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0.1 Introduction

What is a game? The average person would probably say that it is a competition between
groups, like Monopoly, or Chess. Mathematicians might create a somewhat sounder defi-
nition: A model of a competitive situation that identifies interested parties and stipulates
rules governing all aspects of the competition, used in game theory to determine the optimal
course of action for an interested party [1]. This fuller definition is needed in particular when
we start discussing combinatorial games, where the key questions we ask about such games
are, what are the optimal strategies, and what do these strategies guarantee?

This paper is broken down into four chapters. Chapter 1 is on positional games. A positional
game is where two players alternate turns to claim different points on some finite board. The
goal of each of the players is to occupy some winning set of points or to stop the opposite
player from occupying a winning set of points. This chapter is a good introduction to
combinatorial games because it gives us a good base as to how to begin analyzing games
and optimal strategies. For example, Tic-Tac-Toe under the normal rules optimally will end
in a draw. Suppose you alter those rules ever so slightly and say that a win for player two
is if they stop player one from obtaining a winning line (This is called the Maker-Breaker
version of a positional game). In this case player one has a winning strategy.

Chapter 2 deals with an interesting tool called the quasiprobabilistic method that can be
helpful when trying to analyze a specific type of positional game. This technique is only
useful for the Maker-Breaker version of a positional game. Notice in this set of rules there
is no draw available, either player 1 occupies a winning set (in which case they win) or they
don’t (player 2 wins). The idea behind this method is to look at a random play of the
game and who is expected to win. This first part gives no optimal strategy for either player
however it does give a good guess as to who is more likely to have a winning strategy. Thus
the second part of the method looks to see if one can somewhat derandomize these games
to show an optimal strategy for player one or two, in which one can guarantee win.

The third chapter offers a study of a specific combinatorial game called the Voronoi Game.
This game was created in response to an economic question. The question was the compet-
itive facility location question. In other words, how can I best place my pieces to claim as
much territory as possible? Thus the Voronoi game was created to help answer this question.
The set-up of this game is there are two players, some (normally infinite) board, and n sites
for each player. A point on the board belongs to the player who has the closest site to that
point. Thus placing their sites alternatively the question is who can obtain more territory?
This section looks at two cases. The first is a square arena for a board. The second looks
at the perimeter of a circle for the board. In the first case it is unknown who has the better
strategy, but a result is shown that gives an answer if the rules are slightly altered [3]. In
the second case it is shown that player two has a winning strategy.
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The final chapter analyzes a game called Revolutionaries and Spies. The idea behind this
game is that there are two parties where the object of player one is to create a meeting of
revolutionaries at some point away from a spy, and the spies are attempting to stop any such
meeting. The question is given a certain number of revolutionaries what is the minimum
number of spies on the board such that the spies can always protect against such a meeting.
The analysis of this game proves to be very hard when played on the infinite integer lattice
board in two dimensions and where the meeting size is 2. The main problem analyzed in
this section is that given 8 revolutionaries, how many spies does one need so that a winning
strategy exists for the spies to stop a meeting of 2 revolutionaries without a spy. This will
give us a lower bound for any large number of revolutionaries.
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Chapter 1

Positional Games

We begin with a discussion on positional games. We first examine the game of Tic-Tac-Toe
as an example. The traditional game, as everybody knows, is played on a 2-dimensional on
a 3x3 board. However we can extend this game to any dimension and any size n and say
that a winner is anyone who obtains a winning set. We call this the nd-game. A winning
set in this case is a ”multidimensional” line with n points. In other words a sequence of n
points such that at each coordinate the number of the coordinate is either increasing to n,
decreasing to 1, or staying constant.

Def.
A graph (V, F ) is a set of points or vertices, V , and a collection or family, F , of sets such
that if a player occupies one of these sets they have won the game. These sets are called
winning sets.

Def.
A positional game is a game played on a graph (V, F ) where on each turn a player chooses
a vertex to call his own and either i.) both players are trying to obtain a winning set in F
(Symmetric game). ii.) player one is trying to obtain a winning set from F and the other is
trying to stop him. (Maker-Breaker game)

In positional games, it often helps to alter the rules slightly to give us more of an understand-
ing of the game. Thus we create the Maker and Breaker version of a positional game. We
can see that in the traditional positional game of tic-tac-toe, each player is trying to occupy
a winning position before the other. Now instead of players trying to occupy a winning set,
we look at this game as Maker trying to occupy a winning set, with Breaker trying to stop
them. Clearly, there is no way to draw in this game. Either Maker occupies a winning set
after all pieces are taken or he doesn´t in which case Breaker wins.
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Def.
Player 1 has a weak-win if he can always win as Maker in the Maker-Breaker version of a
positional game regardless of Player 2´s actions. If no win exists then Player 2 (Breaker) is
said to have a strong draw.

You can see that in the ordinary tic-tac-toe game (32-game) there is no win in the 32 game.
However, this game has a weak-win. If you look at the Maker-Breaker version a winning
strategy is available for player one. This is shown in Figure 1. The moves for each player are
denoted by the subscripts. After Player one’s center move, Player 2 has 2 options (either a
corner or an outer middle point. In either case Player 1 can force the remaining moves of
Player 2 resulting in a win for Maker in each case.

Figure 1.1: 32 Maker-Breaker game showing that Maker can always win

In Maker-Breaker version of the game, if Breaker can always force a win, then we call this
a strong-draw in relation to the nd-game. An example of this is the 52 version. You can
enforce the pairing strategy listed below to stop 1st player from ever occupying a winning
set:

12 1 8 1 11
6 2 2 9 10
3 7 * 9 3
6 7 4 4 10
11 5 8 5 12

Note: Whenever Maker plays on a specific position, Breaker can play on the other number
(thus if Maker plays on 8 Breaker plays on the other copy of 8). If Maker plays on * or takes
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a number that Breaker already has, just choose another point at random. You can see that
any winning set has a repeated number in it, which shows that Breaker can win.

I would like to now give a formal definition of what a strategy is.

Def.
A strategy for Player 1 is given any partial play x1, y1, . . . , xn, yn where each xi is a move of
Player 1, and yi is a move of Player 2, ∃ an explicit legal move xi+1 for Player 1. A strategy
for player 2 is defined similarly. A winning (drawing) strategy is a strategy such that
regardless of the other player’s moves the strategy will force a win (draw).

Thm.
In any finite positional game there exist 3 possibilities.
a.) There exists a winning strategy for player one.
b.) There exists a winning strategy for player two.
c.) There exists a drawing strategy for both players.

This makes logical sense in fact a proof through De Morgan´s Laws can be obtained.
Pf. (sketch)
(¬A)(¬B)⇒ C

A theorem that immediately follows this one is the Strategy Stealing Theorem.

Thm.
In a finite symmetric positional game only option ‘a’ or option ‘c’ exists from the previous
theorem.

Pf.
If player two had a winning strategy then taking the first move as arbitrary let player
one employ player twos strategy. If player twos strategy requires moving in the position of a
previously arbitrary move then just again choose an arbitrary move. The point is an arbitrary
move does not hurt first player. This results in a win for Player 1, this is a contradiction.
Thus at worst player 1 has a drawing strategy. �

Def.
A k-coloring of a graph is where every vertex is assigned a color among k colors. A set
is Monochromatic with respect to a coloring if every point in the set is colored with the
same color.

Def.
A set is called k-colorable if there exists a coloring with these colors such that no monochro-
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matic winning set exists.

Cor.
If no draw-end position is available then Player 1 has a winning strategy. In other words if
it is impossible to 2 color the graph such that regardless of the two coloring a winning set
will be monochromatic then Player one has a winning strategy.

The next theorem gives us a game that an explicit winning strategy for Maker.

Thm.
Given a finite graph (V, F ) of chromatic number at least 3. Take a second copy of the graph
(V ´,F´). Let W = V ∪ V ´ and G = F ∪ F´. Then on the Maker-Breaker Game on (W,G),
Maker has an explicit winning strategy.

Pf.
The idea is every time that Breaker makes a move Maker makes the opposite move in the
other half of the graph. If this is not possible at any point choose a remaining point at
random and this will not hurt Maker. Thus since the graph is at least three colorable then
each half of the graph has a win in it. Thus if Breaker has a winning set on one (F or F´)
then Maker has a win on the other half set since F and F´ are copies and Maker has the
copy of Breaker’s winning set in the opposite half. �

The most common way to guarantee a win or draw in a game is through a pairing strategy. In
other words whenever a Player makes a move you have a counter move that somehow negates
the other Players benefits of his previous move. We showed a couple pairing strategies above:
the pairing strategy one can give to obtain a weak win in the Maker and Breaker version
of 32 game (Tic-Tac-Toe). We also showed the pairing strategy for a strong draw in the 52

game.

Def.
A division of the vertices into pairs such that every winning set has at least one pair of
vertices is called a draw force pairing.

If a positional game has a draw force pairing then a player can always block every winning
set by choosing the other point in these pairs. The 52 game has a draw force pairing listed
above.

Now we define a matching criterion theorem.

Thm.
Let F be a family of winning sets if F satisfies the following condition: ∀G ⊆ F , 2|G| ≤
| ∪A∈G A| then there is a draw force pairing.
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Pf.
The König Hall Theorem applies here. Traditionally we think of a matching for König Hall,
however in this case we look at 2 element representatives. Another way, a matching exists
if we draw a bipartite graph between the set of vertices, V , and two copies of F . Thus we
have 2 element representatives for each winning set. �

Cor.
If F is a family of winning sets such that |A| ≥ n, ∀A ∈ F . If V is the set of all points and
for every x ∈ V , x is in at most n

2
sets then there exists a draw force pairing.

Pf.
For any subfamily G ⊆ F , we have n|G| ≤

∑
A∈G |A| ≤ | ∪A∈G A|

n
2

Here we have given any G ⊆ F , the size of the families contained in G are at least
∑

A∈G |A|
since each A ∈ G is of size at least n. Now looking at the points contained in these families
in G the number of times that each one is counted is at most n

2
. Thus we have

∑
A∈G |A| ≤

| ∪A∈G A|n2 . Multiplying both sides by 2
n

we apply the previous theorem. �

One can classify positional games into 5 classes.
1.) There does not exist a draw end position. (22 and the 33 of the nd game)
2.) There exists a draw ending position but still Player one has a winning strategy (43 game)
3.) The symmetric game has a drawing strategy but there exists a weak-win (32 ordinary
tic-tac-toe)
4.) There is a strong drawing strategy for Player two in the symmetric game (42) game
5.) There exists a draw force pairing for Player two (n2 for all n > 5) [2]
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Chapter 2

Quasiprobabilistic Method

After defining the Maker-Breaker version of a game and understanding its significance in a
positional game. We introduce a surprising method that helps to solve the Maker-Breaker
game for certain cases. The method is called the quasiprobabilistic method. The idea
behind it is to look over all possible plays of the game at random. Thus if the board size is
N there are N ! different plays of the game. Since each is equally likely the probability of an
occurrence of a particular game is 1/N !. If the large majority favors player one not receiving
a winning set then it seems as though Breaker would have a winning strategy. Similarly, if
the overwhelming majority of plays end with Maker receiving a winning set, Maker is likely
to have a winning strategy. Unfortunately playing randomly does not give an overwhelming
majority in the symmetric game. Thus, this method gives no help in the symmetric version
of positional games.

This method has two steps. The first is a probabilistic analysis of the randomized game.
The second step is the derandomization of the game by potential techniques. Here we arrive
at a new theorem.

Thm. (The Erdös-Selfridge Theorem)
This theorem states: If F is the family of winning sets and is n-uniform (every winning set
has n elements) | F |< 2n−1 then Breaker has a winning strategy in the Maker-Breaker game
on F.

Before we prove this above though let us prove a helper theorem first. This is the first part
of the quasiprobabilistic method. The proof of this theorem is going to look at the expected
number of winning sets on the board and find that the value is less than 1. Which would
lead us to believe that If F is n-uniform and | F |< 2n−1 then the chromatic number of F
is ≤ 2. This means that the graph is 2-colorable, there exists a play such that Maker loses
(does not occupy a winning set).
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Pf.
Let N be the number of spaces on the board. If the game is played randomly then the

expected number of winning sets occupied by either player is 2∗ | F | ∗(N−n[N/2])
( N

[N/2])
. Think of this

as saying that for each player and each winning set the other player has N-n possible board
positions that they can pick and they get N/2 choices. So the probability that you picked

the winning set is
(N−n[N/2])
( N

[N/2])
. Note: [N/2] is the largest integer that is less than or equal to N/2.

2∗ | F | ∗(N−n[N/2])
( N

[N/2])
= 2∗ | F | ∗ [N/2]

N
∗ [N/2]−1

N−1
∗ [N/2]−2

N−2
∗ · · · ∗ [N/2]−n+1

N−n+1
≤ 2 ∗ |F | ∗ 2−n < 1 Thus

the expected number is less than one so there exists a win for Breaker. �

Note: Though this theorem is not needed for the proof of the Erdös-Selfridge Theorem.
Going through this proof gives us an idea that perhaps we would want to try to prove a win
for Breaker, through a sort of derandomization.

Pf.
We give an explicit winning strategy for Breaker. After Maker’s initial move, Breaker will
try to minimize the ”danger” of Maker’s subsequent moves. Breaker does this by looking
at which points possess the most ”danger” and choosing one for the next move. Let us
define S (the set of survivor sets) to be the set of all winning sets not containing a point
belonging to Breaker (this set gets smaller throughout play). The danger function at round
i (where a round is a move for Breaker followed by a move for Maker) is Di =

∑
s∈S 2−us .

In other words it is the sum over all winning sets where each set contributes 2−us and us
is the number of remaining unoccupied points in set s. If at the end of play

∑
Dend ≥ 1

the set of survivor sets is non-empty, thus Maker has completely occupied some winning set.
Otherwise Dend < 1 so there are no survivor sets and Breaker has won. If Breaker can keep
Di < 1 ∀i, then Breaker would have a winning strategy. Well after Maker’s initial move(x1)
we have D0 =

∑
A:x1∈A∈F 2−n+1 +

∑
A:x1 6∈A∈F 2−n ≤ |F | ∗ 2−n+1 < 1. Imagine worst case

where x1 is in every set well even in this case the value of D0 is still less than 1. Now look
at Di at any round. Well Breaker will choose the value that lowers this function the most,
and Maker will attempt to maximize it to finish the round. Well notice that any particular
point will double the value of any survivor set containing it for Maker and destroy all those
sets for Breaker. This means that a best move for Breaker is the same as a best move for
Maker since any point will lower or raise the danger function by the same amount. Well this
in turn means that Di ≤ Di+1. Thus the danger function whose initial starting value is less
than one and Breaker has a winning strategy. �

Let’s now shift to a different problem that involves a similar argument to this potential
argument above. The following puzzle is called Solitaire Army. Many people have visited
restaurants and played peg solitaire where pegs get hopped over and removed and the object
is to have one peg left at the end. Well the difference in this puzzle is that instead of having
to remove all but one peg, one must get a peg to a certain position on the board.
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In the solitaire army puzzle the board is the integer lattice and there exists a horizontal line
such that all the men (pegs) are below this line. Now the question is how many men are
required to send man 1, 2, 3, 4 or 5 holes up into the half plane. It turns out that, for the
first 4 cases the number of jumps needed is respectively 2, 4, 8, 20.

Figure 2.1: Set-up for a 4-hole jump. [2]

However, sending a man five holes takes a few more men then twenty.

Thm.
It is impossible to send a man five holes into the plane with a finite number of jumps.

Pf.
First assign values to each hole in the plane such that if H1, H2, and H3 are 3 consecutive
holes, and v(H1), v(H2), v(H3) are their values. Then v(H1) + v(H2) ≥ v(H3). Thus when a
man from H1 jumps over a man at H2 we can think of this as replacing those two men with
a man with value v(H3) at hole H3. This change can never be an increase in value of the
position. What this set-up guarantees is that no play is possible from an initial position to
a target position if the position has a higher value.

Thus let us define w to be a positive number such that w + w2 = 1. If we assume that we
can jump a man 5 spaces forward into the half plane. Write a 1 five spaces into the half
plane, and extend it in the following way.

Now if you sum up the value of the top line of the plane we have w5+2w6+. . . = w5+2∗ w6

1−w =

w5 + 2 ∗ w6

w2 = w5 + 2 ∗ w4 = w3 + w4 = w2. This means the value of the upper half plane
is: w2 ∗ (1 +w +w2 + . . . ) = w2 ∗ 1

1−w = 1. This means that no finite number of points will
send a man five holes up into the half-plane. � [2]

11



Figure 2.2: [2]
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Chapter 3

Voronoi Game

The Voronoi game is an idea made up to study Competitive Facility location. The idea
behind it is that there are 2 players and a playing area. The object of each player is to take
as much area as possible. The way the play goes is that there are some number n pieces for
each player and each player alternates placing points on the board. At the end of placing
these points, the area owned by player 1, are those points that are located closer to a point
owned by player 1 than player 2. The remainder of area is given to player 2 (points closer
to player 2).

The question one asks is, what are optimal playing strategies for each player, and who is
guaranteed more area? A natural playing board for which one would ask this question is a
square. In fact the answer as to optimal strategies is not known. However a paper called the
One-Round Voronoi game [3] has shown results regarding this playing board. Summarizing
this paper, the idea of alternating turns is abandoned and instead the alternation of rules is
that player one plays all their pieces followed by player two. This paper’s results show that
player two has a winning strategy given a sufficient size n that guarantees at least a fraction
of 1

2
+ α where α is some constant independent of n. Though I will not reproduce the proof

of this result, I will give a brief sketch. For the proof the authors assume that the square’s
length is

√
n and that n is sufficiently large.

Thm.
For large enough n playing on a square arena in the One Round Voronoi Game, Player 2 can
receive 1

2
+ α fraction of the total area.

Pf sketch
The idea of the proof is broken down into stages. The first two stages are to show that a
random point’s expected value given n points from player 1 already played is at least 1

2
+ β

for some β > 0 and not depending on n. The first stage looks at the playing board of a torus
(as opposed to a square). The only difference between these two boards is that on a square
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a ”closest point” will not look at points wrapping around the edges of the square (thus the
points (0, 0) and (0,

√
n) are the same point). The second stage creates this same result

with boundary edges included. The third stage shows that one can select δn points where
δ > 0 does not depend on n, such that the expected value of these points is (1

2
+ β1)δn. Not

surprisingly the constant again does not depend on n. The final stage unsurprisingly shows
the main result, by using these δ random points and then applying an area stealing strategy
for large remaining regions. [3]

The main purpose of this portion of the paper is to show that if we play this game on
the perimeter of a circle (as opposed to a square area we are trying to get as much of the
perimeter as possible) player 2 can take over half the perimeter. Unfortunately after showing
this result, it was found to already have been proven in another published paper [4]. We
label the first player as Black and the second player as White. Though White can attain
more perimeter than Black I show that Black can make the amount that White can win by
arbitrarily small. There is one exception if we let n be the number of move for each player,
and n = 1. Then clearly they split the circle’s perimeter regardless of their moves. So for
n ≥ 2 the idea is as follows.

Let us first show that white can take more than n
2

of the circle.

Thm.
In the Voronoi game played on the perimeter of a circle, White (player 2) has an optimal
strategy that guarantees them 1

2
+ ε of the perimeter where ε > 0 is a constant chosen by

Black(player 1).

Pf.
First Black makes a move. Let D = d1, d2, . . . , dn be a set of points called dividing points
that divide the circle into n equal parts where d1 is Black’s first move. Thus for n = 8 we
have a picture like Figure 1.

Stage 1: White’s beginning moves are to take dividing points until none remain unoccupied.
Figure 2 represents one possibility:

Stage 2: At this point look at the largest distance between two adjacent black points.
This maximum distance is at most 1 since all the dividing points have been taken. This
corresponds to two blacks being on adjacent dividing points. At this point white begins to
insert white points into any point within these intervals with black endpoints having distance
1 (This will split the interval to give 1

2
to white and 1

2
to black). Now white has enough

pieces to do this because black has at most dn
2
e − k − 1 intervals, where k is the number of

points Black did not place on these dividing points. The number of white points used for
taking dividing points is bn

2
c + k Thus comparing these two values together we notice that

white has at least 1 point remaining after we have split all these intervals.
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Figure 3.1: Black takes first spot and divide circle into equal intervals

Figure 3.2: White takes a point on one of the dividing lines
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Figure 3.3: One such possibility of play where White breaks up Black’s largest intervals

Stage 3: After all these large intervals are broken up, white will spend his remaining pieces
(except the last one) in breaking up any intervals with two adjacent black pieces (this stage is
skipped if white only has one piece remaining). White can always break up intervals because
there is one more black piece to white piece on the board, which means there is always a
black interval that can be broken with a white piece.

Final Stage: Note that after black’s initial move the dividing points D create n intervals and
black cannot have a point interior to each interval since they at that point have only n− 1
points remaining. Thus one interval must be left without any blacks in it. Now white does
not have adjacent white pieces unless they are endpoints of an interval (they are both on
dividing points). Also note at this point that there are no adjacent black intervals that have
size ≥ 1. This means that there is at least one pair of adjacent dividing points that has no
black point or white point between them, and that at least one endpoint must be white.

Now if both endpoints are white use the final move to split a black interval. Otherwise look
at the longest interval that has two adjacent blacks. This must be strictly less than 1. Now
we take our last point by placing it close enough to the black endpoint such that the distance
between the adjacent whites is greater than this maximum adjacent black distance. Figure
4 shows the 2 possible endings.

If we look at all the intervals going around the circle we notice that for every interval that
has a black and a white endpoint, the amount of the interval is shared equally between black
and white. As for the adjacent white intervals they are all greater than the adjacent black
intervals. The number of adjacent white intervals is equal to the number of adjacent black
intervals and they are clearly both greater than 1. This means that white must hold more
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Figure 3.4: The top depicts the move if there are no adjacent whites. The bottom depicts
the move otherwise.
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than n
2

of the perimeter.

The proof to show that black can limit the amount that white wins by is much simpler.

Thm.
In the Voronoi game played on the perimeter of a circle, Black (player 1) has an optimal
strategy that guarantees them 1

2
− ε of the perimeter where ε > 0 is a constant chosen by

Black.

Pf.
Let ε > 0 be given. After black’s initial move, split the board (just as white did) into n divid-
ing points. Moving around the board clockwise place a black point that is between (1− 2ε

n
, 1]

of the previous black point. This makes the distance between any two black points greater
than (1− 2ε

n
). This means that white regardless of placement either splits these intervals, or

if more than one white is in an interval then black takes a whole interval somewhere else.
This means that the amount that black claims regardless of white’s placements is greater
than (1− 2ε

n
)n

2
= n

2
− ε.

Figure 3.5: Black’s play that guarantees n
2
− ε of the perimeter

This ends the proof and shows that white can always win this perimeter game, however black
can always decide how small they want the win to be. �
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Chapter 4

Revolutionaries and Spies

This portion of the paper is dedicated to the study of a combinatorial game called Rev-
olutionaries and Spies. This game is a two player game in which one player plays as the
Revolutionaries and the other (not surprisingly) are the Spies. The Revolutionaries object
is to bring a group together without a spy being present, and the Spies are trying to stop
it from happening. The question that arises from this game is how many spies are required
to prevent this revolutionary meeting? Well first let’s define the set-up and how the moves
(rounds) are defined in this game.

This game can be played in any dimension however this paper deals with the 2-dimensional
case, and the board is the integer lattice. Let r be the number of revolutionaries, and s be the
number of spies. The first round of play begins by the revolutionaries placing their pieces on
the board followed by the s spies being placed wherever on the board. Now note that there
is no restriction as to where pieces can be played (thus multiple pieces can be placed on the
same point). This is the end of round one. Every subsequent round works in the following
way, the revolutionaries may move any number of their pieces, and their movement is just
like a king’s move in chess. Thus each piece at the end of the revolutionaries turn will be in
one of 9 places based on the previous position (Each coordinate of the point can increase,
decrease or stay the same). After this the spies move in the same way. Again the goal of the
revolutionaries is to bring together some k revolutionaries to the same point without a spy
being at the same coordinate given any finite number of rounds to do so. Thus the question
is what is the minimum number s given k and r?

Def.
Let spies(r, k) denote the minimum number of spies needed to prevent a meeting of size k
given r revolutionaries in a finite number of rounds.

In dimension 1 it is easily showed that on the integer line for any goal k the number of spies
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needed to cover r revolutionaries is b r
k
c [5]. Here the idea is to equally split the group such

that each spy is on every kth revolutionary moving left to right (thus each spy is on the
kth, 2kth...) revolutionary, and the Spies can hold this invariant. In two dimensions this
number does not work unfortunately. This paper explores that for r = 8 revolutionaries on a
2-dimensional board and a goal of k = 2 the minimum number s that is needed is 6. In fact
for numbers 3 through 8 there needs to be at least r − 2 spies to stop the revolutionaries.

Thm.
spies(r, 2) ≤ r − 2
Pf.
Note if it is true for r = 3 then we can place a spy on all but 3 revolutionaries and reduce it
to that case. Thus I show r = 3.
Given any position of the revolutionaries, place the spy in the ”middle” of all of them. In
other words look at the x-coordinate of all three and choose the middle value, and do the
same for the y-coordinate. You’ll notice that no matter how the revolutionaries move you
can always keep this invariant since the middle only alters by at most 1 for each coordinate.
Finally, note that if the revolutionaries were ever to meet the middle would be located where
the meeting place was. �

This shows that r − 2 is good enough for 3. However interestingly one can quickly see
that if the spy were to ever deviate from this strategy, in the case of 3 revolutionaries, two
revolutionaries could meet. There are other somewhat short proofs for the other numbers
up to 7. When it comes to 8 though a short proof seems difficult to find. Without further
ado I prove this result.

Thm.
spies(8, 2) = 6 Thus spies(r, 2) ≥ 6b r

8
c for r ≡ 0 or 1 mod 8. Also spies(r, 2) ≥ 6b r

8
c+ t− 2

for r ≡ t mod 8, t 6= 0, 1 and t < 8.

Pf. Enough to show that spies(8, 2) > 5
Let us first suppose that 5 spies are enough to prevent any 2 of 8 revolutionaries grouping
together without a spy present. The proof that follows will be a breakdown into different
cases eventually showing that none are possible. Let us start by showing an initial position
of the revolutionaries.

In figure 1 the X’s represent revolutionaries, and to ease explanation let us suppose that the
center dot is in position (0,0). The Box B1 represents the rectangle [−2, 2] × [−2, 2]. The
inner box B2 is the box [−1, 1]× [−1, 1].

Case 1:
Suppose ≤ 1 spies are outside B1. Then either all spies must be strictly left of the line x = 3,
or strictly right of the line x = −3. Let’s suppose the former case. This means that the spy
at (3, 3) and (3,−3) can meet at (6, 0) in three moves. No spy can reach this because at
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Figure 4.1: The starting position

most it has x-coordinate 2 which means in 3 moves it could only reach as far as x = 5. The
latter case is symmetric.
Now ≥ 2 spies outside B1.

Case 2:
Suppose ≤ 1 spies are within B2. Since at most 3 spies reside within B1 and outside B2 (by
case 1) these spies can reach at most 3 of the points {(0, 1), (1, 0), (−1, 0), (0,−1)} (circles
with dots in the diagram) within one move. Without loss of generality let E1 (point (0, 1))
be a spot which they can’t cover on the initial move. The top 2 revolutionaries in B2 at the
points {(−1, 1), (1, 1)} will move to E1 on their first move. The bottom 2 revolutionaries at
the points {(−1,−1), (1,−1)} will move to the center point (0, 0). Thus E1 and the center
point (0, 0) must both be covered by a spy. This is impossible since at most one spy is in
B2 and only that spy can reach those points which means one of these points would mean a
win for the revolutionaries.
Now ≥ 2 spies in B2.

Case 3:
Suppose there are 3 spies are strictly outside B1. First note that one spy must be placed
on an outside revolutionary (i.e. on one of the points {(−3,−3), (−3, 3), (3,−3), (3, 3)}).
The reason is because within 3 moves, a meeting of revolutionaries can occur at the points
{(6, 0), (−6, 0), (0, 6), (0,−6)} and the only way a spy can cover 2 of these points is if he is
located directly on one of the outside revolutionaries. I will assume the top right point has
a spy (3, 3) without loss of generality. In fact for all remaining cases I will assume a spy
located at this specific point because we have already proven there are ≤ 3 spies outside B2.

Case 3a1:
Suppose the remaining 2 spies are not located in opposite corners of the box B2. In this case
at least one of the 4 internal walls must be left uncovered by an internal spy. An internal
wall in this case are the points along the edge of the box B2 (i.e. the east internal wall are
the points {(1,−1), (1, 0), (1, 1)}). A spy is on 2 internal walls if and only if it is in a corner
of B2, so since at least one spy is not on a corner by assumption at most 3 internal walls
can be occupied by a spy. Now notice that both spies cannot be on the same internal wall

21



inside B2 else the 2 revolutionaries not on that internal wall can immediately run together
and create a win (thus if 2 spies were on the north internal wall, the two revolutionaries on
the south internal wall could meet at point (0,−1) to create a win. So now let’s suppose the
east internal wall is uncovered as in Figure 2 (which is identical to the north internal wall
being uncovered in the diagram just flip position about y = x to obtain this).

Figure 4.2: Given that there must be a spy on the north east outer corner, and supposing
the east internal wall was left uncovered. Letters ‘a’ through ‘d’ represent immediate danger
spots.

Given the east internal wall is open spy 1 must be placed on the east outer wall to be
able to block wins ‘a’ (point (2, 0)) and ‘b’ (point (2,−2)). An outer wall corresponds
to the points outside B1 on one specific side (so the east outer wall would be the points
{(3,−3), (3,−2), (3,−1), (3, 0), (3, 1), (3, 2), (3, 3)}. This forces spy 5 to be in the bottom left
(point (−3,−3)) covering both west and south outside wins (wins at the points {(0,−6), (−6, 0)}
in 3 moves). Now spy 4 must be placed exactly in the top left inner corner of B2 to prevent
win ‘d’ (point (−1, 1)). Thus spy 3 must be placed at (0,−1) since we already stated that
it must be within the inner box B2, it cannot be on the east internal wall or on the same
internal wall as spy 4, and it must protect the win at ‘c’ (0,−2). The winning strategy
for the revolutionaries is moving the revolutionary at (1, 1) and the revolutionary at (−3, 3)
towards position ‘w’ (position (−1, 3)), meanwhile running the two revolutionaries on the
west internal wall together at point (−2, 0). Since only spy 4 can have cover both positions
(−2, 0) and (−1, 3) in time we have a win for the revolutionaries.

Case 3a2:
Now suppose the south internal wall was uncovered see Figure 3 which is identical to the
west internal wall being uncovered (again just flip over y = x to show this).

Now a spy has to be in L1 to prevent the move ‘d’ (point (−2,−2)) and the winning move
to the west (point (−6, 0)). Thus spy 1 is forced to its position on the bottom to protect
wins ‘b’ and ‘c’ (points (0,−2) and (2,−2)) and spy 4 must be at (−1, 1) to protect win
‘e’. Thus spy 3 must be exactly placed as such to stop win ‘a’ at point (2, 0) and by our
initial assumption it must be located on a different internal wall than spy 4 and it can not
be placed in the corner by our current assumption that the south internal wall is uncovered.
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Figure 4.3: Just as Figure 2 except this time let the south internal wall be left unguarded.

Now the winning move for the revolutionaries is as before except that spy 4’s revolutionary
(point (−1, 1)) and the revolutionary below it at point (−1,−1) move together at point
(-1,0), again forcing 4 to cover both this point and ‘w’ (point (−1, 3)).

Figure 4.4: This is the case when the inner two spies are not aligned with the north east
outer corner. The win is at ‘w’ or ‘ẃ ’

So there are 2 cases remaining here where there are 3 outside spies (spies located outside the
box B1). Either 1.) the spies inside B2 are at positions (−1, 1) and (1,−1) or 2.) they are
at positions (1, 1) and (−1,−1).

Case 3B1:
Well looking at the non-aligned case (Figure 4) we have 3 spies fixed at points {(−1, 1), (1,−1), (3, 3)}.
One of the two remaining outside spies must be placed in L1 to prevent the corner win at
point (−2,−2). The other can not cover ‘w’ and ‘ẃ ’ at the same time in ≤ 2 moves. With-
out loss of generality let’s suppose that the final outside spy does not cover ‘ẃ ’. Here the
winning strategy is for revolutionaries X1 and X3 (points (−1,−1) and (1,−1)) move to
(0,−1) (point ’a’) forcing the spy at (1,−1) to block that win, meanwhile points X5 and X2

race towards point ‘ẃ ’ (3,−1) which creates a win.

Case 3B2: (a little tricky)
In this case (Figure 5) both remaining spies must be in each of L1 and L2 to protect the
corner wins at (2,−2) and (−2, 2). Now note if either one is not in circle 1 or 2 (points
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Figure 4.5: The aligned case where wins are at ‘w’ or ‘ẃ ’, unless spies are at circles 1 and
2. In this case win is shown in Figure 6.

(1,−3) and (1,−3)) respectively a win is immediate at either ‘w’ or ‘ẃ ’ (point (−3,−1) or
(−1,−3)) in a similar fashion as in case 3B1. Thus suppose we have this initial condition
with the remaining two spies outside B1 at (1,−3) and (−3, 1).

Figure 4.6: This is the forced board if you move the inner north two revolutionaries as such.
The spies must move accordingly to prevent immediate wins. Still, a win is made available
at position ‘w’.

The following strategy for the revolutionaries creates a picture as in Figure 6. Let X2 move
to the center (0,0) and X3 move right 1 to (2, 1). For the spies first note that Spy 1 must
stay put at (3, 3) to protect both north and east outer wall wins at points (6, 0) and (0, 6).
Spy 3 (located originally at (−3, 1)) must be in L3 to prevent the west outer wall win at
(−6, 0). Spy 4 (originally at (1, 1)) cannot decrease its x-coordinate because it must be able
to protect against the win at (2, 0) with X4 and X2 on the next move. This means that the
spy located at (−1,−1) will be in L2 (thus either stay put or move one to the left) to protect
against wins ‘b’ (−2,−2) and ‘a’ (−1, 0). Spy 4 must be located exactly as placed (0, 1)
because he alone must be able to protect against winning points at (0,−1), (2, 0), (1, 1). The
spy in L2 might have to simultaneously protect the win at ‘b’. Spy 5 (originally located at
(1,−3) must move one to the right because he must protect against wins at c (2,−2), ‘ẃ ’
(5,−1) and (0,−6). This is the only spot reachable from which it can block all three of those
winning spots in the necessary number of moves.
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Revolutionaries at (0, 0) and (−1,−1) move to point ’a’ (−1, 0) and meanwhile move points
X4 and X6 move to point w (−1,−3). The spy in L2 must protect the win at ’a’ which
allows the win at w.

We have now taken care of the cases where there are 3 spies outside our B1 box construction.
Now let’s look at the case where there are 3 spies within B1. First note given that there
are only 2 spies on the outside, they must be located on opposite corners so that they can
protect against all 4 outer wall wins mentioned above {(6, 0), (0, 6), (−6, 0), (0,−6)}. We will
say without loss of generality that the two spies are located at positions (3, 3) and (−3,−3).

Figure 4.7: Here is the initial set-up now that we know that 2 must be located on the outside
at the corners. One Spy must be in each or C1 and C2. Immediate danger spots are letters
‘a’ through ‘d’. C1 and C2 must each contain a spy.

Case 4:
First let’s note that one spy must be in each of C1 and C2 (boxes [−3,−1] × [1, 3] and
[1, 3] × [−3,−1]) to protect wins ‘a’ (−2, 2) and ‘c’ (2,−2). This is shown in Figure 7.
Without loss of generality we can assume the final spy satisfies y ≤ x, y ≥ −x (just rotate
about the lines y = x and y = −x to obtain this).

Case 4a:
Let us suppose that the final spy is anywhere except (1, 1). The following provides a winning
move for the revolutionaries. Move the two revolutionaries at points (−1, 1) and (−1,−1) to
point (−2, 0), this will force the spy in box C1 to protect against this win. Meanwhile move
revolutionaries at points (−3, 3) and (1, 1) to point (−1, 3) this will result in a win since no
other spy can reach these in time.
We know have a spy at (1, 1).

Case 4b: (last case also a little tricky)
We are left with the position shown in Figure 8.

Now we have shown that at least 2 spies must be in B2 and so we have pinned down 4 spies
(Again we have symmetry argument and choose the top left to be fixed thus a spy will be
in point (−1, 1)). The last spy must be in R2 (points (1,−1) or (1,−2)) since it must be
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Figure 4.8: Last possible opening position for the spies.

in C2 and it must stop the immediate win at point (0,−1). Now we have a strategy for
the revolutionaries. The first move (as shown in Figure 9) moves the revolutionary at point
(−1,−1) to (−2,−2) and revolutionary at (−1, 1) to the center (0, 0).

Figure 4.9: The moves by revolutionaries X1 to point (−2,−2) and X3 to point (0, 0) causes
the spies to be in the pattern as shown.

First note that the two spies outside B1 must remain in their initial positions to guard against
wins at (±6, 0), (0,±6). It is clear why (3, 3) is fixed. Note the spy at position (−3,−3)
must still protect the win at (0,−6) since the spy in R2, that could have moved to the outer
edge from (2,−2), must protect against revolutionaries X1 and X4 meeting at (0,−3) which
means it cannot guard the other position. Now given that those are fixed the spy in R2 may
have been located at (1,−1). If so it must decrease its y-coordinate by 1 otherwise X1 and
X5 could meet in position (1,−5) before the spy in R2 or anyone else could get there. It
must also stay within C2 as before, and if it were to have moved right then you could let
X4 and X1 meet at point (−1,−3) meanwhile sending the west outer wall revolutionaries
toward point (−6, 0). Thus we have a spy in R2́ . The spy located originally at (1, 1) cannot
decrease it x-coordinate because it must prevent the win at point (2, 0). This forces the spy
originally located at (−1, 1) to decrease its y-coordinate to protect win ‘a’ at (−1,−1). This
same spy must also decrease it x-coordinate to prevent revolutionaries X1 and X2 meeting
at (−5, 1). This finally forces the spy at (1, 1) to move to point (1, 0) because it must protect
against the wins at {(2, 0), (0, 1), (0,−1)}. Note the spy in R2 cannot help prevent these
wins since independently it must protect against the meeting of X1 and X5 at point (1,−5).
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Now however we have opened up a win at point ‘w’ (−1, 3), with revolutionaries X2 and X7.

This has exhausted all the possible plays of the spies given this initial opening set-up by
the revolutionaries and in every case we have a win for the revolutionaries. By spacing out
sections of size 8 a reasonable distance away from each other we can attain the desired bound
for spies(n,2). �

27



Bibliography

[1] The American Heritage Dictionary of the English Language,Houghton Mifflin Com-
pany,2000
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