DETERMINING MEMBERSHIP WITH 2 SIMULTANEOUS QUERIES

DAVID HOWARD

ABSTRACT. Alice and Bob are playing a cooperative game in which Alice must devise a scheme to store n
elements in an array from a universe U of size m. Her goal is to store in such a way that for every x € U
Bob can observe the values of two positions (dependent on ) in the array and determine whether z is in the
array or not. Alice may share her storage scheme with Bob and they win if such an arrangement is made.
The question is how large can the universe U be in terms of n so that Alice and Bob can win? In this paper
we give upper and lower bounds on this question for general n and the special case when n = 3. We also
pose conjectures and further questions for research.

1. INTRODUCTION

Sorting and searching are fundamental operations that we use everyday in many different ways. Our
assumptions change from problem to problem and we are frequently concerned with having these operations
done as quickly as possible. We are sometimes concerned with how long an operation will take us to complete
in the worst case, other times knowing the average amount of time to complete such an operation is important.
There is a large amount of research in this area and for an encyclopedic but by no means comprehensive
discussion in the area we refer the reader to [4].

Let us look at a particular but normal instance of sorting and searching. Suppose Alice has a list of n
objects taken from a Universe U and we must choose a good storing scheme so that if Bob wants to determine
whether a particular element x is among our n objects he doesn’t need to search the entire string to decide
whether x is in the list or not. Well immediately questions come to mind:

e Is Bob aware of the storage scheme?

e What do we know about the universe?
- Do we know what all the possible items are in the universe?
- Are the items comparable with each other in some way (i.e. can they be ordered)?
- Is the universe finite and if so how does it compare to n?

Well the answers to both knowing the storage scheme and comparability must be yes otherwise Bob may
have to traverse the whole list on some searches. Given these two assumptions perhaps the most natural
thing to do is to look at the storage scheme that completely sorts the n element input. Now when Bob wants
to determine if a particular element is in the list he can perform a binary search of the list which runs in a
logarithmic number of steps. Knowing nothing else about U this strategy has the best possible average run
time. That being said it is often the case that we have additional assumptions on U. For example, perhaps
we have knowledge of the elements in U and that |U| is finite. Now choosing to sort the elements in order
and having Bob perform binary search may not be the best method of quickly finding membership among
the list.

Let us suppose we have knowledge of the elements of the universe and that the universe is finite. Knowing
the elements of the set means that we can assign numerical values to each element and impose an order.
Thus, we can assume our universe is the set of integers from 1 to some integer m. Without any knowledge
of the value of m compared to n, sorting in order and using a binary search to determine membership in our
list may seem like a reasonable strategy. What if, however, m = n + 17 In this case in-order sorting and
performing binary search is a rather poor strategy. If Alice, as a storage scheme, places the integer above
(modular n) the missing element in the first position of the list, then Bob by looking at the value stored in
the first position can determine exactly who is in the list. Bob in this case needs to query a position in the
list just once to complete his goal. This naturally begs the question: How big can m be so that only one
query is needed to determine membership of any particular value from the list?
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This question has been solved [16] and the answer is m = 2n — 2 for n > 2 (Note: for n = 2 the answer is
3). To show that 2n — 2 is possible we list the storage scheme from [16].

Let the universe be the set [2n — 2] and our storage list be denoted as rooms with labels 1,2,...,n. We
say that each element p € [2n — 2] prefers to stay in the room (p mod n) (In the case of 0 choose room n
instead). We also denote the first n elements as lower elements and the last n—2 elements as upper elements.
We say room r is full if all members who prefer room 7 from the universe are among the n elements to be
stored and empty if no members prefer room r. Note there are always at least two full rooms and rooms
n — 1 and n are either full or empty whereas the other rooms may be neither. Storage is as follows:

e Any element that prefers a room that is not full is stored in that room.
e If an upper element prefers a room that is full it is stored in a room that is empty.
e If a lower element prefers a room that is full it is stored in a different room that is full.

To determine membership for an element p € [2n — 2] Bob queries room p’ = (p mod n) (In the case of
0 choose room n instead). If p’ contains p or another lower element that does not prefer p’ as a room then
p is in one of the rooms, otherwise it’s not.

We leave it to the reader to verify that this scheme will work. That being said perhaps the next logical
question is: How big can m be if you allow two queries of the list to determine membership? Well, this
question isn’t well-defined because it isn’t clear whether Bob can use the information obtained by one query
to help decide where in the list Bob makes the second query. In an upcoming paper Paul Horn, Adam
Jobson, Andre Kezdy, and Jake Wildstrom [5] give an adaptive membsership algorithm (i.e. Bob can use
the information from the first query) , which is similar to Yao’s algorithm, where m = 3n — 4. At the time
of writing there has been no upper bound found for m regarding an adaptive strategy. The main results of
this paper give upper and lower bounds for the non-adaptive question (Bob apriori must decide which two
positions in the list he will query and then based on these answers determine whether a particular element
from the universe is in the list).

We make one other point of note from Yao’s article that given special additional arrangements two
queries is enough to determine membership under the adaptive scheme. In fact, in this special case when
Bob determines that someone (Person x) is among the stored rooms then the member seen by the second
query will actually be Person z. Specifically, given an arbitrarily large universe and an additional room
which is occupied with whomever Alice chooses, Bob can determine membership with only two queries. Bob
determines who Alice has put in the additional room and this person acts as an index (Alice has many
different storage schemes and the additional person tells Bob which scheme to choose from). Bob can then
query a specific room which will either contain Person x or Bob will claim that Person z is not among the
stored list.

2. RELATED WORK AND PREVIOUS RESULTS

Despite the simplicity of the question “Is x in one of the rooms?” from a computer science standpoint the
question can quickly become quite difficult to even ask:

e How is the information stored (e.g. A linked list of integers? A zero-one array which has the size of
my universe? etc.)

How many rooms do I have?

What type of answer do I get from my queries (numerical/boolean)?

How many such queries am I entitled to? What is my universe size?

e Are my queries adaptive?

In this article, we assume that queries give a numerical answer (which for a computer means the size of
the answer is logarithmic in the size of the finite universe). This model is known as the cell-probe model. In
general there are a variety of parameters that one can adjust for this question about membership. A very
popular approach to this problem is for the queries to give only true/false answers, known as the bit-probe
model.

Under this boolean query assumption, a variety of results have approached the problem from a different
angle [1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Namely, given a fixed set of rooms n and universe [m]
with ¢t queries, how large (in terms of bits) does a data structure need to be to for any element from [m)]
to be able to determine membership using at most ¢ bit-probes? Furthermore, are these probes adaptive or
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non-adaptive. In [3, 14] the authors even add the complexity of bit-probes having a probability of returning
a false answer. This question regarding size of the data structure is well-defined as it should be clear that
m is always an upper bound in terms of storage (One can store a 0-1 vector where a 1 in the ith position
indicates membership for value i. Thus, only one query of this structure is needed).

Much of the previous work on membership is on adaptive queries, which one can argue seems a more
natural question. That being said non-adaptive schemes have been studied in other works [1, 3, 12, 13].
Non-adaptive questions in some sense are simpler to study because analyzing the possible decisions for
adaptability are difficult to do (we again note no upper bound is yet known in the adataptive version of this
problem [5]). Results of this nature also provide lower bounds for their adaptive counterparts.

We direct the reader to [6, 7] for a good survey of research pertaining to the question of membership.

3. BOUNDS FOR THE NON-ADAPTIVE TWO QUERY PROBLEM
Let m,n be integers. Let ([Z’]) denote the n element sets of [m] and for every set @ € ([Z’]) denote Q[i] as
the i-th smallest element in ). Now let F' be the family of functions that take ([ZL]) to a permutation on n
elements. Thus, for f € F, we say [f(Q)](i) represents where the permutation f(Q) maps the i-th element.
We shall call the functions from F' storage schemes. For each f € F and @ € ([:'Z]) we can define a function

gf,¢ which is an injective map from [n] to @ such that g0 ([f(Q)](i)) = Q[i] (or gr.o(j) = QUf(Q)]~1(H)]).
In layman’s terms f is Alice’s storage scheme, @ is the set to be stored, and g¢ () represents the element

stored in position i among the n positions. Finally, define Gy as the set of all functions gy g over all @ € ([ZL]).
Thus, G represents all the different storage mappings corresponding to the different n sets of [m].

Ezxample 3.1. Let n = 3 and m = 5. There are (g) = 10 sets of size 3 and 6 possible permutations. Namely:

Sets Gy 35379(2)7
1,2
@ | {1,2,3} Permutations | o(1),0(2), g9r0, | 1,2,3
Q2 {17274} 3 1,4,2
1,2 o(3) 950 | L4,
Q3 { ) 75} 1.2.3 2.1.5
g1 ) £y gﬁQs 5 Ly
Qs | {1,3,4} 1.3.2 4,1,3
02 )9y 9f,Qa4 )
Q5 {17375} 2.1 . 1
g3 ) a'?) 9f.Qs 3a5,
Q6 {17475} 2 1 4.1
04 a35 9f.Qs 5) )
05 ) 9f.Qr 3 9y
QS {27375} 21 2
06 3a ’ 9f,Qs )573
Qo | {2,4,5} 4,2,5
QIO {37475} gf,QQ o
9f,.Qi0 | 9:3,4

We define f(Q;) = 0, jod6 (In the case of 0 use 6 instead) to get the third table. So, [f(Q10)](2) = 3 and
9£.010(3) = Q10[2] = 4 for example.

So for given m and n values Alice and Bob must choose a storage scheme f for Alice to use. Now for each
element j € [m]| Bob must determine two queries q}q? € [n] such that for any g1 = g5,0,,92 = 91,0, € Gy
if 91(q}) = g2(q}) and g1(q7) = g2(¢}) then either (j € Q1 and j € Q2) or (j ¢ Q1 and j & Q2). If such a
set of query assignments exists we shall call Gy consistent. Plainly, G is consistent if element j has query
positions q]%q? and the values of g(q}) and g(q]?) determine whether j is a member of the input set or not
for all j.

The above example is indeed consistent because by looking at the first two elements stored in the list
one can immediately determine what is the 3rd element in the list. Thus, for each number let the 2 queries
be the first two elements of the list. There are, however, bad choices for the queries that would not insure
being consistent. For example, if Bob decided the membership queries for element 2 to be the 2nd and 3rd
positions in the storage list then he could not tell the difference between ()7 and Q1o being stored. In Q7 2
is in the list and in Q1¢ 5 is in the storage list, thus determining membership for element 2 can not be done
under this choice of queries. That being said element 1 could happily query the second and third positions
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in the storage list. Even though seeing the elements 3 and 4 (respectively) in the last two positions does
not determine the element in position 1, in all such cases position 1 does not contain element 1. Thus,
membership for element 1 can be determined.

Theorem 3.2. Forn > 30, if [U| = m > 6(}) logy n then there is no f € F such that Gy is consistent.

Proof. Tt is enough to prove for m = [6 (Z) log, n] because we can always restrict the input domain for larger
m. Suppose not and that there does exist an f such that G is consistent. Therefore there exists a choice
of queries for each of the m elements that shows G is consistent. By the pigeonhole principle there exists
two positions that are queried for at least [6log,n] elements. Without loss of generality we shall assume
these positions are 1 and 2 and let S be a set of size [61og, n] elements that queries positions 1 and 2. This
implies that by looking at the first two positions of the list one can determine membership for the subset of
elements in S among any given input set from ([77?]).

At most there exists m(m — 1) different ordered pairs of values seen in positions 1 and 2. Meanwhile
there are 2/ possible subsets of S and further there are members of (")) that witness each possible subset
([61logy n] < n). Thus m(m — 1) needs to be larger than 25!, However,

36 '
m(m _ 1) < Zn4(10g2 n)Q < TL6 < 2[6103,2 n] _ 2\5’\
O

We note here that Theorem 3.2 can be improved in the following way:
For € > 0 there exists an n. such that if n > n. and m > (4 +¢) (g”) log, n then there is no f € F' such that
G is consistent. This is true since for large enough n:

(4+¢)?

m(m—1) < n*(logyn)? < nite < oltalogan] _ 9IS

It is the author’s opinion that this upper bound is far from the actual truth for where the threshold of
consistent Gf’s arise.

Conjecture 3.3. There exists a constant k such that for n > 3 and m > kn then there is no f € F such
that Gy is consistent.

The conjecture stems from the attractiveness of the lower bound and the complicated simultaneous inter-
section of queries that would need to be dealt with if the threshold were w(n). For example in the proof of
Theorem 3.2 we said positions 1 and 2 must determine the membership of the set S however meanwhile we
may argue there is another set S’ that queries positions 2 and 3 and yet another set S” that queries positions
1 and 3. Each of these queries must simultaneously transmit the information of membership of S,5" andS”
without in some sense getting in each other’s way. The lower bound for the threshold of consistency is linear
in n because this construction does not have any cross-over among queries. Additionally, the lowerbound
threshold for adaptive queries (The second query can be decided as a result of the information received from
the first query) is also linear in n and the threshold for this setting is an upperbound on the non-adaptive
setting.

Theorem 3.4. Forn >4, if [U| =m < [3n] — 3 there exists an f such that Gy is consistent.

Proof. For this proof we give an explicit construction of such an f given m = LgnJ — 3. To illustrate this
construction we will first assume that n is even and we will split the queries into § pairings of queries. Thus,
elements 1 through 5 will query positions 1 and 2, elements 6 through 10 will query positions 3 and 4, etc.
Note that only elements m — 1 and m query the final two positions.

We will illustrate the storage function for the first five elements in Table 1, and claim an analogous storage
function for the other elements with the exception of m — 1 and m which will be dealt with differently.

We repeat this storage function in 5 integer increments analogously for each pair of positions to nearly
completely define our storage scheme with the exception of the last 2 positions.

This storage function is almost perfect in that it is almost entirely self-reliant since almost all that matters
to the scheme is what subset of the 5 numbers is to be stored. The only thing that is occasionally needed
are outside elements that MUST be available. So why does this argument fails for m = %n and n even?
Well suppose we want to store the set {1,3} {8, 10,13, 15, 18,20, 23,25,...,m—2,m}. The storage function
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TABLE 1. Storage assignment for all but final positions (addition is modulo 5)

Subset to be stored Ordered pair stored

All numbers 1 through 5 {1,3}

Set of size 4 with ¢ — 1 removed | {i +1,¢}

{i)i+1,i+2} {i,i+1}

(i— 14,0 +2) {i+2,i}

{i,i+2} (not {1,3}) {i,i+2}

{t,i+1} {#,X} (where X is not an element 1 through 5)

{1,3} {X,1} (where X is not an element 1 through 5)

{i} (not {1}) {X,i} (where X is not an element 1 through 5)

{1} {X2,X;} (where X; < X5 and X3, X3 are not elements from 1 through 5)
0 {X1, X2} (where X; < X5 and X3, Xo are not elements from 1 through 5)

TABLE 2. Storage Assignment for final pair in even case

Subset to be stored | Ordered pair stored

{m —1,m} {m-1,m} OR {m,X}

{m -1} {X,m-1} (where X is not m or m — 1)
{m} {X,m} (where X is not m or m — 1)

0 {X,Y} (where X,Y are not m or m — 1)

wants to look like [X,1,8,10,13,15,18,20,23,25,...,m — 2,m] but 3 doesn’t get stored anywhere and X
cannot be taken from anywhere.

A similar problem occurs with Yao’s original problem in that 2n is almost possible except for the case
when there is exactly one full room and one empty room. The full room does not have access to a lower
element from another room. Thus, just like for Yao’s original problem we need a clean-up crew (namely the
final two positions) which is given in Table 2.

We claim that we can now put all these storage functions together in such a way that we can build a
storage scheme. The first observation is the only problem we may face is needing a value from the outside
positions when none are available and thus can’t use the storage function in its original form. We also
notice that the amount of excess values (overflow from a paired position) is equal to the amount of shortage
(shortage of values for a paired position). Sometimes a paired position has both excess and shortage (e.g.
if 1 is the only element from the first 5 to be stored 1 does not appear in the first pair of positions but
requires two outside values). Ultimately any pairing of shortage values with excess values will work except
matching a paired position’s shortage with its own excess. We note this can only happen corresponding
with a paired position behaving like lines 6, 7, or 9 from Table 1. We give explicit instructions for how the
extra storage values will be stored (a cyclical assignment). Starting at the values that query positions 1 and
2 among values, if there are an excess of values give these values to the first available positions that need
it in increasing order of positions (i.e. if all numbers 1 through 5 are to be stored somewhere in the array
positions 1 and 2 are given the values 1 and 3, the excess values are 2, 4, and 5) . Now repeat this process
for the values that query positions 3 and 4 and give any excess values to the first available positions that
need outside values in increasing order (cycling around back to positions 1 and 2 if necessary). Continue this
process until the n—1 and n position cycling the excess around if necessary. The only problem that will exist
is if the excess values cycle all the way back around to where they came from. Explicitly, this will necessarily
mean that there is only one pair of positions that has a shortage of values and this pair will also have excess
values as well. For example something like {1,3}J{8,10,13,15,18,20,23,25,...,m —4,m — 2,m — 1, m}
or {1,8,9,10} U{13,15,18,20,23,25,...,m —4,m — 2, m — 1,m}). We note in both cases positions 1 and 2
produce both a shortage and an excess and there is no other pair that produces a shortage and an excess.
Additionally, in both cases only one additional outside value is needed. In such cases both m — 1 and m
must be in the set and in these special cases m — 1 can be taken from the final pair of positions and used
as an excess for the position pair with a shortage and the final two stored values will be {m, X} where X is
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TABLE 3. Storage Assignment for final three positions when n is odd

Subset to be stored Ordered triple to be stored (X,Y,Z are elements outside the last four)

0 {X.Y, Z}

{m -1} {X,Y,m—1}

{m} {X,Y,m}
{m—1,m} {X,m—1,m}

{m — 3} {m-3,X,Y}
{m—2} {m—2,X,Y}
{m—-3,m—1} {m—-3,X,m—1})
{m —3,m} {m —3,X,m}
{m—-2,m—1} {m—-2,X,m—1}
{m —2,m} {m—2,X,m}

{m—-3,m—-1,m}
{m—2,m—1,m}
{m —3,m—2}

{m-3m—-2,m-—1}

{m—=3,m—2,m}

{m—-3,m—1,m} or {m—3,m, X}
{m—2,m—1,m}or {m—2,m, X}
{m—-3,m—-2,X}

{m—-3m—-2,m—1} or {X,m—2,m— 1}
{m—=3,m—2,m} or {X,m—2,m}

{m—-3m—-2,m—1,m} | {m—2m—3m}

the excess value from the paired position with the shortage. So for the first example we would have X = 3
and the second example we would have X = 1.

The final piece to clean up is when n is odd. In this case the final three positions are special. For the
final three positions we look at the final four elements to be stored namely {m — 3,;m — 2,m — 1,m}.

If at most one of m — 3 and m — 2 are to be stored then reduce to the even case of n by either storing the
one variable in the third to last position or it needs a value from somewhere else but doesn’t provide any
excess values in which case no excess values will cycle back to their original position where a value is needed.

If both m — 3 and m — 2 are to be stored and exactly one of m and m — 1 are to be stored the storage
function is either:

{m —=3,m —2,m (or m — 1)} or {X,m —2,m (or m — 1)} where X is a value not among the last four
elements. The first storage function is used in all cases except if an excess value is needed so as to avoid an
excess value cycling around to its original pair of queried positions.

If both m — 3 and m — 2 are to be stored and neither m or m — 1 appears then store the last 3 positions
as {m —3,m — 2, X} where X is an outside value.

Finally, if all 4 are present store it as {m — 2, m — 3, m}.

The storage scheme is summarized in Table 3.

Elements m — 3 and m — 2 query the n —2 and n — 1 positions meanwhile m — 1 and m still query the final
two positions. It is clear that in all cases but one m — 3 and m — 2 will be able to witness themselves to test
membership (the one case being X, m — 2 in which case it is still clear). As for m — 1 and m by seeing an
m — 3 in the second to last position implies that both m — 1 and m are in the input set whereas m — 2 in the
second to last position means only the final position determines membership of m — 1 and m (at most one
being in the set). In all other cases the membership of m and m — 1 behave like the even case for n. We take
note of the four cases that can be stored in two different ways. How these sets are stored again depends if
there is exactly one position that has a shortage and this pair also produces an excess. This case is handled
identically as it is in the even case. If an additional excess value is needed then the second storage option is
chosen and the argument for consistency is the same as in the even case. Thus, we find this scheme to be
consistent. |

We note here that it is unlikely that a better storage scheme exists that does not include overlapping of
queried positions among the elements (i.e. element X queries positions one and two meanwhile element Y
queries positions two and three for example). The scheme is tight in the sense that Bob when looking at
positions one and two cannot distinguish between outside elements other than which is larger than the other.
If Bob could in some way use the outside elements more to his advantage in which ones are stored in the first
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two positions it may be possible to improve this bound but given that the outside elements are in some sense
arbitrary for large values of n it may be impossible to use their actual value for information. The % fraction
is rather tight since by looking at the two elements in the first position Bob must determine membership for
all values 1 through 5 among the n stored values from U. Well there are 2° = 32 such subsets of 1 through
5. Meanwhile there are 5 x 4 ways of putting ordered pairs of values from one through 5. Then there are
545 ways of storing an outside element with an element of 1 through 5. Finally there are two ways to store
outside elements using only comparison between them and that is {X7, Xo} or {X5, X;}. Thus we see that
32 =>5%4+ (5+5) + 2 exactly. Letting 6 numbers look at the queried positions 1 and 2 will give 26 = 64
possibilities to worry about meanwhile in some sense 6 * 5 + (6 + 6) + 2 possible storage pairs which is less
than 64.

4. SPECIAL CASEn =3

In this section we look at the very particular case of n = 3 and how large U can be so that with 2
simultaneous queries (dependent on each element) one can determine membership from an input set. This
is different from 2 queries in which one could adapt based on the answer to the first queried position. In
such an adaptive search |U| is unbounded since a simple sort of the input set by Alice and a binary search
by Bob of the sorted set can verify membership. In the simultaneous setting this comparison of the elements
is not allowed to determine the second query and as a result the maximum size of |U| is somewhere between
15 and 18 inclusive.

Theorem 4.1. Forn =3, if [U| = m > 18 then there is no storage scheme f such that Gy is consistent. If
|U| = m < 15 there exists a storage scheme f such that G is consistent.

As a warm-up before the proof we will give a quick argument why 25 is too large to have a storage scheme
f such that G is consistent. If m > 25 then there must exist 9 elements who each query the same two
positions among the 3 possible positions. Well looking at the inputs from these nine elements there are (g)
possible input sets of size 3. Meanwhile when restricted to these 9 elements the maximum number of possible
different ordered pairs of queries Bob can see is 9 x 8 = 72 < (3) = 84. However, Bob from looking at these
two positions must be able to tell which of these 9 elements are in the set. There is not enough possibilities
to have a consistent storage scheme and hence m < 24. Below we give a tighter but similar argument to

show 19 is not possible.

Proof. We will prove first the upperbound and then give a construction for the lower bound. Let us suppose
m > 19. This means that at least seven elements must query the same two positions among the three by
the pigeonhole principle. Let us take seven such elements and call this set S. We first note that if f is
a storage scheme such that Gy is consistent, then Bob by looking at these two queries positions (without
loss of generality we will assume positions one and two) must be able to determine the subset of S that are
among the three selected elements from U. From S there are (;) = 35 input sets of size 3 meanwhile there
are 7 x 6 = 42 options available for an ordered pair of queried information which means at most seven of
these are used to encode a doubleton input pair among the (;) = 21 sets from S. Thus, there are at least
14 sets of size 2 from S that are stored with one of the two elements not in the first two positions. Let T" be
the set of these doubleton sets and let X7 and X5 be two distinct elements not from S. There are at least 28
possible input sets that consist of a pair from T and one of the variables X; and X5. Meanwhile there are
exactly 28 possibilities of remaining representations for the storage scheme to represent these input sets of
T along with one of X; or X5. This implies that all sets of size 1 from S must be represented with the one
element being in the third position. This is a problem since when Bob sees {X1, X2} or {X2, X1} he must
be able to determine the singleton element from S that is stored which is impossible since there are 7 such
possibilities. Thus, G is not consistent.

In the second half of the proof we establish the lower bound by constructing a storage scheme f such
that G is consistent. Let U be the values 1 through 15. Bob to determine membership of the values 1
through 5 (Group A) will query the first two stored positions, for 6 through 10 (Group B) the second and
third positions and finally for values 11 through 15 (Group C) Bob will query the first and third positions.
Alice will store the input set keeping the following two ideas in mind. 1.) If only one member of A, B or C
shows up in an input set it will always be placed in one of the two queried positions for each group. 2.) If
2 or 3 members of a particular group (say A) are in an input set then both queried positions for that group
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(in this case 1 and 2) will contain members of that group (A4). So as examples the input set 2,6,15 will
be stored either as {2,6,15} or {15,2,6} meanwhile {2,3,15} will be stored either as {2,3,15} or {3,2, 15}.
This implies that Bob if he queries a value in group A and at most one of the two queried positions is in
A then the third position (the unseen one) is not a member of A and thus what he sees from his queries
determines what is stored from A. We take note here that when Alice must store one value from each group
storing {"A”,”B”,7C”} or {"C”,” A”,” B”} is ok for the storage scheme. From here we describe the storage
scheme for when two or three members of A are to be placed in the three positions and claim that the other
two groups B and C store analogously.

First note that there are (3) sets of size 3 from A and (}) sets of size 2 from A. Meanwhile there are
5 x 4 possible combinations of ordered pairs from posistions one and two that can be seen by Bob. Luckily,
(g) + (g) = 5% 4 and thus showing a matching from each set to each observed pair is sufficient. One can
make a Hall’s matching type argument but in this case it’s quicker just to show a possible matching of sets

to pairs (below the arithmetic is modulo 5):

Subset to be stored | Ordered pair stored in first two positions
{i,i+1,i+ 2} {i,i+ 2}
{i,i+ 1,1+ 3} {i,i+ 1}
{i,i+ 1} {i+1,i}
{i,1+ 2} {i+2,i}

Thus, if we define f analogously for the cases where B and C' have two or three members among the input
set then we see that Gy is consistent. O

This storage scheme in some sense feels tight and so we conjecture the following.

Conjecture 4.2. Forn =3, if [U| = m > 15 then there is no storage scheme f such that Gy is consistent.

5. OPEN QUESTIONS AND CONCLUSION

As mentioned in the introduction there has been work [5] on the adaptive version of this problem (where
the position of the second query can be decided after viewing the result of the first query). In this preliminary
manuscript they devise a storage scheme for a set of size n from a universe of size at most 3n — 4 and an
adaptive 2-query scheme to determine membership. Between [5] and this article there are a variety of
questions that can be asked. In both cases (adaptive and non-adaptive) there is still work to be done to find
the maximum size of the universe given n and as stated in Conjecture 3.3 the author conjectures that for at
least the non-adaptive case the maximum size of the universe is O(n).

One final question:

Question 5.1. For a fized number of queries k (adaptable or not), how large (asymptotically) can the
universe be in terms of n and k? The arguments in section 8 with k = 2 can easily be extended to give an
upperbound of O((}}) logy n).
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