `(xi) > u(xi) or `(xj) > u(xj), STOP. There is no (k, t)-labeling of P .

If R(xi) was narrowed in this pass of the narrowing steps, set Mir = Mri = 0 for

all r other than i and j. Likewise, if R(xj) was narrowed in this pass of the narrowing

steps, set Mjr = Mrj = 0 for all r other than i and j.

In any event, set Mij = Mji = 1.

If all entries of M are 1’s, continue to Step 5. Otherwise, begin Step 4 again.

Step 5: [Sweeping steps]

(a) Left to right sweep: For i = 1 to n− t,

• if `(xi+t) ≤ `(xi), increase `(xi+t) to `(xi) + 1.

• If `(xi+t) > u(xi+t), STOP. There is no (k, t)-labeling of P .

(b) Right to left sweep: For i = n down to t + 1,

• if u(xi−t) ≥ u(xi), decrease u(xi−t) to u(xi)− 1.

• If u(xi−t) < `(xi−t), STOP. There is no (k, t)-labeling of P .

If no values were changed in Step 5, then continue to Step 6. Otherwise, begin

Step 4 again.

Step 6: Set f(xi) = `(x) for i = 2, 3, 4, . . . , n− 1.

(End of Algorithm (k, t)-Labeling for Semiorders)

Illustration of Algorithm (k, t)-Labeling for Semiorders

In Table 1 we illustrate how the ranges change when Algorithm (k, t)-Labeling for

semiorders is applied to the semiorder P shown in Figure 28 in the instance of t = 2

and k = 2. In this example, at the end, each range set consists of a single integer,

and we obtain the (2, 2)-labeling function f(x1) = 0, f(x2) = 1, f(x3) = 1, f(x4) = 2,
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i 1 2 3 4 5 6 7
Step 3 [0,0] [0,2] [0,2] [0,2] [0,2] [1,6] [1,6]
Step 4(c) x2 ‖ x6 [0,0] [0,2] [0,2] [0,2] [0,2] [1,4] [1,6]
Step 4(c) x2 ‖ x7 [0,0] [0,2] [0,2] [0,2] [0,2] [1,4] [1,4]
Step 5a [0,0] [0,2] [1,2] [1,2] [2,2] [2,4] [3,4]
Step 5b [0,0] [0,1] [1,1] [1,2] [2,2] [2,4] [3,4]
Step 4(c) x2 ‖ x6 [0,0] [0,1] [1,1] [1,2] [2,2] [2,3] [3,4]
Step 4(c) x2 ‖ x7 [0,0] [0,1] [1,1] [1,2] [2,2] [2,3] [3,3]
Step 4(f) x2 ‖ x7 [0,0] [1,1] [1,1] [1,2] [2,2] [2,3] [3,3]
Step 5(a) [0,0] [1,1] [1,1] [2,2] [2,2] [3,3] [3,3]

Table 1: The ranges R(xi) when k = 2, t = 2, n = 7, and the algorithm applied to
the semiorder P shown in Figure 28.

f(x5) = 2, f(x6) = 3, f(x7) = 3. Thus dt(P ) ≤ 2. We observe that this function is

an improvement over the one constructed using the greedy algorithm in Example 34.

Next we consider this same semiorder P , the same unit interval representation,

and continue to consider t = 2 but change the value of k.

When k = 1 the initial range values assigned in Step 3 are [0, 0] for x1, [0, 1] for

x2, x3, x4, x5 and [1, 6] for x6, x7. In Step 4, comparing x2 with x6 and x7 results in

narrowing R(x6) and R(x7) to [1, 2] and these are the only changes that occur. In the

left to right sweep of Step 5, we get `(x5) = 2 and u(x5) = 1, and the algorithm stops

with the conclusion that d2(P ) > 1. Combining this with dt(P ) ≤ 2 from above, we

conclude dt(P ) = 2.

When k = 3 the initial range values assigned in Step 3 are [0, 0] for x1, [0, 3] for

x2, x3, x4, x5 and [1, 6] for x6, x7. No changes occur as a result of applying Step 4. After

both sweeping passes are made in Step 5, the ranges are R(x1) = [0, 0], R(x2) = [0, 2],

R(x3) = [1, 2], R(x4) = [1, 3], R(x5) = [2, 3], R(x6) = [2, 6], R(x7) = [3, 6]. No further

modifications occur in the range sets, and thus the resulting labeling is indeed a

(3, 2)-labeling of P , but is not 2-optimal. Indeed, it is the same labeling found by the

greedy algorithm in Example 34.

Correctness and Complexity of Algorithm (k, t)-Labeling for Semiorders
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We establish the correctness of Algorithm (k, t)-labeling for semiorders using

Lemma 35 and two propositions. After this we consider the complexity of the al-

gorithm.

Proposition 36. If Algorithm (k, t)-labeling for semiorders terminates with all ranges

non-empty, then dt(P ) ≤ k and picking the smallest element in each range set is a

valid (k, t)-labeling.

Proof. Suppose that R(v) = [`(v), u(v)] is the range assigned to point v when the

algorithm terminates. Let f(v) = `(v) for each v ∈ V . It suffices to show that f is

a valid (k, t)-labeling for P . We consider any pair of distinct points xi, xj in P and

show that conditions (i), (ii) and (iii) of Definition 5 are satisfied. Without loss of

generality, we may assume i < j and thus either xi ≺ xj or xi ‖ xj. If xi ≺ xj then

by Step 4(a) of the algorithm, `(xj) ≥ `(xi)+1 thus f(xi) < f(xj) as required by (i).

If xi ‖ xj then by Steps 4(e) and 4(f) of the algorithm, `(xi)− k ≤ `(xj) ≤ `(xi) + k

thus |f(xi) − f(xj)| ≤ k as required by (ii). As a result of the left to right sweep in

Step 5, if `(xi) = r then `(xi+t) ≥ r + 1, thus at most t points can receive the label

f(x) = `(x) = r for each r, establishing (iii).

Proposition 37. If P is a semiorder with dt(P ) ≤ k then Algorithm (k, t)-labeling

for semiorders terminates with each range set non-empty.

Proof. In Step 1 of the algorithm, a unit interval representation of P is constructed

in which all endpoints of intervals are distinct. As in the algorithm, we consider the

points of V = {x1, x2, . . . , xn} indexed by their left endpoint in this representation.

Let L be the linear extension x1 ≺L x2 ≺L · · · ≺L xn of P . By Lemma 35, there

exists a labeling function f that is t-optimal and non-decreasing on L. Thus f is a

(k, t)-labeling of P and f(xi) ≤ f(xj) whenever i < j.
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As in the proof of Lemma 21(a), we may add a constant to each function value

so that f(x1) = 0 and the resulting function is still non-decreasing on L. Similarly,

following the proof of Lemma 21, we may assume that f(xi) ≤ n − 1 for each i.

Therefore, the initial ranges assigned in Step 3 of the algorithm satisfy f(xi) ∈ R(xi)

for i = 2, 3, 4, . . . , n.

Indeed, we will see that as we continue through the algorithm, we maintain the

invariant:

(∗) f(xi) ∈ R(xi), or equivalently, `(xi) ≤ f(xi) ≤ u(xi) for i = 2, 3, . . . , n.

In Step 4 of the algorithm, we apply (i) of Definition 5 (in Steps 4(a) and 4(b))

or (ii) of Definition 5 (in Steps 4(c) – 4(f)) to the pair (xi, xj). For example, if

(∗) holds true at the start of Step 4(a), and if xi ≺ xj then f(xi) < f(xj) hence

`(xi) ≤ f(xi) < f(xj). Since f is an integer-valued function we know f(xj) ≥ `(xi)+1

and we can narrow the range of possible values for f(xj) to [`(xi) + 1, u(xj)]. Thus

(∗) holds true at the end of Step 4(a). Similarly, we maintain the invariant (∗) when

the other parts of Step 4 are applied.

The sweeping steps (step 5) of the algorithm proceed by applying Lemma 35 and

(iii) of Definition 5. Since f is non-decreasing on L and there are at most t occurrences

of the function value f(xi), we know f(xi+t) > f(xi) ≥ `(xi) so we can increase `(xi+t)

to `(xi) + 1.

Thus the algorithm maintains the invariant (∗). Since the function f exists, each

range R(xi) must contain the value f(xi) and thus be non-empty when the algorithm

terminates.

Theorem 38. Algorithm (k, t)-labeling for semiorders correctly determines whether

a semiorder P has dt(P ) ≤ k and in the affirmative case, it produces a (k, t)-labeling

for P .

Proof. There are two ways in which the algorithm can terminate: either in Step 4
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when a range is narrowed to the empty set, or in Step 6 when all ranges stabilize,

are non-empty and can not be narrowed further. In the former case, we conclude

dt(P ) > k by the contrapositive of Proposition 37. In the latter case, Proposition 36

implies that dt(P ) ≤ k and picking the smallest element in each range set is a valid

(k, t)-labeling for P .

Theorem 39. With input P = (V,≺), and n = |V |, Algorithm (k, t)-labeling for

semiorders runs in time O(n4).

Proof. Step 1 can be accomplished in time O(n) as shown by Gardi in [7]. Clearly

Step 2 runs in time O(n2) and Steps 5 and 6 in time O(n), so we focus on Step 4.

The initial ranges have length at most n − 2, where the length of range R(xi) is

defined as u(xi) − `(xi). When a range is narrowed, its length decreases by at least

1, hence each range is narrowed at most n − 1 times. Thus at most n2 narrowings

occur during Step 4 over the course of the whole algorithm.

Furthermore, after all
(

n−1
2

)
< n2 pairs of points are considered, either a narrowing

occurs or the matrix M fills with 1’s and the algorithm proceeds to Step 5. Thus the

total amount of time spent in Step 4 is O(n4).

Finally, Algorithm (k, t)-labeling for semiorders can be applied repeatedly with

different values of k to determine dt(P ).

Corollary 40. Given P = (V,≺) with n = |V |, we can determine dt(P ) in time

O(n4 log n).

Proof. Use Algorithm (k, t)-labeling for semiorders to determine if dt(P ) ≤ k for

k = 0, 1, 2, . . . and stop as soon as a value of k is found for which an affirmative

answer is reached. That value of k is dt(P ). By Remark 22 we know dt(P ) ≤ n− 1,

so we would need to run the algorithm a maximum of n−1 times giving a total running

time of O(n5). The running time can be shortened to O(n4 log n) if we instead use a

binary search to choose the appropriate values of k.
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3.7 Conclusion and Future Work

Determining a poset’s t-discrepancy for fixed t, as explained in a previous section, is

particularly difficult. One can argue that it is even more difficult to determine than

linear discrepancy as no such polynomial time algorithm exists for even approximating

its value. It is known that for any linear extension, the distance between any two

incomparable elements in the extension is at most three times the linear discrepancy

[19]. Thus, this provides a factor three approximation. In regards to t-discrepancy,

no such factor exists because a gap-free labeling will not necessarily be within any

fixed constant factor.

As another interesting question to explore with regards to t-discrepancy property

is it’s complexity when restricted to the class of interval orders. The reduction used

in Theorem 31 fails to work for interval orders as determining the linear discrepancy

for an interval order can be found in polynomial time using the Kleitman-Vohra

algorithm. This algorithm can be found in [18]. My colleagues and I tried to alter

this algorithm to give a polynomial algorithm for determining the t-discrepancy for

an interval order; however, we were unsuccessful and thus, this problem is still open.
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CHAPTER IV

TOTAL LINEAR DISCREPANCY

4.1 Introduction

This chapter discusses the results of paper [13]. Also, these results were independently

proven by Brightwell and Patel in [1]. In particular, the results look at the notion

of total linear discrepancy of a poset. The definition of total linear discrepancy is

given in Chapter 1 Definition 8. The central idea of total linear discrepancy takes a

more utilitarian view of “fairness” in a poset. Instead of minimizing the maximum

distance between any two incomparable elements, total linear discrepancy is a measure

of minimizing average distance between incomparable elements. In general, the linear

extensions that witness total linear discrepancy and linear discrepancy can be very

different as the following example illustrates.

Let P be the poset r + r where the elements of the first chain are denoted

a1, a2, . . . ar and the second chain denoted b1, b2, . . . , br. In [23], ld(P) is shown to be

r + d r
2
e and a linear extension that witnesses it is a1, a2, . . . , ad r

2
e, b1, b2, . . . br, ad r

2
e+1,

ad r
2
e+2, . . . , ar. Denote this extension as L1. In [22] the linear extension, L2, that

witnesses the total linear discrepancy of P is given by a1, b1, a2, b2, . . . ar, br. Note

that the ldL2(P) = 2r − 1 and is worst possible in terms of linear discrepancy. A

simple calculation shows that the average distance between incomparable elements in

L1 is about 3
4
r whereas the average distance between incomparable elements in L2 is

about 2
3
r.

The main result of this chapter shows that the total linear discrepancy can be

computed in polynomial time and is witnessed by ordering elements by an easily

computed property which we call net height that will be defined in the next section.
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We also give a closed formula for the exact value of the total linear discrepancy for

a few special classes of posets. In particular, we give formulas for the total linear

discrepancy of an antichain and the class of standard examples.

4.2 Total Linear Discrepancy

Intuitively, when trying to find an optimal linear extension that minimizes total linear

discrepancy a point with large downset should appear higher in an optimal linear

extension and one with large upset should appear lower. This motivates the following

definitions which play a key role in characterizing optimal linear extensions.

Definition 41. Let P = (X,≺) be a poset. The net height of x ∈ X, written ĥ(x),

is |D(x)| − |U(x)|.

Definition 42. A linear extension L of poset P is height ordered if L(x) < L(y)

whenever ĥ(x) < ĥ(y).

Figure 29 shows the net height ĥ(x) listed next to each point x of the poset F .

Observe that two points with equal net heights are incomparable and that comparable

pairs of points have net heights that differ by at least two. We record this in the

following remark.

Remark 43. If x ≺ y in P then ĥ(x) + 2 ≤ ĥ(y).

Proof. Given that x ≺ y, transitivity implies that D(x) ⊂ D(y) and U(y) ⊂ U(x).

Indeed, |D(x)| + 1 ≤ |D(y)| and |U(y)| + 1 ≤ |U(x)| because x ∈ D(x)\D(y) and

y ∈ U(x)\U(y). The result follows from the definition of net height.

The next lemma calculates the effect on total linear discrepancy of swapping two

consecutive points in a linear extension. We have seen an example of this lemma in

the linear extensions L and L′ of the fish poset F . In that instance (with x = b and

y = c) we have tL′(F ) = 9 = 6 + 0− (−3) = tL(F ) + ĥ(c)− ĥ(b).
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Figure 29: Poset F labeled with net heights.

Lemma 44. Let L be a linear extension of poset P and let x, y be incomparable

elements in P with L(y) = L(x) + 1. If L′ is the linear extension of P formed by

swapping x and y, then

tL′(P ) = tL(P ) + ĥ(y)− ĥ(x).

Proof. Define ∆ to be tL′(P )− tL(P ). For incomparable pairs u, v with u, v 6∈ {x, y},

the terms |L(u)−L(v)| and |L′(u)−L′(v)| are identical. Similarly, they are identical

for the incomparable pair x, y. Thus in computing ∆ we need only consider the

contribution arising from incomparable pairs in which one point is in the set {x, y}

and the other point t is not. Furthermore, if t is incomparable to both x and y then

the sum |L(t)−L(x)|+ |L(t)−L(y)| is equal to the sum |L′(t)−L′(y)|+ |L′(t)−L′(x)|.

Thus we need only consider the pairs in which t is incomparable to one of x, y and

comparable to the other. There are four such cases to consider in computing ∆.

(i) w : L(w) < L(x), w ‖ x, and w ≺ y.

(ii) z : L(z) > L(y), x ≺ z, and z ‖ y.

(iii) w′ : L(w′) < L(x), w′ ≺ x, and w′ ‖ y.

(iv) z′ : L(z′) > L(y), z′ ‖ x, and y ≺ z′

Each point w in (i) and z in (ii) contributes +1 to ∆, and each point w′ in (ii) and z′

in (iv) contributes −1 to ∆. The number of points w in (i) is |D(y)| − |D(x)∩D(y)|

since each w with L(w) < L(x) will have either w ≺ x or w ‖ x. Similarly, the
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number of points z in (ii) is |U(x)| − |U(x)∩U(y)|, the number of points w′ in (iii) is

|D(x)| − |D(x) ∩D(y)| and the number of points z′ in (iv) is |U(y)| − |U(x) ∩ U(y)|.

Thus ∆ = |D(y)|+ |U(x)| − |D(x)| − |U(y)| = ĥ(y)− ĥ(x) as desired.

We are now ready to characterize the linear extensions of P that are optimal with

respect to total linear discrepancy.

Theorem 45. A linear extension L is optimal with respect to total linear discrepancy

if and only if L is height ordered.

Proof. First we prove the forward direction. Assume, for a contradiction, that L is

an optimal linear extension of P but that it is not height ordered. Let x, y be a

pair of points so that L(x) < L(y) and ĥ(x) > ĥ(y) and for which L(y) − L(x) is

as small as possible. Suppose there exists a point z with L(x) < L(z) < L(y). If

ĥ(x) > ĥ(z), then the pair x, z violates the minimality of L(y)−L(x), and otherwise,

ĥ(z) ≥ ĥ(x) > ĥ(y), in which case the pair z, y violates this minimality condition.

Thus no such z exists and in fact L(y)− L(x) = 1.

Because ĥ(x) > ĥ(y), Remark 43 implies that x 6≺ y. Furthermore, since L is

a linear extension of P and L(x) < L(y), we know y 6≺ x. Thus x ‖ y. Swap x

and y to obtain another linear extension L′ of P . By Lemma 44 we have, tP (L′) =

tP (L) + ĥ(y)− ĥ(x) < tP (L). This contradicts the optimality of L.

Next we prove the converse. Let L̂ be a linear extension of P that is height

ordered and let L be a linear extension of P that is optimal with respect to total

linear discrepancy. By the first half of this proof, L is also height ordered. Therefore,

L̂ and L differ only in the order of points with the same net height and we can

transform L̂ to L by a sequence of swaps of consecutive points with equal net height.

By the contrapositive of Remark 43, each such swap involves an incomparable pair

x, y with ĥ(x) = ĥ(y). By Lemma 44, each swap leaves the total linear discrepancy

unchanged thus tL̂(P ) = tL(P ) and L̂ is also an optimal linear extension.
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Example 46. It follows from Theorem 45 that the poset F in Figure 29 has exactly

two optimal linear extensions, where points c and d may appear in either order:

a ≺ b ≺ {c, d} ≺ f ≺ e.

In general, Theorem 45 allows us to find an optimal linear extension efficiently

and from there to calculate the total linear discrepancy. It also allows us to calculate

the number of optimal linear extensions. We record these as corollaries.

Corollary 47. Let P be a poset and a1, a2, . . . , ar be the set of distinct net heights that

occur among points of P . If bi is the number of points of P that have net height equal

to ai, then the number of linear extensions of P that are optimal is b1! b2! · · · br!.

Corollary 48. A linear extension of a poset P that is optimal with respect to total

linear discrepancy can be constructed in polynomial time.

4.3 Special Classes of Posets

In this section, we consider applying our results to several special classes of posets –

antichains, the standard examples Sn of posets of dimension n, and the sum of chains.

While Theorem 45 allows us to determine precisely which linear extensions of a

poset are optimal, it does not provide a closed form expression for the value of the

total linear discrepancy. We do have formulas for the total linear discrepancy in two

special cases.

Lemma 49. If An is an antichain on n points then tl(An) =
(

n+1
3

)
.

Proof. We proceed by induction. For A2 the result is clearly true. We assume

tl(Ak−1) =
(

k
3

)
and show tl(Ak) =

(
k+1
3

)
. Any linear extension L : x1 ≺ x2 ≺ · · · ≺ xk

of Ak will be optimal, so we need only calculate tL(Ak) =
∑

1≤i<j≤k |L(xi) − L(xj)|.

Separating out the terms involving xk yields

tL(Ak) = (1 + 2 + 3 + · · ·+ k − 1) + tl(Ak−1) =

(
k

2

)
+

(
k

3

)
=

(
k + 1

3

)
.
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Proposition 50. If Sn is the standard example poset on n points then

tl(Sn) = 2
(

n+1
3

)
+ n2.

Proof. Each minimal element xi has net height ĥ(xi) = −(n− 1) and each maximal

element yi has net height ĥ(yi) = (n − 1). By Theorem 45, any linear extension

in which all the x’s appear below all of the y’s is optimal, so we will use the linear

extension L : x1 ≺ x2 · · · ≺ xn ≺ y1 ≺ y2 · · · ≺ yn. The minimal points form an

antichain as do the maximal points. For each incomparable pair of the form xi ‖ yi,

we have |L(xi)− L(yi)| = n. Thus, using Lemma 49, we have

tl(Sn) = tL(Sn) = 2 tl(An) + n2 = 2

(
n + 1

3

)
+ n2.

4.4 Conclusion and Future Work

Determining an ordering that witnesses the linear discrepancy of a poset is very

difficult as it is in the class of NP-Complete Problems. Additionally, finding an

ordering that witnesses a posets weak discrepancy, though easy to compute, will give

a non-injective ordering. The benefits to total discrepancy is that it provides a fair

injective ordering and can be computed in polynomial time (in fact the algorithm

runs faster than the algorithm that determines an optimal weak discrepancy labeling

[8]).

Perhaps the biggest question that comes from these results is whether there is a

relationship between total linear discrepancy and any of the other forms of discrep-

ancy. In particular, can ordering by total linear discrepancy give a bound on the

linear discrepancy of a poset. Currently, the best known approximation bound for

linear discrepancy guarantees only three times that of the optimal value [20]. This

is a basic bound because any linear extension witnesses this factor. This is the best

known bound in general. Can one prove that a linear extension that is height ordered

achieves a better approximation?
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CHAPTER V

WHEN WEAK DISCREPANCY EQUALS LINEAR

DISCREPANCY

5.1 Introduction

As mentioned in chapter 2, the notion of linear and weak discrepancy were introduced

in [6, 23]. These papers proved different results on these properties; in particular, they

gave a polynomial time algorithm for determining weak discrepancy and it gave a

reduction that showed determining linear discrepancy was an NP-Complete problem.

At the end of [23], a series of eight questions/problems was posed. The first question

gave the problem of characterizing posets of linear discrepancy 2. This was answered

over two papers [11, 12] and the first half of the proof is presented in chapter 2. The

second problem posed was to determine those posets whose linear discrepancy is equal

to its weak discrepancy. This chapter focuses on giving an answer to this question.

We first show that in general this problem is NP-Complete and we provide a

reduction. This is unsurprising as there exist posets P with disjoint subposets P1,P2

such that wd(P1) = wd(P) and ld(P2) = ld(P). Additionally, it is possible to

construct examples where ld(P1) = wd(P1). Thus, the subposet P1 determines

wd(P); however, ld(P) is determined independently of P1. A simple construction is

to take any poset whose linear discrepancy is equal to its weak discrepancy and then

attach a large antichain where every point in the antichain is less than any other

point not in the antichain.

Though this at first glance closes the door on this idea, it is still possible to charac-

terize the tight examples. In other words, which posets have linear discrepancy equal

to weak discrepancy and the removal of any point drops the weak discrepancy? Choi
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and West in [4] characterized the minimal posets whose weak discrepancy is k (the

removal of any point lowers the posets weak discrepancy value). Among these posets

we show specifically those posets that have equivalent linear and weak discrepancy

values.

The last result of the section shows that these minimal posets are in fact interval

orders and we provide a more natural description of this class of tight examples.

5.2 Preliminaries

At this point it is worth noting that calculating the linear discrepancy of a poset is

NP-complete via a reduction to the bandwidth of its co-comparability graph [6, 23]

while the weak discrepancy can be calculated in polynomial time [24, 8]. Thus it is

natural to hope that the answer to the question of Tanenbaum, et al. is in the form

of a polynomial time algorithm, however, the following reduction indicates that this

is unlikely to be the case. That is, there is not a polynomial time algorithm unless

P = NP.

A key component of the reduction is the following lemma from [23].

Lemma 51. If P can be partitioned into two sets U and V such that for all u ∈ U and

v ∈ V , u < v, then ld(P ) = max {ld(U) , ld(V )} and wd(P ) = max {wd(U) , wd(V )}.

Theorem 52. Determining whether ld(P ) = wd(P ) is NP-complete.

Proof. Since determining the linear discrepancy is in NP and determining the weak

discrepancy is polynomial, determining whether they are equal is clearly in NP. Thus

it suffices to show that there is an NP-complete problem that can be reduced in

polynomial time to determining whether the linear and weak discrepancy are equal.

The natural candidate for this is determining the linear discrepancy of a poset P .

If ld(P ) = wd(P ) the linear discrepancy may be determined by finding the weak

discrepancy of P , therefore we may assume that wd(P ) < ld(P ).
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Now for all j, let Pj be the poset consisting of a chain of length 2j and a single

isolated point and observe that ld(Pj) = wd(Pj) = j. Let X be the ground set of P

and let Yj be the ground set of Pj. For each j from 1 to |X|, define the poset P ′
j on the

ground set X∪Yj by letting P ′
j be equal to P on X, equal to Pj on Yj and letting y < x

for every y ∈ Yj and x ∈ X. Now by Lemma 51, ld
(
P ′

j

)
= max {ld(P ) , ld(Pj)} and

wd
(
P ′

j

)
= max {wd(P ) , wd(Pj)}. Thus for 1 ≤ j < ld(P ), we have wd

(
P ′

j

)
6= ld

(
P ′

j

)
and for j ≥ ld(P ), we have wd

(
P ′

j

)
= ld

(
P ′

j

)
. Thus ld(P ) is the first j such that

ld
(
P ′

j

)
= wd

(
P ′

j

)
. Hence if calculating whether linear and weak discrepancy are equal

were polynomial, then determining the linear discrepancy of P would be as well, and

thus determining whether linear and weak discrepancy are equal is NP-complete.

Thus, rather than attempting to explicitly characterize all posets for which linear

and weak discrepancy are the same, we follow the work in [3, 11, 12] and determine

essential characteristics of posets with equal linear and weak discrepancy. To that

end, we recall that a poset P is d-linear-discrepancy-irreducible if ld(P ) = d and

for any x ∈ P we have ld(P − {x}) < d. We define d-weak-discrepancy-irreducible

analogously. Additionally, we say a poset P is (s, t)-discrepancy irreducible (or sim-

ply (s, t)-irreducible) if ld(P ) = s and wd(P ) = t and for any point x ∈ P either

ld(P − {x}) < s or wd(P − {x}) < t. If s = t then we may replace, without loss

of generality, the second condition with for any x ∈ P , wd(P − {x}) < t. That

is, if a poset is (d, d)-irreducible then it is also d-weak-discrepancy-irreducible. Fur-

ther, we note that if a poset P is such that ld(P ) = s and wd(P ) = t then there are

induced subposets of P , denoted Ps, Pt and P(s,t), such that Ps is s-linear-discrepancy-

irreducible, Pt is t-weak-discrepancy-irreducible, and P(s,t) is (s, t)-irreducible. With

these definitions in hand we review some preliminary work on weak discrepancy.
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5.3 Weak Discrepancy Preliminaries

In a poset P a forcing cycle is a sequence of elements C = c1, c2, . . . , ck such that

for all i either ci < ci+1 or ci ‖ ci+1 and (without loss of generality) c1 ‖ ck. Given

a forcing cycle C, define up(C) as |{i | ci < ci+1, 1 ≤ i ≤ k − 1}| and side(C) as 1 +

|{i | ci ‖ ci+1, 1 ≤ i ≤ k − 1}|. That is, up(C) is the number of up steps along the

cycle and side(C) is the number of incomparable steps when viewing C cyclically

since c1 ‖ ck. Using this notation, Gimbel and Trenk, prove the following theorem [8].

Theorem 53. Let P be a poset and C be the set of forcing cycles on P , then wd(P ) =

maxC∈C

⌈
up(C)

side(C)

⌉
. Furthermore, if C = c1, c2, . . . , ck is a maximal forcing cycle and

f is a fractional labelling of P where f(c1) = 0 and f(ci+1) = f(ci) + 1 if ci < ci+1

and f(ci+1) = f(ci) − up(C)

side(C)
if ci ‖ ci+1. Then dfe is an optimal weak discrepancy

labelling.

In fact, Gimbel and Trenk prove the stronger result that the f provided is in fact

optimal over all fractional weak order preserving maps, yielding a fractional weak

discrepancy of maxC∈C
up(C)

side(C)
.

In addition to Theorem 53 which provides combinatorial certification for wd(P ) ≤

k, the following theorem, which is implicit in the work of Choi and West [4], will be

key in characterizing the (d, d)-irreducible posets.

Theorem 54. A poset P on n points is d-weak-discrepancy irreducible if and only if

every forcing cycle C that is maximal with respect to
up(C)

side(C)
has size t side steps and

(d− 1)t + 1 up steps and n = t + (d− 1)t + 1.

5.4 (d, d)-irreducible Posets

Let Wd be the collection of d-weak-discrepancy-irreducible posets where there exists

a maximal forcing cycle with all the up steps consecutive, in particular, there exists

a forcing cycle C = a1, a2, . . . , a(d−1)t+2, b1, b2, . . . , bt−1 using all the elements where
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ai < aj if i < j, bj ‖ bj+1 for 1 ≤ j ≤ t − 2, a(d−1)t+2 ‖ b1, a1 ‖ bt−1. We claim that

Wd is the set of all (d, d)-irreducible posets. First we show that all elements of Wd

are (d, d)-irreducible. Since the elements of Wd are d-weak-discrepancy-irreducible by

construction, it suffices to show that they all have linear discrepancy d.

Lemma 55. If W ∈ Wd, then ld(W ) = d.

Proof. Let W ∈ Wd have td + 1 points and let C = a0 < c1
1 < c2

1 < · · · < cd−1
1 < c1

2 <

· · · < cd−1
2 < · · · < c1

t < · · · < cd−1
t < at ‖ at−1 ‖ at−2 ‖ · · · ‖ a1 be the optimal forcing

cycle. Now since W is d-weak-discrepancy irreducible, let f be the function witnessing

the optimal fractional weak discrepancy of (d− 1) + 1
t

as provided in Theorem 53. In

particular, f(ai) =
(
d− 1 + 1

t

)
i and f(cj

i ) = (i − 1)(d − 1) + j. Define the function

g : W −→ {0, . . . , dt} by g(ai) = di and g(cj
i ) = (i− 1)d + j. We claim g is an order

preserving map of W witnessing linear discrepancy at most d. First we observe that

by construction if g(x) = g(y), then x = y. Now if f(ai) < f(cj
ı̂ ), then⌈

f(ai)

d− 1

⌉
≤

⌈
f(cj

ı̂ )

d− 1

⌉
⌈

(d− 1 + 1
t
)i

d− 1

⌉
≤

⌈
(̂ı− 1)(d− 1) + j

d− 1

⌉
⌈
i +

i

t(d− 1)

⌉
≤

⌈
ı̂− 1

j

d− 1

⌉
i + 1 ≤ ı̂.

Thus i < ı̂ so g(ai) < g(cj
ı̂ ). Similarly, if f(cj

ı̂ ) < f(ai), then

f(cj
ı̂ )

d− 1
<

f(ai)

d− 1

ı̂− 1 +
j

d− 1
< i +

i

t(d− 1)

ı̂− 1 +
tj − i

t(d− 1)
< i.

But then, since tj ≥ i, we have ı̂ − 1 < i and hence g(cj
ı̂ ) < g(ai). Thus since f is a

weak extension and for any x, y ∈ W if f(x) < f(y), then g(x) < g(y), then g is a
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weak order preserving map of W . But, since g is one-to-one, this implies that g is an

order preserving map of W .

Now suppose x‖ y and |g(x)− g(y)| > d. If x, y ∈ {a0, a1, . . . , at}, then |g(x)− g(y)| >

d implies that the indices of x and y differ by at least two and hence |f(x)− f(y)| ≥

2
(
d− 1 + 1

t

)
and so x and y are comparable since f is witnesses fractional weak dis-

crepancy at most d − 1 + 1
t
. Thus precisely one of {x, y} is a point of the form cj

i ,

and the other is a point of the form ak with 1 ≤ k ≤ t − 1. We will show that if∣∣g(cj
i )− g(ak)

∣∣ > d, then cj
i and ak are comparable. In particular, we wish to show

that if g(cj
i )− g(ak) > d, then cj

i > ak, and if g(ak)− g(cj
i ) > d, then ak > cj

i . Since

the cj
i form a chain, it suffices to consider the minimal cj

i such that g(cj
i )− g(ak) > d

and the maximal cj
i such that g(ak)− g(cj

i ) > d. We note that

∣∣g(ak)− g(cj
i )

∣∣ = |dk − (i− 1)d− j|

= |d(k − i + 1)− j|

≤ d |k − i + 1|+ j

≤ d |k − i + 1|+ (d− 1).

Thus, if g(cj
i ) − g(ak) > d, then i ≥ k + 2, and if g(ak) − g(cj

i ) > d, then i ≤ k.

However, for i = k we have

∣∣g(ak)− g(cj
i )

∣∣ = |d− j| < d.

Thus we need only consider i < k. Since g(c1
k+2)− g(ak) = d + 1 = g(ak)− g(cd−1

k−1) it

suffices to only consider c1
k+2 and cd−1

k−1. Now observe that c1
k+2 exists only if k ≤ t−2,

we have

f(c1
k+2)− f(ak) = (k + 1)(d− 1) + 1− (d− 1)k +

k

t

= (d− 1) +
t− k

t

> (d− 1) +
1

t
.
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Thus ak < c1
k+2 since f witnesses fractional weak discrepancy at most d − 1 + 1

t
.

Similarly, cd−1
k−1 exists only if k ≥ 2 and then

f(ak)− f(cd−1
k−1) = (d− 1)k +

k

t
− (k − 2)(d− 1)− (d− 1)

= (d− 1) +
k

t

> (d− 1) +
1

t
.

Thus cd−1
k−1 < ak and hence g is an order preserving map of W that witnesses linear dis-

crepancy at most d. But then since d = wd(W ) ≤ ld(W ) ≤ d, the linear discrepancy

of W is exactly d.

The following theorem shows that not only are all elements of Wd (d, d)-irreducible,

every (d, d)-irreducible poset is a member of Wd.

Theorem 56. Let P be a poset with ld(P ) = d. Then wd(P ) = d if and only if there

exists a subposet W of P such that W ∈ Wd.

Proof. First suppose there is some subposet W of P such that W ∈ Wd. Then since

d = ld(P ) ≥ wd(P ) ≥ wd(W ) = d, we have wd(P ) = d.

Suppose then that ld(P ) = wd(P ) = d. Then it is clear that there is some

subposet W ′ of P such that W ′ is (d, d)-irreducible. Now since the removal of any

point from W ′ decreases either the weak discrepancy or the linear discrepancy and

wd(P ) ≤ ld(P ) for all P , we know that W ′ is d-weak-discrepancy irreducible. Thus

it suffices to show that the maximal forcing cycle has all the up steps consecutive.

Since W ′ is d-weak-discrepancy irreducible, |W ′| = dt + 1 for some t, and there is

a maximal forcing cycle C using dt+1 points. This forcing cycle naturally partitions

the elements of W ′ into chains C1, C2, . . . , Ct by using the side steps as break points in

the chain. For all chains Ci, let ai be the minimal element and let bi be the maximal

element (note that it is not necessarily the case that ai 6= bi). We say that a side move
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(b, a) ∈ {(bi, ai+1) | 1 ≤ i ≤ t− 1} ∪ {(bt, a1)}, encompasses a point x with respect to

a linear extension L if b <L x <L a or a <L x <L b.

Fix an arbitrary linear extension L of W ′. Suppose x ∈ Ci and ai ≤ x < bi (and

hence x is not in a trivial chain) and x is not encompassed by any side move. Then,

since x < bi, by traversing the cycle we can conclude that x ≤L aj for any 1 ≤ j ≤ t.

But then x ≤L y for any y ∈ W ′ and hence is the minimum element of L. Similarly if

ai < x ≤ bi, then x is the maximum element of L. Thus the only elements of P that

are not encompassed by a side step with respect to L are the minimum and maximum

elements of L and the elements belonging to a trivial chain. Now let T be the set of

trivial chains. Then, as there are t side steps, there exists some side move (bL, aL)

encompassing at least
⌈

dt+1−(2+|T |)
t

⌉
= d−

⌊
1+|T |

t

⌋
elements in the linear extension L.

Thus if |T | < t− 1, then (bL, aL) encompasses at least d elements with respect to L,

and hence |hL(bL)− hL(aL)| ≥ d + 1. But since L was an arbitrary linear extension,

this implies that ld(W ′) ≥ d + 1, a contradiction. Thus |T | = t − 1 and so all but

one of the chains are trivial, and hence all the up steps are consecutive in the forcing

cycle.

5.5 Characterization of Wd

In examining the nature of Wd, it is clear that, contrary to most results on posets,

Wd is specified through explicit local restrictions on the set of comparabilities and

incomparabilities rather than global restriction on the structure of the poset. That is,

Wd is defined as the set of solutions to a collection of transitively oriented sandwich

problems [10] where the order among some pairs of elements are defined and other

pairs of points are defined to be incomparable. However, we can exploit the structure

of elements of Wd to provide a more natural description of the class as interval orders.

This characterization of Wd as a collection of interval orders joins with results such

as the forbidden subposet characterization of posets with linear discrepancy at most
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two [11, 12], the NP-completeness of linear discrepancy [6], and the behavior of online

algorithms for linear discrepancy [16] in emphasizing the centrality of interval orders

in the study of linear and weak discrepancy.

Let W ∈ Wd and let C = a0 < c1
1 < c2

1 < · · · < cd−1
1 < c1

2 < · · · < cd−1
2 <

· · · < c1
t < · · · < cd−1

t < at ‖ at−1 ‖ at−2 ‖ · · · ‖ a1 be an optimal forcing cycle of

W . We first note that if ai < aj, then ai < c1
i+2 and cd−1

j−1 < aj. But then, since

j ≥ i + 2, this implies that every element of the chain a0 < c1
1 < · · · < cd−1

t < at

is comparable to either ai or aj. Thus W does not contain a 2 + 2 and hence is

an interval order. Now in order to characterize the elements of Wd, it suffices to

provide a collection of intervals or rules for generating the intervals that will realize

every element of Wd. We note that since ai < aj implies that every element of the

chain ao < c1
1 < c2

1 < · · · < cd−1
1 < c1

2 < · · · < cd−1
2 < · · · < c1

t < · · · < cd−1
t < at

is comparable to either ai or aj, we may assume that the intervals associated with

the long chain are degenerate. In particular, we assume that the interval for cj
i is

{(i− 1)d + j} and that the intervals for a0 and at are {0} and {dt}, respectively.

Now for 1 ≤ i ≤ t − 1, let the endpoints of the interval associated with ai be `i

and ri. Using that cj
i is assigned to the degenerate interval {(i− 1)d + j}, it is clear

that we may assume for 1 ≤ i ≤ t − 1, [`i, ri] ⊆ (d(i− 1)− 1, d(i + 1) + 1). The

constraints ai ‖ ai+1 and ai < ai+2 force `i+1 < ri < `i+2. In fact, any interlaced

sequence −1 < `2 < r1 < `3 · · · < `t < rt−1 < dt + 1 such that ri < d(i + 1) + 1 for

1 ≤ i < t− 1 and d(j − 1)− 1 < `j for 1 < j ≤ t will yield an interval representation

of an element of Wd. For example, see Figure 30.

5.6 Conclusion and Future Work

Determining linear discrepancy, in general, is a difficult task while determining weak

discrepancy takes polynomial time in the number of points for a poset. This makes

finding relations between the two properties difficult. Still it is natural to ask if
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Figure 30: A element of W3 on 13 points.

there are any relationships between these discrepancies. In general, bounding weak

discrepancy does not bound the size of linear discrepancy as an antichain has weak

discrepancy zero, but the linear discrepancy is the size of the antichain minus one. If,

however, the width of a poset is bounded then the linear discrepancy can be bounded

by a function of its weak discrepancy. As another possibility, instead of bounding

the width, the size of an element’s incomparable set could be bounded. Additionally,

such a bound may possibly be modified to give a bound on the t-discrepancy of a

poset for any given t.

Another question is what are the structure of posets that have weak discrepancy

close to linear discrepancy. For example, which posets have ld(P) = wd(P + 1) or

ld(P) = wd(P + 2)? Are these posets similar in nature to Wd or can they be widely

different?
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CHAPTER VI

CONCLUSION

Discrepancy in posets has become a well studied property for posets. However, there

are still many questions yet to be answered. One such question is the relationship

between linear discrepancy and dimension of a poset. There is a brief argument that

says a poset’s dimension is less than or equal to its width. Linear discrepancy is at

least the width of a poset minus one since an antichain of size n has linear discrepancy

n − 1. This gives a bound that linear discrepancy is always greater than dimension

minus one. Furthermore, this bound is tight as the two examples from Figure 31

show. We leave it to the reader to see that the two examples have dimension 3

and 4, and the linear discrepancies are 2 and 3 respectively. The question though is

whether this bound is tight for higher n. The standard example of dimension n has

linear discrepancy n as well and thus it has been conjectured that if a poset P has

dimension n ≥ 5 then the linear discrepancy of P is at least as large as its dimension.

As previously mentioned there are a number of approximation questions that are

unanswered for estimating linear discrepancy, only for a few special classes of posets

has the linear discrepancy of a poset been determined. Two possible ideas for this

estimation are to show that a height-ordered extension (an extension that witnesses

total linear discrepancy) may give a reasonable approximation of linear discrepancy.

Another idea is to use a Monte Carlo scheme where a near random sampling of

linear extensions is taken and one can guarantee a certain factor of approximation

(such a sampling has been given in Brightwell [2]). In this simulation the question

is how many samples are needed to essentially guarantee, within a close factor, an

approximation of the linear discrepancy value.
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Figure 31: Two posets that have dimension larger than the linear discrepancy
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