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Abstract. Two closely related notions (in fact, translatable into one another), are those of cooperative

colorings and of independent systems of representatives (ISRs). A cooperative coloring of a family of (not
necessarily distinct) graphs G1, G2, . . . , Gk on the same vertex set V is a choice of independent sets Ai in Gi

(1 ≤ i ≤ k) such that
⋃k

i=1 Ai = V . An ISR for a partition of the vertex set of a graph G into sets V1, . . . , Vn

is a choice of a vertex vi ∈ Vi for each i such that {v1, . . . , vn} is independent in G. We study conditions on
the maximal degrees of graphs guaranteeing the existence of ISRs and of cooperative colorings. Our main

results are: (1) If for some d ≥ 3, the graph G has maximal degree d and contains no Kd,d, and the partition

(Vi) has |Vi| ≥ 2d− 1 for all i, then there exists an ISR, (2) If G is a disjoint union of cycles, and its vertex
set is partitioned into triples, then an ISR is guaranteed if at most two cycles have length 1(mod3), but may

fail to exist otherwise, even if all cycles have the same length ` ≡ 1( mod 3), and (3) Three cycles on the same

vertex set have a cooperative coloring. The proofs use topological tools. We also offer some remarks on the
question: do every d + 2 graphs of maximal degree d on the same vertex set have a cooperative coloring?

1. ISRs, cooperative colorings, and their interrelationship

The notion of ISR (independent system of representatives, sometimes also called “independent transver-
sals”) is a generalization of that of SDR (system of distinct representatives). As in the setting of SDRs, there
are given sets Vi, 1 ≤ i ≤ n, and we wish to find distinct representatives vi ∈ Vi. In the ISR setting another
structure is added on V =

⋃n
i=1 Vi - in general, a simplicial complex, namely a closed down hypergraph,

and it is required that {v1, . . . , vn} should belong to the complex. In the case dealt with in this paper, the
complex is the set I(G) of independent sets in a graph G.

Definition 1.1. A system (G, (Vi)
n
i=1) consisting of a graph G and a partition of its vertex set V (G) into

independent sets V1, . . . , Vn, is called an ISR-system. An independent set in G of the form {v1, . . . , vn}, where
vi ∈ Vi for each i, is called an ISR.

Note that the more general case of overlapping and non-independent Vi’s may be reduced to the situation
considered in Definition 1.1 by the following trick. Form a graph G′ by replacing every vertex v in G by a
clique, consisting of copies vi of v, one for each i for which v ∈ Vi. Connect ui to vj if and only if i 6= j and
u and v are connected in G. Finally, replace each Vi by V ′i = {vi : v ∈ Vi}. Clearly, an ISR in the system
(G′, (V ′i )) corresponds to an ISR of (G, (Vi)).

The notion of cooperative coloring generalizes the usual graph coloring concept by considering not one
but k graphs on the same vertex set V . We require that each of the k graphs contribute an independent set,
which together cover V . In the special case where the k graphs are copies of the same graph G, this amounts
to a k-coloring of G.

Definition 1.2. A cooperative coloring of a family of (not necessarily distinct) graphs G1, G2, . . . , Gk on the

same vertex set V is a choice of independent sets Ai in Gi (1 ≤ i ≤ k) such that
⋃k

i=1Ai = V .
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There is also a list version of cooperative coloring, where for each vertex v ∈ V a list L(v) ⊆ {1, . . . , k} is
specified, requiring that each v be covered by an independent set Ai in Gi such that i ∈ L(v). This problem
can be equivalently stated by restricting the vertex set of each Gi to {v : i ∈ L(v)}, leading to the following
formulation.

Definition 1.3. A family of (not necessarily distinct) graphs G1, G2, . . . , Gk with respective vertex sets
V (G1), V (G2), . . . , V (Gk) ⊆ V is called a CO-system. The multiplicity of the system, denoted by m, is
the minimum over all v ∈ V of |{i : v ∈ V (Gi)}|. A cooperative coloring is a choice of independent sets Ai in

Gi (1 ≤ i ≤ k) such that
⋃k

i=1Ai = V .

The usual concept of list-coloring of a graph is obtained when G1, . . . , Gk are all induced on their respective
vertex sets by the same graph on V . Note that the multiplicity m corresponds to the minimal size of the
lists. Observe also that Definition 1.2 is the special case m = k of Definition 1.3. We shall refer to such
CO-systems as full.

The problem of finding a cooperative coloring can be stated in ISR form. Given a CO-systemG1, G2, . . . , Gk

with vertex set V , let G be the disjoint union of the system: its vertex set consists of all ordered pairs (i, v)
such that v ∈ V (Gi), and for each i, vertices (i, u) and (i, v) are connected if and only if u and v are
connected in Gi. Consider the partition (Vv) where each part is indexed by a vertex in V and consists
of all its copies. Then, clearly, an ISR for the system (G, (Vv)) is equivalent to a cooperative coloring of
G1, G2, . . . , Gk. Observe that under this reduction, the multiplicity m becomes the minimal size of the Vv’s.
We write J (G1, . . . , Gk) for the ISR-system constructed in this way.

The translation between cooperative coloring problems and ISR problems goes also in the other direction.
Let (G, (Vi)

n
i=1) be an ISR-system. Form a full CO-system of graphs CO(G, (Vi)

n
i=1) as follows. First,

augment every Vj to V ∗j of size k := max{|Vi| : 1 ≤ i ≤ n}, by adding k − |Vj | vertices that are connected
to all vertices of all other V ∗` ’s. Denote by (G∗, (V ∗i )ni=1) the augmented system. Then let G1, . . . , Gk−1 be
identical graphs, each consisting of disjoint cliques, a clique on each V ∗j . Let Gk = G∗. An independent set
taken from Gi (i < k) can contain at most one vertex from each V ∗j . Therefore a cooperative coloring must
have at least one vertex from each V ∗j belonging to the independent set taken in Gk, and these vertices form
an ISR in (G∗, (V ∗i )ni=1) and hence in (G, (Vi)

n
i=1). Conversely, an ISR in the latter produces a cooperative

coloring of G1, . . . , Gk.

The notion of ISR has been studied by many authors, under various terminologies and with many appli-
cations. Cooperative colorings are introduced here for the first time, as far as we know.

2. Topological tools

One of the most effective tools for dealing with ISRs is that of topological connectivity. A simplicial
complex C is called k-connected if for every −1 ≤ j ≤ k, every continuous function f : Sj → ||C|| can

be extended to a continuous function f̃ : Bj+1 → ||C|| (here ||C|| is the underlying space of the geometric
realization of C). This means that there is no hole of dimension k + 1 or less. We define η(C) to be the
largest k for which C is k-connected, plus 2 (the addition of 2 simplifies the statements of the theorems). The
topological meaning of η(C) is that it is the smallest dimension of a hole in ||C||, and ∞ if there is no such
hole.

We shall use η as a graph invariant, by considering η(I(G)), where I(G) is the complex of independent
sets in G. When G is disconnected (as a graph), the complex I(G) is the join of the complexes corresponding
to the components. By a standard result (see [5, p. 1848]) this yields:

Lemma 2.1. If G consists of connected components Hi, i = 1, . . . , n, then η(I(G)) ≥
∑n

i=1 η(I(Hi)).

Notation 2.2. Given an ISR-system (G, (Vi)
n
i=1) and a subset I of [n] = {1, . . . , n}, we write VI for

⋃
i∈I Vi.

We denote by I(G) � VI the complex of independent sets in the graph induced by G on VI .

Aharoni and Haxell’s theorem relating ISRs to connectivity is:
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Theorem 2.3 ([3, 13]). If η(I(G) � VI) ≥ |I| for every I ⊆ [n] then there exists an ISR.

In order to apply Theorem 2.3, one needs combinatorial graph invariants that are lower bounds for η(I(G)).
One of the most general lower bounds is due to Meshulam [14] (see also [1]), and is denoted Ψ(G). Its definition
is conveniently expressed in terms of a game between two players, CON and NON, on the graph G. CON
wants to show high connectivity, NON wants to thwart his attempt. At each step, CON chooses an edge e
from the graph remaining at this stage, where in the first step the graph is G. NON can then either

(1) delete e from the graph (we call such a step a “deletion”),
or

(2) remove the two endpoints of e, together with all neighbors of these vertices and the edges incident to
them, from the graph (we call such a step an “explosion”).

The result of the game (payoff to CON) is defined as follows: if at some point there remains an isolated
vertex, the result is ∞. Otherwise, at some point all vertices have disappeared, in which case the result of
the game is the number of explosion steps. We define Ψ(G) as the value of the game, i.e., the result obtained
by optimal play on the graph G.

Theorem 2.4 ([14, 1]). η(I(G)) ≥ Ψ(G).

Meshulam calculated η(I(G)) for paths Pn and cycles Cn on n vertices:

Theorem 2.5 ([14]). η(I(Pn)) = dn3 e if n ≡ 0 or 2(mod3) and η(I(Pn)) =∞ if n ≡ 1(mod3).

Theorem 2.6 ([14]). η(I(Cn)) = [n3 ]. (Here [α] is the rounding of α to the nearest integer.)

3. ISRs in the absence of Kd,d

Our main concern in this paper is conditions for the existence of ISRs and cooperative colorings, that are
formulated in terms of the maximal degree ∆(G). A basic result due to Haxell is:

Theorem 3.1 ([9, 10]). Let ∆(G) = d. If |Vi| ≥ 2d for all i, then there exists an ISR.

Theorem 3.1 is sharp. Two types of examples were given, one in [11, 18] and the other in [16], of ISR-
systems with Vi’s of size 2d − 1, in which there is no ISR. In both types the graph in question consists of
2d− 1 disjoint copies of Kd,d. Our first result is that this is not a coincidence, but a must:

Theorem 3.2. Let ∆(G) = d > 2. If |Vi| ≥ 2d− 1 for all i, then there is an ISR unless G contains at least
2d− 1 connected components isomorphic to Kd,d.

In order to prove Theorem 3.2, we establish the following lower bound on the connectivity of the indepen-
dence complex of a graph:

Theorem 3.3. Let d > 2. If G has maximal degree at most d and contains no Kd,d, then

η(I(G)) ≥ Ψ(G) ≥ |V (G)|
2d− 1

.

Before proving Theorem 3.3, let us show how it implies Theorem 3.2. Indeed, for every I ⊆ [n], let kI be

the number of copies of Kd,d contained in G[VI ]. Since η(I(Kd,d)) = 1 =
|V (Kd,d)|−1

2d−1 , we obtain by Lemma 2.1
and Theorem 3.3

η(I(G) � VI) ≥ |VI | − kI
2d− 1

≥ |I| − kI
2d− 1

.

Therefore, if G contains fewer than 2d− 1 copies of Kd,d, then kI < 2d− 1, and thus η(I(G) � VI) > |I| − 1,
and since η is integral this means that η(I(G) � VI) ≥ |I|. By Theorem 2.3 there exists an ISR.
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Proof of Theorem 3.3. We may clearly assume that G is connected. We will prove the theorem by showing
that in the game that defines Ψ(G), CON can force NON to either create an isolated vertex or spend at least
|V (G)|
2d−1 explosion steps to destroy all vertices.

In the first step 2d vertices may be removed in an explosion, but from that step on there is at each step
a vertex of degree at most d − 1, and as we may assume that it is not isolated, CON can choose an edge

uv with |N(u) ∪ N(v)| ≤ 2d − 1. This implies that Ψ(G) ≥ |V (G)|−1
2d−1 , and we may assume that equality

holds (otherwise we are done). Therefore, the first step must be an explosion destroying 2d vertices, and any
subsequent explosion step must remove 2d−1 vertices. We may assume that G is d-regular and triangle-free,
otherwise CON can choose his first edge so as to prevent NON from exploding 2d vertices in the first step.

Suppose first that Ψ(G) = 1. Then |V (G)| = 2d. Taking an arbitrary edge uv, we can partition V (G) into
A = N(u) and B = N(v), each of size d. By triangle-freeness these sets are independent, and d-regularity
implies that G is the complete bipartite graph with parts A,B. This contradicts our no Kd,d assumption.

Suppose next that Ψ(G) > 1. Consider the position after Ψ(G)− 1 explosion steps. The remaining graph
has 2d − 1 vertices. If it has an edge whose explosion would remove fewer that 2d − 1 vertices, CON can
choose it and force NON to delete it. By iteratively choosing and deleting such edges, we are left with a
graph H in which every edge uv satisfies |NH(u) ∪NH(v)| = 2d− 1. An argument similar to the one above
shows that H is a complete bipartite graph, this time with one part, say A, of size d and the other, B, of
size d− 1.

Returning to G, each x ∈ A has precisely one neighbor in V (G)\V (H). This neighbor cannot be the same
for all x ∈ A, or else a Kd,d is formed. Let xy be an edge with x ∈ A and y ∈ V (G) \ V (H). Let z ∈ A be a
non-neighbor of y. CON can choose xy as the first step edge in the game, and exploding it removes all but
at most one neighbor of z. If z is isolated, the result is ∞. If it still has a neighbor w, then CON can choose
zw at the second step. NON must explode it (to avoid isolating z), but this explosion removes at most d+ 1
vertices, which is less than 2d− 1 (as we assume d > 2). �

To conclude this section, we remark that ISRs are known to exist even with Vi’s significantly smaller than
2d, where d = ∆(G), under suitable restrictive conditions on the ISR-system. For example, if G is chordal
then |Vi| ≥ d + 1 suffices ([2]). Another type of restriction involves the local degree of (G, (Vi)), defined as
the maximum of |N(v) ∩ Vi| taken over all vertices v and parts Vi. Asymptotically as d → ∞, if the local
degree is o(d) then |Vi| ≥ (1 + o(1))d suffices ([12]). It is not known whether |Vi| ≥ d+ 2 suffices for an ISR,
if the local degree is 1.

4. Degree conditions for cooperative coloring

A basic fact on standard graph coloring is that a graph of maximal degree d is (d+1)-colorable. Rephrased
in our terminology, this says that if G1, G2, . . . , Gd+1 are identical graphs of maximal degree d, then they
have a cooperative coloring. Our first observation is that this is no longer true for non-identical graphs.

Theorem 4.1. For every d ≥ 2, there exists a full CO-system G1, G2, . . . , Gd+1 with ∆(Gi) = d for i =
1, . . . , d+ 1, that does not have a cooperative coloring.

Proof. First, we construct an ISR-system (G, (Vi)
n
i=1) with ∆(G) = d, |Vi| = d + 1 for all i, having no

ISR (as mentioned above, this can be done even with |Vi| = 2d − 1, but for completeness we give the easy
construction that we need here). Let n = 4, and Vi = Ui ∪ {vi} where |Ui| = d and vi /∈ Ui, i = 1, . . . , 4. Let
G have three connected components: a Kd,d with sides U1, U2, a Kd,d with sides U3, U4, and a K2,2 with sides
{v1, v2}, {v3, v4}. Clearly, this system has no ISR. From this system, we pass to a CO-system CO(G, (Vi)

4
i=1)

which, as shown in Section 1, has no cooperative coloring. Each of the first d graphs in the CO-system is a
disjoint union of Kd+1’s, and the last graph is G, so they all have maximal degree d, as required. �
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If d+1 graphs of maximal degree d do not suffice for a cooperative coloring, how many of them are needed?
More generally, for CO-systems that may not be full, how high does the multiplicity need to be (in terms of
the maximal degree d) in order to guarantee the existence of a cooperative coloring? We get an upper bound
by applying the reduction of CO-systems to ISR-systems described in Section 1, and invoking Theorems 3.1
and 3.2.

Corollary 4.2. Any CO-system of multiplicity 2d or more, in which the graphs have maximal degree d, has
a cooperative coloring. Moreover, for d > 2 multiplicity 2d− 1 suffices, unless the graphs in the system have
between them at least 2d− 1 copies of Kd,d.

The two parts of the corollary bear a similarity to the known facts about standard (or list) graph coloring:
there, d+1 colors (or lists of size d+1) are needed to color a graph of maximal degree d, and Brooks’ theorem
asserts that one color (or list element) may be saved in the absence of Kd+1, for d > 2. But, contrary to
this analogy to graph coloring, and unlike the situation for Theorems 3.1 and 3.2 from which it was derived,
Corollary 4.2 is not sharp for general d. The reason is that the reduction of CO-systems to ISR-systems
described in Section 1 yields ISR-systems with local degree 1. An asymptotic result of [12] mentioned in
Section 3 implies that for such systems Vi’s of size (1 + o(1))d suffice for an ISR. In particular, multiplicity
(1 + o(1))d in a CO-system suffices for a cooperative coloring.

However, it is not known whether multiplicity d + O(1) suffices for a cooperative coloring. In view of
Theorem 4.1, d+ 1 does not suffice, but the question for d+ 2 is open. In particular, do every d+ 2 graphs
of maximal degree d on the same vertex set have a cooperative coloring? The following theorem shows that
no counterexample to the latter can exist, in which d of the graphs are identical (as was the case in the
construction of the counterexample for d+ 1 graphs above).

Theorem 4.3. d+2 graphs of maximal degree d on the same vertex set have a cooperative coloring, provided
that d of the graphs are identical.

The proof of Theorem 4.3 requires the following lemma, in which we speak of a partial ISR for a system
(G, (Vi)

n
i=1): this is a choice of independent representatives from some of the Vi’s, and is expressed as a

function h with domain dom(h) ⊆ [n].

Lemma 4.4. If H1, H2 are two graphs on the same vertex set V having both degrees at most d, and (Vi)
n
i=1

is a partition of V into sets of size at least d, then there exist a partial ISR h1 for (H1, (Vi)) and a partial
ISR h2 for (H2, (Vi)), such that dom(h1) ∪ dom(h2) = [n].

Proof. We form an ISR-system (G∗, (V ∗i )ni=1) on a vertex set V ∗ consisting of two disjoint copies of V . The
graph G∗ is the disjoint union of H1 and H2, placed on the two respective copies of V . Each V ∗i is the union
of the two respective copies of Vi. By Theorem 3.1, there is an ISR for (G∗, (V ∗i )ni=1); clearly, such an ISR
decomposes into partial ISRs for H1 and H2 as desired. �

We can now prove Theorem 4.3. By Corollary 4.2, we may assume that d ≥ 3. Say our full CO-system
consists of d copies of the same graph G, and two additional graphs Gd+1, Gd+2, all of maximal degree d. Let
V1, . . . , Vn, Vn+1, . . . , Vr be the partition of the vertex set V into the connected components of G, enumerated
so that G[Vi] is d-colorable if and only if n + 1 ≤ i ≤ r. Clearly,

⋃r
i=n+1 Vi can be covered by independent

sets from the d copies of G. If n = 0 we are done; if n > 0 it suffices to find a cooperative coloring of
V ′ :=

⋃n
i=1 Vi. By Brooks’ theorem, each G[Vi] (1 ≤ i ≤ n) is a Kd+1. Applying Lemma 4.4 to the graphs

Gd+1[V ′], Gd+2[V ′], we find independent sets in these two graphs whose union contains a vertex from each
Vi, i = 1, . . . , n. The remaining d vertices in each of these Vi’s can be covered by independent sets from the
d copies of G, thus obtaining the desired cooperative coloring.

5. The case d = 2

The ISR problem for a 2-regular graph G and Vi’s of size 3 is of particular interest. When G is just one
cycle, the existence of an ISR is precisely the conjecture of Du, Hsu, and Hwang [6]. That conjecture, in
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a stronger 3-colorability version proposed by Erdős [7], became well known and got the name “the cycle-
plus-triangles problem”. It was proved by Fleischner and Stiebitz [8] and Sachs [15]. Counterexamples have
been found, showing that the result does not extend to all graphs G that consist of several disjoint cycles.
But there has not been a good insight as to what features of the decomposition into cycles are needed for
a positive answer. We show here, using topological connectivity and Theorems 2.5 and 2.6, that the mod3
length of the cycles is crucial.

Theorem 5.1. Let ∆(G) = 2, and assume that at most two connected components of G are cycles of length
1(mod3). If |Vi| ≥ 3 for all i, then there exists an ISR.

Proof. By Theorem 2.3, it suffices to show that for every I ⊆ [n], η(I(G) � VI) is at least |I|. Let H1, . . . ,Hr

be the connected components of G[VI ], with n1, . . . , nr vertices respectively. Note that
∑r

j=1 nj = |VI | ≥ 3|I|.
By our assumption on G, all but at most two of the Hj ’s are paths of any length or cycles of length 0 or
2 modulo 3; the exceptional cases are cycles of length 1(mod3). Applying Theorems 2.5 and 2.6, we have

η(I(Hj)) ≥ nj

3 for all j except possibly two j’s for which η(I(Hj)) =
nj−1

3 . Lemma 2.1 yields

η(I(G) � VI) ≥ d
∑r

j=1 nj − 2

3
e ≥ d3|I| − 2

3
e = |I|.

�

Theorem 5.1 is sharp: an example with three 4-cycles and Vi’s of size 3 without an ISR is known. In order
to show that it is not just 4-cycles, but cycles of length 1(mod3) in general, that hinder ISRs, we prove the
following.

Theorem 5.2. For every ` ≡ 1(mod3), ` ≥ 4, there exists a graph, all of whose connected components are
cycles of length `, and a partition of its vertex set into sets of size 3, for which there is no ISR. Such an
example exists with `

2 + 1 cycles if ` is even, and with `+ 2 cycles if ` is odd.

The building block for the necessary construction is presented in the following lemma.

Lemma 5.3. Let ` = 3r + 1, r ≥ 1. The vertices of a cycle of length ` can be partitioned into r − 1 sets
V1, . . . , Vr−1 of size 3 and 2 sets U0, Ur of size 2 each, so that there is no ISR.

Proof. Let the vertices of the cycle be enumerated in cyclical order as v1, v2, . . . , v`. Let

Vi = {v3i−1, v3i+1, v3i+3}, i = 1, . . . , r − 1, U0 = {v1, v3}, Ur = {v`−2, v`}.

Suppose, for the sake of contradiction, that A is an independent set in the cycle containing an element from
each of U0, V1, . . . , Vr−1, Ur. If the U0 element of A is v3, then the V1 element must be v6, the V2 element
must be v9, . . ., the Vr−1 element must be v`−1, leaving no choice for the Ur element. A similar argument
going backwards shows that the Ur element of A cannot be v`−2. Thus the U0 element must be v1 and the
Ur element must be v`, but these two are adjacent on the cycle. �

We give now the construction for Theorem 5.2. For even `, we take `
2 cycles of length `, and partition

the vertices of each of them as in the lemma. This gives us a total of `
2 (r − 1) sets of size 3, and ` sets of

size 2. We add a new vertex to each of these ` sets, increasing their size to 3, and place a new cycle on
the new vertices. The way we place that cycle is arbitrary, except that for one of the pairs U0, Ur, the two
vertices added to them, denoted u0, ur, are at distance 2 on the new cycle. By the lemma, any ISR of this
system would have to include, for each of the pairs U0, Ur, one of their two new vertices. This requires an
independent set of size `

2 from the new cycle, but by construction, no such set contains exactly one of u0, ur.

For odd `, we carry out a similar construction with ` original cycles of length `, giving us a total of `(r−1)
sets of size 3, and 2` sets of size 2. We add a new vertex to each of these 2` sets, and place two new disjoint
cycles on them arbitrarily. The non-existence of an ISR follows from the lemma and the fact that independent
sets from the two new (odd) cycles of length ` can only have total size `− 1.
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We note that Vandenbussche and West [17] gave a construction similar to the above, but only for ` ≡
1( mod 6) - our odd case. This led them to conjecture that if a 2-regular graph G on V has girth at least

√
|V |,

and V is partitioned into sets of size 3, then there is an ISR (with the exception of a particular 12-vertex

example). Our construction above for even ` has girth ` and |V | = `2+2`
2 , so it disproves their conjecture by

a factor of
√

2. The conjecture may still be true up to a constant factor.

Theorem 5.2 also serves to show that the condition d > 2 in Theorem 3.2 is necessary.

Turning now to cooperative coloring in the case d = 2, we have the following corollary of Theorem 5.1.

Corollary 5.4. A CO-system of multiplicity 3, in which all graphs have degrees at most 2, and the total
number of components which are cycles of length 1(mod3) is at most 2, has a cooperative coloring.

Theorem 5.2 also has a cooperative coloring counterpart.

Theorem 5.5. For every ` ≡ 1( mod 3), ` ≥ 4, there exists a CO-system of multiplicity 3, in which all graphs
are cycles of length `, that does not have a cooperative coloring.

Proof. Note that we cannot just apply to the ISR-system constructed in Theorem 5.2 the transformation
to a CO-system described in Section 1 (because then only one of the graphs in the CO-system would have
cycles of length `, the others would have 3-cliques). We do start with the ISR-system (G, (Vi)

n
i=1) produced

in Theorem 5.2, but proceed differently. We augment each Vi by adding ` − 2 new vertices, obtaining a set
of size `+ 1 written as Ui = {v1i , v2i , v3i , . . . , v

`+1
i }, where the first 3 elements are those of Vi. Thus the vertex

set of the CO-system will be U =
⋃n

i=1 Ui, of size n(`+ 1). The graphs in the system are the cycles of G and
3n new cycles: for each i = 1, . . . , n we introduce the 3 cycles

C1
i := v1i , v

2
i , v

4
i , . . . , v

`+1
i , C2

i := v2i , v
3
i , v

4
i , . . . , v

`+1
i , C3

i := v3i , v
1
i , v

4
i , . . . , v

`+1
i .

Clearly, the resulting CO-system has multiplicity 3. Assume, for the sake of contradiction, that it has a
cooperative coloring. Because the original G has no ISR, the independent sets coming from the original
cycles leave some Ui untouched. This Ui needs to be covered by independent sets A1 from C1

i , A2 from C2
i ,

A3 from C3
i . There are only two ways in which v1i , v

2
i , v

3
i can all be covered: either v1i ∈ A1, v

2
i ∈ A2, v

3
i ∈ A3,

or v1i ∈ A3, v
2
i ∈ A1, v

3
i ∈ A2. In the former case, none of the independent sets can contain v`+1

i ; in the latter
case, the contradiction is obtained for v4i . �

We remark that a CO-system in which all graphs are 4-cycles may be interpreted as a CNF formula, and
in fact the ` = 4 case of Theorem 5.5 is equivalent to a construction of an unsatisfiable (3,B2)-SAT formula
given in [4].

We do not know if Theorem 5.5 can be strengthened to assert the existence of a full CO-system with
these properties, i.e., three graphs on the same vertex set, each of them a disjoint union of `-cycles, having
no cooperative coloring. This question remains open, even for ` = 4.

There is, however, an important special case of full CO-systems, in which a cooperative coloring is guar-
anteed regardless of the mod3 length of the cycles. Namely, when each of the three graphs is a cycle on the
entire vertex set.

Theorem 5.6. Three cycles on the same vertex set possess a cooperative coloring.

Proof. Let G1, G2, G3 be a system of three cycles on the same vertex set V . Choose any vertex v, and take
it into the independent set chosen from G1. Completing this choice to a cooperative coloring means finding
an ISR in the ISR-system K obtained from J (G1, G2, G3) by removing the set Vv, and removing from the
G1-copy of V the two vertices (that we shall name below u and w) adjacent to v in G1. We shall prove that
K satisfies the conditions of Theorem 2.3.

Write V ′y = Vy for y ∈ V \ {v, u, w}, and let V ′u, V
′
w be obtained from Vu, Vw, by removing the G1-copies

of u, w, respectively. Let H be the underlying graph of K. Let X be a subset of V \ {v}. Because Vv
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was removed, the three graphs induced on the three copies of X in H have only paths as their connected
components. By Theorem 2.5, η of each path is at least a third of its number of vertices. The total number
of vertices in

⋃
x∈X V ′x is at least 3|X| − 2. Thus we get by Lemma 2.1

η(I(H) �
⋃
x∈X

V ′x) ≥ d3|X| − 2

3
e = |X|,

as required in order to apply Theorem 2.3. �
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