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Abstract

Let G = (V,E) be a graph and let r, s, k be natural numbers.

“Revolutionaries and Spies”, G(G, r, s, k) , is the following two-player

game. The sets of positions for player 1 and player 2 are V r and
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V s respectively. Each coordinate in p ∈ V r gives the location of a

“revolutionary” in G controlled by player 1. Similarly player 2 controls

s “spies”. We say u, u′ ∈ V (G)n are adjacent, u ∼ u′, if for all

1 ≤ i ≤ n, ui = u′i or {ui, u′i} ∈ E(G). In round 0 player 1 picks

p0 ∈ V r and then player 2 picks q0 ∈ V s. In each round i ≥ 1, player

1 moves to pi ∼ pi−1 and then player 2 moves to qi ∼ qi−1. Player 1

wins the game if he can place k revolutionaries on a vertex v in such

a way that player 2 cannot place a spy on v in his following move.

Player 2 wins the game if he can prevent this outcome.

Let s(G, r, k) be the minimum value s such that player 2 can win

G(G, r, s, k). We show that lim infr→∞ s(Z2, r, 2)/r ≥ 3/4. Here moves

in Z2 are “king” moves as in chess.

1 Introduction

Let G = (V,E) be a graph, possibly infinite, and let r, s, k be natural num-

bers. “Revolutionaries and Spies”, G(G, r, s, k), is the following two-player

game, invented by Beck [?]. In round 0, player 1 places r markers called

revolutionaries on the vertices of G. Then player 2 places s markers called

spies on the vertices. There is no restriction on the number of spies and rev-

olutionaries that may be placed on a vertex. For i ≥ 1, round i begins with

player 1 moving each revolutionary either to a vertex adjacent to its current

vertex or by leaving it at its current vertex. Round i ends with player 2

moving his spies in the same fashion. Player 1 has a meeting of size k at
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a vertex v if k or more revolutionaries are present at that vertex. A set of

vertices is guarded if a spy is present at some vertex in the set. Player 1 wins

G(G, r, s, k) if he has a strategy to achieve an unguarded meeting of size k by

the end of some round i. Otherwise player 2 has a strategy to prevent this

for all time and we say player 2 wins G(G, r, s, k).

There is a similarity between this game and the game cops and robbers

[?, ?]. This is a pursuit game played by a cop and a robber on a graph G:

the cop chooses a vertex, then the robber chooses a vertex, and players move

alternately starting with the cop. A move consists of either staying at ones

present vertex or else moving to an adjacent vertex; each move is seen by

both players. The cop wins if he manages to occupy the same vertex as the

robber, and the robber wins if he avoids this forever. The graphs on which

the cop has a winning strategy have been characterized [?, ?].

Let k(G, r, s) be the maximum value of k such that player 1 wins G(G, r, s, k).

We define G(G, r, s) to be G(G, r, s, k0) where k0 = k(G, r, s). An optimum

strategy for player 1 in G(G, r, s) is one eventually achieving an unguarded

meeting of size k0. Similarly an optimum strategy for player 2 is one pre-

venting a meeting of size k0 + 1. We sometimes describe these just as player

1’s (player 2’s) strategies in G(r, s). Let s(G, r, k) be the minimum value s

for which it is possible for player 2 to win G(G, r, s, k).

We record the following trivial observation.

Lemma 1.1 If G has at least s + 1 vertices, k(G, r, s) ≥
⌊

r
s+1

⌋
. Otherwise,

k(G, r, s) = 0.
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Proof: In the first case, player 1 can win at the end of round 0 by placing

at least
⌊

r
s+1

⌋
revolutionaries on each of s + 1 vertices. In the second case,

player 2 can win by maintaining a spy at each vertex.

This trivial lower bound is attained on the following classes of graphs.

Theorem 1.2 If G is acyclic and has at least s+1 vertices then k(G, r, s) =⌊
r

s+1

⌋
.

This statement was originally proved by one of the authors [?]. Its proof

will appear in another paper, currently in preparation, covering the revolu-

tionaries and spies game on trees and unicyclic graphs [?].

If v, w ∈ V (G) let dG(v, w) be the distance between v and w in G, i.e.

the minimum length of an v-w path in G. If no such path exists we define

dG(v, w) = +∞. Note dG(v, v) = 0.

Let G and H be graphs. The strong product of G and H, denoted G�H,

is the graph with vertex set V (G�H) = V (G)× V (H). Vertices (g, h) and

(g′, h′) are adjacent in G � H if and only if (g, h) 6= (g′, h′), dG(g, g′) ≤ 1,

and dH(h, h′) ≤ 1 [?]. We denote by Z the graph G = (V,E) with V = Z

and E = {{i, i+ 1} : i ∈ Z}. For d ≥ 1, let Z�d be the d-fold strong product

of Z with itself.

We study revolutionaries and spies on Z�d, primarily for d = 2. Perhaps

one of the most basic (yet non-trivial) quantities to study is the threshold

s(Z�d, r, 2).
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Theorem 1.3 We have lim infr→∞ s(Z�d, r, 2)/r ≥ 3
4
.

The best result obtainable using Lemma ?? is lim infr→∞ s(Z�d, r, 2)/r ≥ 1
2
.

The organization of the paper is as follows. We present a number of basic

definitions and results in Section 2 including a Hall-type condition on when

it is possible to move from one position to another (Lemma ??). We prove

Theorem ?? in Section 3. In the final section we outline a few directions for

further research in the concluding section.

2 Basic Results

Lemma 2.1 Let G be a graph and let r, r′, s, s′ ∈ N with r ≤ r′ and s ≤ s′.

Then

1. k(G, r, 0) = r and k(G, r, r) = 0.

2. k(G, r′, s) ≥ k(G, r, s), and

3. k(G, r, s′) ≤ k(G, r, s).

Proof: To prove k(G, r, r) = 0, player 2 can match each spy with a unique

revolutionary. Each spy is then moved to its matched revolutionary’s position

at the end of each round. To prove statement 2, first note that player 2 has

a strategy to prevent an unguarded meeting of size k(r′, s) + 1 in G(r′, s).

Player 2 can then prevent a meeting of this size in G(r, s) by “pretending” that

player 1 has an additional r′ − r revolutionaries left fixed at some arbitrary

vertex. Player 2 then moves according to his strategy in G(r′, s).
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Similarly, to prove statement 3, we see that player 2 can keep s′− s spies

fixed at some arbitrary vertex and then play his optimum strategy in G(r, s)

with his remaining s spies to prevent a meeting of size k(G, r, s)+1 in G(r, s′).

If U,W ⊆ V (G), let dG(U,W ) = minu∈U,w∈W dG(u,w). If W = {v} we

write dG(S, v) for dG(U,W ). Let BG(S, r) := {v ∈ V (G) : dG(S, v) ≤ r}.

Lemma 2.2 Let r1, . . . , rl, s1 . . . sl ∈ N. Let r =
∑`

i=1 ri and s =
∑`

i=1 si.

Then the following statements hold.

1. For all graphs G, k(G, r, s) ≤
∑`

i=1 k(G, ri, si).

2. Let n ≥ 0 and suppose G1, . . . , G` are subgraphs of a graph G with

BG(V (Gi), n) for 1 ≤ i ≤ ` pairwise disjoint. Suppose that for all

1 ≤ i ≤ `, player 1 has a strategy to win G(G, ri, si, ki) in at most n

rounds with all revolutionaries starting and remaining in V (Gi). Then

k(G, r, s + `− 1) ≥ min1≤i≤` ki.

Proof: To prove statement 1, player 2 partitions player 1’s revolutionaries

into groups of sizes ri for 1 ≤ i ≤ ` and also partitions the spies into groups

of size si. Thereafter he simultaneously uses his ith group of spies to prevent

a meeting of size k(G, ri, si) + 1 amongst the ith group of revolutionaries,

for each 1 ≤ i ≤ `. Clearly, player 1 cannot achieve a meeting of size

1 +
∑`

i=1 k(Gi, ri, si).
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To prove statement 2, we first note that the proof of statement 3 of

Lemma ?? gives for each 1 ≤ i ≤ ` a “unified” strategy for player 1 to

achieve an unguarded meeting of size ki by the end of round n, in G(G, ri, t)

for all t ≤ si, using the same starting position in Gi. For each t ≤ si player

1 plays his strategy for G(G, ri, si, ki) all the while pretending that player 2

has an additional si − t spies fixed at some arbitrary vertex . While player

2 moves his t spies, player 1 responds with moves from G(G, ri, si, ki). The

initial position for player 1 is the same for all t ≤ si.

Player 1 makes these uniform initial placements of ri revolutionaries in

each Gi. For some i, there must be t ≤ si spies placed in BG(V (Gi), n). Thus

player 1 can achieve an unguarded meeting of size ki in Gi in n rounds.

The following statements are all easy corollaries of Lemma ??, statement

1.

Corollary 2.3 Let r, s ∈ N then

1. k(G, r, s) ≤ k(G, r − a, s− a) for all a ≤ r, s.

2. k(G, r + r′, s) ≤ k(G, r, s) + r′.

3. k(G, ar, as) ≤ ak(G, r, s) for all a ≥ 0.

Lemma 2.4 For all graphs G and for all R, r, s ∈ N we have k(G,R, s) ≥⌊
R
r

⌋
k(G, r, s).
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Proof: Let R = R1 + · · · + Rr where Ri ≤ Ri+1 for all 1 ≤ i ≤ r − 1

and Rr ≤ R1 + 1. Let player 1 partition his revolutionaries into r groups

of sizes Ri and then place each member of the ith group on the position of

revolutionary i in some optimum strategy for G(r, s). This strategy allows

player 1 to achieve an unguarded meeting of size at least R1k(G, r, s) in

G(G,R, s). Note that R1 =
⌊
R
r

⌋
.

The next result follows directly from the definition of k(G, r, s).

Lemma 2.5 Suppose G is a graph whose components are {Gi : i ∈ I}. Then

k(G, r, s) = max
f

min
g

max
i∈I

k(Gi, f(i), g(i))

where functions f, g : I → N satisfy r =
∑

i f(i), s =
∑

i∈I g(i) respectively.

Let X : V (G)→ R. We define X (S) :=
∑

v∈S X (v) for subsets S ⊆ V (G)

and X (H) := X (V (H)) for subgraphs H ⊆ G. The weight of X is X (G).

We say X is finite if X has finite weight. If X : V (G) → N we call X a

position. Let P(G,m) denote the set of all the positions of weight m on

G. The set of all possible placements of r revolutionaries in G(G, r, s) is in

one-to-one correspondence with the functions R in P(G, r). Namely, for each

vertex v, let R(v) be the number of revolutionaries present at v. Similarly,

we let P(G, s) represent the possible placements of the spies in G(G, r, s). If

X ,X ′ ∈ P(G,m) and X ′ is one move from X then we denote this by X ′ ∼ X .
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Hall’s theorem gives a characterization of when two positions are one move

apart. Given X ⊆ V (G) we define X(1) := {x′ ∈ V (G) : ∃x ∈ X dG(x′, x) ≤

1}.

Theorem 2.6 Let G = (V,E) be a graph and let m ≥ 0. Let X ,X ′ ∈

P(G,m). Then the following are equivalent.

1. X ∼ X ′

2. ∀X ⊆ V (G) X (X) ≤ X ′(X(1))

3. ∀X ⊆ V (G) X ′(X) ≤ X (X(1))

Proof: Note that it suffices to show statements 1 and 2 are equivalent. If

we move from position X ′ to position X , then X (X), the number of revolu-

tionaries in X at the end of the move, must be less than or equal to X ′(X(1)),

the number of revolutionaries that may reach X in one move. It remains to

show that statement 2 implies statement 1.

Let U = {(1, x1), . . . , (r, xr)} be a listing of the revolutionaries in X in

some fixed order, i.e. for all i ∈ [r] revolutionary i is at vertex xi. Similarly

let W = {(1, x′1), . . . , (r, x′r)} be some listing of the revolutionaries in X ′. Let

B(X ,X ′) = (U ∪W,E) be the bipartite graph with bipartition (U,W ) such

that {(i, xi), (j, x
′
j)} ∈ E if and only if dG(xi, x

′
j) ≤ 1. Clearly, X ∼ X ′ if and

only if B has a perfect matching, i.e. each revolutionary in X has a unique

target revolutionary in X ′ to which it can move. It is well known that this

perfect matching exists if and only if Hall’s condition [?] holds: |N(S)| ≥ |S|
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for all S ⊆ U , where N(S) = {w ∈ W : ∃s ∈ S {w, s} ∈ E(B)}. We show

that statement 2 implies Hall’s condition.

Let S = {(i1, xi1), . . . , (it, xit)} be an arbitrary subset of U . Let X =

{xi1 , . . . , xit}. Note that we may have |X| < t as there may be repeti-

tions amongst the xij . We have X (X) =
∑

x∈X |{(i, xi) ∈ U : xi = x}| ≥∑
x∈X |{(i, xi) ∈ S : xi = x} = |S|. These expressions for X (X) and |S| are

derived by partitioning the revolutionaries counted according to the vertex

on which they lie. Similarly we get

N(S) =
⋃

x′∈X(1)

{(j, x′j) ∈ W : x′j = x′}.

Using this expression we get X ′(X(1)) =
∑

x′∈X(1) |{(j, x′j) ∈ W : x′j = x′}| =

|N(S)|. Thus X (X) ≤ X ′(X(1)) implies |S| ≤ |N(S)| as desired.

Given X ∈ P(G,m) let supp(X ) := {v ∈ V (G) : X (v) > 0}. The proof

of Lemma ?? shows that X ∼ X ′ if and only if X (X) ≤ X ′(X(1)) for all

X ⊆ supp(X ).

If G is a graph the nth power of G is the graph Gn with V (Gn) = V (G)

and E(Gn) := {{v, w} : 0 < dG(v, w) ≤ n} [?]. Let X ,X ′ ∈ P(G,m).

Clearly X ′ ∼ X in Gn if and only if there is a sequence of positions Xi ∈

P(G,m) for 0 ≤ i ≤ n with X0 = X and Xn = X ′ such that Xi ∼ Xi−1 in G

for all 1 ≤ i ≤ n.
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Lemma 2.7 For all graphs G and all n, r, s ∈ N, k(Gn, r, s) ≤ k(G, r, s).

Proof: If player 2 has a strategy to prevent an unguarded meeting of size

k+1 in G, then it can prevent such a meeting in Gn as follows. Initially, player

2 places the spies according to an optimum strategy in G(G, r, s). Suppose

R and S are the positions of the revolutionaries and the spies, respectively,

at the beginning of some round. Suppose player 1 moves from R to R′ in

Gn. Player 2 constructs a sequence of positions R = R0,R1, . . . ,Rn = R′

with Ri+1 ∼ Ri in G for 0 ≤ i < n. Let S0 = S and for 1 ≤ i ≤ n let Si be

the position played by the spies in response to Ri according to the strategy

in G(G, r, s). Clearly S ′ = Sn is one move from S in Gn and continues to

prevent an unguarded meeting of size k + 1 by R′.

Lemma 2.8 For graphs G,H, we have

k(G�H, r, s) ≥ max(k(G, r, s), k(H, r, s)).

Proof:

Fix h0 ∈ V (H). Given X0 ∈ P(G,m) we define X1 = L(X0) ∈ P(G �

H,m) as follows. For all (g, h) ∈ V (G � H), X1((g, h)) = X (g)1h=h0 where

1h=h0 = 1 if h = h0, 0 otherwise. Given X1 ∈ P(G � H,m) we define

X0 = P (X1) ∈ P(G,m) by X0(g) = X1({g} ×H).



12

Let X0,X ′0 ∈ P(G,m) and let X1 = L(X0),X ′1 = L(X ′0). Since G×{h0} is

an isomorphic copy of G in G�H, it is clear that X0 ∼ X ′0 implies X1 ∼ X ′1

in G�H.

Let X1,X ′1 ∈ P(G � H,m) and let X0 = P (X1), X ′0 = P (X ′0). Suppose

X1 ∼ X ′1. Then for all X ⊆ V (G) we have X0(X) = X1(X ×H) ≤ X ′1((X ×

H)(1)) = X ′1(X(1) ×H) = X ′0(X(1)) and so by Lemma ??, X0 ∼ X ′0.

Let k = k(G�H, r, s). It suffices to prove k(G, r, s) ≤ k.

Given a position R1 ∈ P(G � H, r) for player 1, let S1 = S1(R1) ∈

P(G � H, s) be an optimum response for player 2 in G(G � H, r, s). That

is, by playing S1 player 2 will prevent a meeting of size k + 1. We claim

that if R0 ∈ P(G, r) is a position for player 1 then it is always possible

for player 2 to play S0 = S0(R0) := P (S1(L(R0))) ∈ P(G, s) and that this

will prevent a meeting of size k + 1 in G(G, r, s). Let R0,R′0 ∈ P(G, r)

and let S0 = S0(R0),S ′0 = S0(R′0). It is clear from the definitions that

S0,S ′0 ∈ P (G, s). It is also clear from the statements proven in the previous

paragraphs that if R0 ∼ R′0, then S0 ∼ S ′0. Furthermore if R0(g) > k then

L(R0)((g, h0)) = R0(g) > k and S1(L(R0))((g, h0)) ≥ 1, as S1 is a response

that prevents meetings of size k + 1. Thus S0(R0) = P (S1(L(R0)))(g) ≥ 1.

3 Proof of Theorem ??.

As a warmup, we prove
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Theorem 3.1 For all r, s ∈ N, k(Z, r, s) =
⌊

r
s+1

⌋
.

We need a lemma first. Given X ∈ P(Z,m) let fi(X ) be the ith order statistic

of X , i.e. fi(X ) = j if and only if X ((−∞, j]) ≥ i and X ((−∞, j)) < i.

Lemma 3.2 If X ,X ′ ∈ P(Z,m) and X ′ ∼ X then |fi(X ′)− fi(X )| ≤ 1 for

all 1 ≤ i ≤ m.

Proof: Suppose fi(X ) = j. Since X ((−∞, j]) ≥ i, i ≤ X ((−∞, j]) ≤

X ′((−∞, j+1]) and fi(X ′) ≤ j+1. Also since X ((−∞, j)) < i, X ′((−∞, j−

1)) ≤ X ((−∞, j)) < i and fi(X ′) ≥ j − 1.

Proof of Theorem ??. Clearly we have k(Z, r, s) ≥ k :=
⌊

r
s+1

⌋
, by Lemma

??. Since r < r0 := k(s+ 1) + s, k(Z, r, s) ≤ k(Z, r0, s), by Lemma ??. Thus

it suffices to show k(Z, r0, s) ≤ k. If player 1’s position is R ∈ P(Z, r0),

player 2’s strategy is to play spy i at position fi(k+1)(R) for all 1 ≤ i ≤ s.

Since r0 = s(k + 1) + k, any vertex at which there is a meeting of k + 1

revolutionaries must contain a spy. Let R′ ∼ R be player 1’s new position.

Clearly, by Lemma ??, each spy’s new position is one move from its old

position, because |fi(k+1)(R′)− fi(k+1)(R)| ≤ 1.

Recall that a = (a1, . . . , ad), b = (b1, . . . bd) ∈ Z�d are adjacent if and only

a 6= b and |ai − bi| ≤ 1 for all 1 ≤ i ≤ d.
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Lemma 3.3 If m > 2k, k(Z�d,m,m− 2k) ≤ k.

Proof: Clearly k(Z�d, 2k + 1, 1) ≥
⌊
2k+1
2

⌋
= k by Lemma ??. We give a

strategy for the spies showing that k(Z�d, 2k+ 1, 1) ≤ k. Suppose player 1 is

in position R. Fix 1 ≤ i ≤ d. Let Ri(j) := R({x ∈ Zd : xi = j}) ∈ P(Z, r)

be the the projection of R onto the ith coordinate axis. Let ci = fk+1(Ri)

(see Lemma ??). Player 2 ’s response to R is to move his spy to the vertex

c = (ci : 1 ≤ i ≤ d). By Lemma ?? this is a playable strategy for player

2. Furthermore it guards all meetings of size k + 1 or more. Clearly, if at

least k + 1 revolutionaries are at a single vertex c′ ∈ Zd then ci = c′i for all i

and c = c′, thus the spy is there also. This suffices to prove the theorem as

Lemma ?? implies k(Z�d,m,m− 2k) ≤ k(Z�d, 2k + 1, 1) + k(Z�d,m− 2k −

1,m− 2k − 1) = k + 0 = k.

Theorem ?? will follow from this next theorem (see Corollary ??).

Theorem 3.4 We have k(Z�2, 8, 5) = 2.

Proof: By Lemma ?? and Lemma ??, k(Z�2, 8, 5) ≤ k(Z�2, 7, 5)+k(Z�2, 1, 0) ≤

1 + 1 = 2. We give a strategy for player 1, showing k(Z�2, 8, 5) ≥ 2. In

the first round, player 1 will place his revolutionaries on the eight positions

(±1,±1) and (±3,±3) (see Figure ??). In all of our figures the center point

is position (0, 0) and X’s represent revolutionaries while O’s represent spies.

If 2 revolutionaries may reach a vertex in n rounds, there must be a spy
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within distance n of v to guard that potential meeting. We often describe

this by saying that a spy must guard a meeting at v in n rounds.

Claim 1 (Box Property): One or more spies must begin in each of the

four boxes [1, 3]× [1, 3], [1, 3]× [−3,−1],[−3,−1]× [−3,−1], [−3,−1]× [1, 3];

we call these boxes B1, B2, B3, and B4 respectively (see Figure ??).

Proof: By symmetry, we consider B1. This box must contain a spy to

prevent a win at (2, 2) in one round by the revolutionaries at (3, 3) and

(1, 1).

Let W1 be the “wedge” of points W1 = {(x, y) : y ≥ 1, y ≥ |x|}. We

also consider the wedges obtained from W1 by reflections in the lines y = x

and y = −x; in clockwise order from W1, we call these W2, W3, and W4 (see

Figure ??).

Claim 2 (Wedge Property): There must be at least two spies present

in W1; furthermore one of those spies must be distance 1 from (0, 2) and

another distinct spy must be at distance 3 from (0, 6). We call this the

wedge property for W1. By symmetry (reflections through the lines y = x

and y = −x), analogous wedge properties hold for W2, W3, and W4.

Proof: By symmetry we consider W1. The revolutionaries at (−1, 1) and

(1, 1) can form a meeting in one round at (0, 2) while, simultaneously, the

revolutionaries at (−3, 3) and (3, 3) can form a meeting at (0, 6) in 3 rounds.

Unless two spies are located as described, one of these meetings will be un-

covered.
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B3

W1

W3

W4 W2

B1

B2

B4

Figure 1: The initial position for player 1, the boxes Bi, and wedges Wi.

By symmetry and the pigeonhole principle we may assume that at least

two spies, s′1 and s′′1 have positions (x, y) with x ≥ 0 and y ≥ 0. In fact we

may assume that there are exactly two such spies, since each of the boxes B2,

B3, and B4 must contain a spy; we call these spies s2, s3, and s4 respectively.

Since the wedge property holds for W3 and W4, spy s3 must lie in both

wedges; furthermore its position must be either (−3,−3) or (−1,−1). This

leads to the two cases below.

Case 1: s3 is at (−3,−3)

The following discussion is illustrated in Figure ??. Since s3 is at (−3,−3),

the wedge property for W4 implies that s4 is in [−3,−1]×{1}. Similarly s2 is

in {1} × [−3,−1]. Furthermore, s′1 must be in [0, 1]× [0, 1] to guard against

a meeting at (0, 0) by the revolutionaries at (−1,−1) and (1, 1); neither s2
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Figure 2: Case 1.

nor s4 can guard (0, 0) since they must guard against the meetings at (2,−2)

and (−2, 2). Given these restrictions on s′1, s2, and s4 the wedge properties

for W1 and W2 imply that s′′1 must be at (3, 3)

Suppose the revolutionaries at (−1, 1) and (−1,−1) form a meeting at

(−2, 0) and those from (−3, 3) and (1, 1) form a meeting at (−1, 3). Spy

s4 must guard (−2, 0), so s′1 must guard (−1, 3); this means that s′1 has

y ≥ 1. By symmetry, s′1 has x ≥ 1, so s′1 is at (1, 1). Now s4 must be in

[−2,−1]× {1} to guard against a meeting at (−1, 0) of revolutionaries from

(−1, 1) and (−1,−1). Similarly s2 must be in {1} × [−2,−1].

We also must have s4 = (−1, 1) or s2 = (1,−1). If not, the revolutionaries

at (−1, 1) and (−1,−1) can meet at (0, 0) while the revolutionaries at (1, 1)

and (1,−1) can meet at (2, 0). It will not be possible for the spies to guard

both meetings. By symmetry we may assume s4 = (−1, 1).
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R2

Figure 3: Case 1 after round 0.

Thus at the beginning of round 0, we may assume the spies and revolu-

tionaries are located as in Figure ??. This figure indicates that s2 is located

somewhere in R2 = {1} × [−2,−1]. Player 1’s strategy is to move the rev-

olutionary at (−1,−1) to (−2,−2) and the one at (−1, 1) to (0, 0), keeping

the other revolutionaries in place.

We now analyze the positions that the spies must take at the end of round

1, see Figure ??. Player 2 must keep the spies at (3, 3) and (−3, 3) fixed to

continue guarding meetings at (±6, 0) and (0,±6). Besides these two spies,

only the spy in R2 (and only if it were located at (1,−2)) could be moved

to help guard (0,−6), but that spy can not assist as it must also guard the

meeting of the revolutionaries at (−2,−2) and (1,−1) at the point (0,−3).

Let (a, b) be the position of the spy in R2 in round 0 and (a′, b′), its

position in round 1. We have a′ = 1, since this spy must guard (2,−2) and
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R′2

Figure 4: Case 1 after round 1.

also the meeting of (−2,−2) and (1,−1) at (−1,−3). We must have b′ ≤ −2

as this spy must guard the meeting of the revolutionaries at (−2,−2) and

(3,−3) at (1,−5). Thus, player 2 must have a spy in R′2 = {1}× [−3,−2] at

the end of round 1. (See Figure ??.)

The spy located originally at (1, 1) cannot decrease its x-coordinate be-

cause it must guard (2, 0). This forces the spy originally located at (−1, 1)

to decrease its y-coordinate to guard (−1,−1). This same spy must also

decrease its x-coordinate to guard against the meeting of the revolutionaries

from (−3, 3) and (−2,−2) at (−5, 1). This forces the spy at (1, 1) to move

to (1, 0) to guard meetings at (2, 0), (0, 1), and (0,−1). Note that the spy in

R′2 cannot help guard these since it independently must guard the meeting

at (1,−5) by revolutionaries from (−2,−2) and (3,−3).

Now player 1 can win at (−1, 3) in 2 moves.
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Figure 5: Case 2a.

Case 2: s3 is at (−1,−1)

Since s3 is at (−1,−1) the wedge properties implies that s2 is in [1, 3]×

{−3} and s4 is in {−3} × [1, 3]. If s2 is at (3,−3) and s4 is at (−3, 3), then

the revolutionaries from (−1, 1) and (−1,−1) can form a meeting at (−2, 0)

which must be guarded by s3. Simultaneously, the revolutionaries at (1,−1)

and (−3,−3) can form a meeting at (−1,−3) which will be unguarded (see

Figure ??).

Without loss of generality, suppose instead that s2 is not at (3,−3). By

the wedge property for W2, we must have s′1 is in [1, 3] × [0, 1] and s′′1 is in

[3, 9]× [0, 3]. (See Figure ??). In fact s′1 must be at (1, 1) in order to guard

the meeting at (0, 2). Now the revolutionaries at (−1,−1) and (1,−1) can

form a meeting at (0,−1). This must be guarded by s3. Simultaneously the

revolutionaries at (−1, 1) and (−3,−3) can form a meeting at (−3,−1) in
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Figure 6: Case 2b.

two rounds; it can only be guarded if s4 began at (−3, 1). By symmetry s2

must begin at (1,−3). Since now s′′1 must guard the meeting at (0, 6), it must

be located at (3, 3).

Thus at the end of round 0, the spies and revolutionaries are positioned

as in Figure ??.

Player 1’s strategy is to move the revolutionary at (−1, 1) to (0, 0) and

the one at (1, 1) to (2, 1) while leaving all other revolutionaries unchanged.

Figure ?? illustrates how the spies must be located at the end of round 1

in order to compensate. Player 2 must leave the spy at (3, 3) in place to

guard (6, 0) and (0, 6). At the end of its move, the spy at (−3, 1) must be

somewhere in L4 = [−4,−3] × [0, 2] as it must guard (−6, 0). Similarly the

spy at (1,−3) must remain in L2 = [0, 2]× [−4,−3].
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Figure 7: Case 2 after round 0.

The spy at (−1,−1) must stay in place to guard meetings at (−2,−2) and

(0, 0) in one move. (Note: the spy at (−1,−1) must guard (0, 0) as the spy

at (1, 1) must guard against the potential meeting of the revolutionaries from

(2, 1) and (1,−1) at the point (2, 0).) Spy s′1 must move to (1, 0) to protect

against meetings (0,−1), (1, 1), (2, 1) in the next round (Spy s3 cannot help

as it must protect (−2,−2)).

Player 1’s strategy is to simultaneously move revolutionaries (0, 0) and

(−1,−1) to (−1, 0), revolutionaries (1,−1) and (−3,−3) to (−1,−3), and

revolutionaries (2, 1) and (3,−3) to (4,−1). Only the spy at (−1,−1) can

guard the first meeting and consequently only the spy in L2 can guard either

of the other two meetings. Thus player 1 wins.
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L4

L2

Figure 8: Case 2 after round 1.

Corollary 3.5 Theorem ?? implies Theorem ??.

Proof: The winning strategy for player 1 in Theorem ?? does not involve

movement of the revolutionaries outside of the box [−6, 6]2 and takes no

more than 5 moves to achieve a meeting of size 2. Letting Gi, 1 ≤ i ≤ ` be

sufficiently separated copies of [−6, 6]2 in Z�2 and applying Lemma ?? gives

k(Z�2, 8`, 6`− 1) ≥ k(Z�2, 8, 5) = 2. Thus for all ` ≥ 1 and all 0 ≤ i < 8 we

have s2(8` + i) ≥ 6`. Hence lim infn→∞ s(Z�2, n, 2)/n ≥ 3
4
. By Lemma ??,

k(Z�d, r, s) ≥ k(Z�2, r, s) for d ≥ 2 and so lim infn→∞ s(Z�d, n, 2)/n ≥ 3
4

for

d ≥ 2.
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4 Conclusion

It would be of interest to get tight bounds on k(Z�d, r, s).

Continuous versions of this problem can also be considered. For example

one could play the game in the plane, where each agent has the power to

move to points within a Euclidean distance of 1 from their current position.

This particular variant was suggested by Beck [?].

Theorem ?? has been generalized to the case of unicyclic graphs [?]. It

would be interesting to characterize those graphs G for which k(G, r, s) =⌊
r

s+1

⌋
.

The authors would like to thank the referees for their many helpful com-

ments. We are grateful for the specific suggestions of one referee that greatly

simplified our initial proof of Theorem ??.
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