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Abstract. Let [n]r be the complete r-partite hypergraph with vertex classes of size n. It is an easy exercise

to show that every set of more than (k − 1)nr−1 edges in [n]r contains a matching of size k. We conjecture

the following rainbow version of this observation: If F1, F2, . . . , Fk ⊆ [n]r are of size larger than (k− 1)nr−1

then there exists a rainbow matching, i.e. a choice of disjoint edges fi ∈ Fi. We prove this conjecture for

r = 2 and r = 3.

1. Motivation

1.1. An r-partite version of the Erdős–Ko–Rado theorem. A matching is a collection of disjoint sets.
As is customary, we write [n] for the generic set of size n, {1, 2, . . . , n}. The largest size of a matching in a
hypergraph H is denoted by ν(H).

An r-uniform hypergraph H is called r-partite if V (H) is partitioned into sets V1, . . . , Vr, called the vertex
classes of H, and each edge meets every Vi in precisely one vertex. If all vertex classes are of the same size
n, H is called n-balanced. The complete n-balanced r-partite hypergraph can clearly be identified with [n][r],
the set of all functions from [r] to [n], and in accord we denote it by [n]r.

Observation 1.1. If F is a set of edges in an n-balanced r-partite hypergraph and |F | > (k − 1)nr−1 then
ν(F ) ≥ k.

Proof. The complete n-balanced r-partite hypergraph [n]r can be decomposed into nr−1 perfect matchings
Mi, each of size n. Writing F =

⋃
i≤nr−1(F ∩Mi) shows that at least one of the matchings F ∩Mi has size

k or more. �

This observation can be viewed as an r-partite version of the celebrated Erdős–Ko–Rado problem, on the
number of edges in the complete r-uniform hypergraph on n vertices needed to guarantee a matching of size
k. The Erdős–Ko–Rado theorem settles this problem for k = 2.

The topic of this paper is a possible extension of Observation 1.1 to rainbow matchings.

Definition 1.2. Let F = (Fi | 1 ≤ i ≤ k) be a collection of hypergraphs. A choice of disjoint edges, one from
each Fi, is called a rainbow matching for F .

Conjecture 1.3. If F = (F1, F2, . . . , Fk) is a list of sets of edges in an n-balanced r-partite hypergraph and
|Fi| > (k − 1)nr−1 for all i ≤ k then F has a rainbow matching.

The case k = 2 is not hard, see [1]. The case r = 2 is also not hard, and though it will be subsumed by
later results, we give here a short proof.

Theorem 1.4. If F = (F1, F2, . . . , Fk) is a list of sets of edges in an n-balanced bipartite graph and |Fi| >
(k − 1)n for all i ≤ k then F has a rainbow matching.

Proof. Denote the vertex classes of the bipartite graph M and W . Since
∑
v∈M degF1

(v) = |F1| > (k − 1)n,
there exists a vertex v1 ∈ M such that degF1

(v1) ≥ k. Let F ′2 = F2 − v1 (namely the set of edges in F2 not
containing v1). Since degF2

(v1) ≤ n, we have |F ′2| > (k−2)n, and hence there exists a vertex v2 6= v1 such that
degF2

(v2) ≥ k − 1. Continuing this way we obtain a sequence v1, . . . , vk of distinct vertices in M , satisfying
degFi(vi) > k − i. Since degFk(vk) > 0 there exists an edge ek ∈ Fk containing vk. Since degFk−1

(vk−1) > 1
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there exists an edge ek−1 ∈ Fk−1 containing vk−1 and missing ek. Since degFk−2
(vk−2) > 2 there exists an

edge ek−2 ∈ Fk−2 containing vk−2 and missing ek and ek−1. Continuing this way, we construct a rainbow
matching e1, . . . , ek for F . �

Our main result is as follows.

Theorem 1.5. Conjecture 1.3 is true for r = 3.

2. Shifting

The proof in [4] uses an operation called “shifting”, that has since become a main tool in the area. It is an
operation on a hypergraph H, defined with respect to a specific linear ordering “<” on its vertices. For x < y
in V (H) define sxy(e) = e ∪ x \ {y} if x 6∈ e and y ∈ e, provided e ∪ x \ {y} 6∈ H; otherwise let sxy(e) = e.
We also write sxy(H) = {sxy(e) | e ∈ H}. If sxy(H) = H for every pair x < y then H is said to be shifted.

Given an r-partite hypergraph G and a linear order on each vertex class, an r-partite shifting is a shifting
sxy where x and y belong to the same vertex class. G is said to be r-partitely shifted if sxy(H) = H for all
pairs x < y that belong to the same vertex class.

Given a collection H = (Hi, i ∈ I) of hypergraphs, we write sxy(H) for (sxy(Hi), i ∈ I).

Remark 2.1. Define a partial order on pairs of vertices by (vi, vj) ≤ (vk, v`) if i ≤ k and j ≤ `. Write
(vi, vj) < (vk, v`) if (vi, vj) ≤ (vk, v`) and (vi, vj) 6= (vk, v`). A set F being shifted is equivalent to its being
closed downward in this order, which in turn is equivalent to its complement being closed upward.

As observed in [3] (see also [2]) shifting does not increase the matching number of a hypergraph. This can
be generalized to rainbow matchings.

Lemma 2.2. Let F = (Fi | i ∈ I) be a collection of hypergraphs, sharing the same linearly ordered ground
set V , and let x < y be elements of V . If sxy(F) has a rainbow matching, then so does F .

Proof. Let sxy(ei), i ∈ I, be a rainbow matching for sxy(F). There is at most one i such that x ∈ ei, say
ei = a ∪ {x} (where a is a set).

If there is no edge es containing y, then replacing ei by a∪ {y} as a representative of Fi, leaving all other
es as they are, results in a rainbow matching for F . If there is an edge es containing y, say es = b ∪ {y},
then there exists an edge b∪ {x} ∈ Fs (otherwise the edge es would have been shifted to b∪ {x}). Replacing
then ei by a ∪ {y} and es by b ∪ {x} results in a rainbow matching for F . �

3. A Hall-type size condition for rainbow matchings in bipartite graphs

In this section we prove a result on the existence of rainbow matchings for a collection of bipartite graphs,
all sharing the same vertex set and bipartition, that will be later used for the proof of Theorem 1.5. This
condition is not formulated in terms of the sizes of the individual graphs, but (somewhat reminiscent of the
condition in Hall’s theorem) in terms of the sizes of subsets of the collection of graphs.

Theorem 3.1. Let Fi, i ≤ k be subsets of E(Kn,n). If

(1)
∑
i∈I
|Fi| > n|I|(|I| − 1) for every I ⊆ [k]

then the system F = (F1, . . . , Fk) has a rainbow matching.

Sharpness of this bound is shown by the example of k sets Fi, each consisting of all edges incident with
a set of k − 1 vertices in one side of the bipartite graph. The analogous result for r = 1 can be proved
directly, or using Hall’s theorem. For r ≥ 3 the analogous result, suggested by the same example, is that if∑
i∈I |Fi| > n2|I|(|I| − 1) for all I then the system (F1, . . . , Fn) has a rainbow matching. But this is false, as

shown by the pair F1, F2 in which F1 consists of a single edge and F2 the set of all edges meeting this edge.
Then |F2| = n3− (n− 1)2, |F1|+ |F2| = 3n2− 3n, which for n > 3 is larger than 2n2, and there is no rainbow
matching. It is not clear what is the right condition for general r.



3.1. An algorithm. The proof of Theorem 3.1 is algorithmic. As before, we assume that each side of the
bipartite graph is linearly ordered, say M = (m1 < m2 < . . . < mn) and W = (w1 < w2 < . . . < wn).

Definition 3.2. Two edges e, f are said to be parallel if the order between their M vertices is the same as
the order between their W vertices. If in this case the vertices of e precede those of f , we write e < f .
Non-parallel edges are said to be crossing.

By Lemma 2.2, we may assume that all Fi are bipartitely shifted with respect to the given orders.

Order the sets Fi by their sizes,

(2) |F1| ≤ |F2| ≤ . . . ≤ |Fk|

We choose inductively edges ei ∈ Fi. As e1 we choose a longest edge (mc(1), wd(1)) in F1, where the length
of an edge (mp, wq) in this case is |q − p|. By the shiftedness of F1, either c(1) = 1 or d(1) = 1.

Suppose that e1 ∈ F1, e2 ∈ F2, . . . , et−1 ∈ Ft−1 have been chosen. Let Zt =
⋃
j<t ej . Let at the first index

such that mat 6∈ Zt, and bt be the first index such that wbt 6∈ Zt. Let Rt = {m1, . . . ,mat−1}∪{w1, . . . , wbt−1}
(R1 is the empty set).

Let F̃t = Ft[V \ Zt] (the set of edges in Ft not meeting Zt). Define the length of an edge (mp, wq) ∈ Ft as
|(q−bt)− (p−at)| (this is the same as the above definition of “length”, once the consecutive used vertices are

removed). Assuming that F̃t 6= ∅, choose et to be a longest edge in F̃t. Since Ft is shifted, et must contain
either mat or wbt .

The fact that et ∈ F̃t implies inductively that the edges ei, i ≤ t, form a matching. The proof will be
complete if we show that F̃t 6= ∅ for all t ≤ k.

The following example illustrates the way the algorithm proceeds. In it the inequalities of (1) are violated,
and indeed the algorithm fails, although in fact there is a rainbow matching.

Example 3.3. Let q < n. Let F1 = {mcwd | c, d ≤ q}, and let F2 = F3 = . . . = Fq+1 = {mcwd | c ≤ q, d ≤
n} ∪ {mcw1 | c ≤ n}.
Here |Fi| = (q + 1)n − q for all 1 < i ≤ q + 1, and hence

∑
i≤q+1 |Fi| = q2 + q[(q + 1)n − q] = q(q + 1)n, so

in this case (1) is violated, with equality replacing strict inequality. Indeed, as we shall see, the algorithm
fails. Yet, there exists a rainbow matching: F1 is represented by m1wq, F2 is represented by mnw1, and Fi
is represented by mi−1wn−i+2 for i > 2.

Here is how the algorithm goes (we are assuming below that q ≥ 3):

R1 = ∅, e1 = mqw1, R2 = {w1}, e2 = m1wn, R3 = {m1, w1}, e3 = m2wn−1, . . . ,

eq = mq−1wn−q+2, Rq+1 = {w1} ∪ {mc | c ≤ q}.

After the choice of eq there is no possible choice for eq+1 and the algorithm halts. Note that in the first
step it was also legitimate to choose m1wq, which would lead to a rainbow matching.

Let us now return to the proof. Suppose, for contradiction, that F̃m = ∅ for some m ≤ n. We shall show
that this entails a violation of (1), for I = [m].

For each i < m let c(i), d(i) be such that ei = (mc(i), wd(i)). As already noted, by shiftedness either
c(i) = ai or d(i) = bi. We direct ei, calling one of its endpoints “tail” and the other “head”, as follows. If
c(i) = ai we call mai the tail of ei, and wd(i) its head. Otherwise, we call wd(i) the tail, and mc(i) the head.
We write tail(ei) for the tail, and head(ei) for the head. We clearly have:

Observation 3.4. If i < j then tail(ei) ∈ Rj. �

3.2. Short edges. We call the edges ei contained in Rm short and an edge not contained in Rm long. Let
eij , j < p, be the short edges, where i1 < i2 < . . . < ip−1 (so, there are p − 1 short edges). Define i0 = 0
and ip = m. To understand the significance of short edges, note that if there are no short edges then



Figure 1. SKIPMj , T
M
j and eij

Figure 2. SKIPWj and TWj . Here

e′ij is the longest edge in F̃ij starting
at ai.

|Rm| = m− 1. Since F̃m = ∅, the set Rm is a cover for Fm, and hence |Fm| ≤ (m− 1)n. By (2) this implies
that

∑
i≤m |Fi| ≤ m(m− 1)n, contradicting the assumption of the theorem.

Example 3.5. In Example 3.3 there is only one short edge, e1.

For j < p let `Wj be the length of the longest edge in F̃ij containing maij
and let `Mj be the length

of the longest edge in F̃ij containing wbij . Let SKIPMj = {maij
,maij+1, . . . ,maij+`

M
j
} and SKIPWj =

{wbij , wbij+1, . . . , wbij+`
W
j
}.

We denote by TMj (resp. TWj ) the longest contiguous stretch of vertices in Zij ∩M (resp. Zij ∩W ) starting

right after SKIPMj (resp. SKIPWj ), and let tMj = |TMj |, tWj = |TWj |. See Figures 1 and 2.

4. Bounding
∑
|Fi| from above

4.1. A toy case - one short edge. Our aim is now to delve into calculations showing that under the
negation assumption

∑
i≤m |Fi| < nm(m− 1). To demonstrate the type of arguments involved in the general

proof, let us consider separately the case in which there is only one short edge, say ei. It may be worth
following the arguments in Example 3.3, in which as mentioned above there is only one short edge.

Recall that either c(i) = ai or d(i) = bi, and without loss of generality assume the latter, implying that
d(i) = min{j | wj 6∈ Ri}.

Write ` for `M1 , namely the length of ei (to understand the subscript 1 in `M1 remember that i1 = i). The
edge ei skips ` vertices in Rm, each being matched by some edge ej , i < j < m, and hence ` ≤ m− i.

Clearly, |Rm| = m, and since Rm is a cover for Fm it follows that |Fm| ≤ mn. But in this calculation each
of the ` edges (mc(i), wj) for j = bi, bi + 1, . . . , bi + `− 1, being contained in Rm, is counted twice, from the
direction of mc(i) and from the direction of wj . Thus we know the following:

|Fm| ≤ mn− `

Since no edge eq, q < i, satisfies eq < ei, we have |Ri| = i − 1, and the number of edges in Fi incident
with Ri is thus at most (i− 1)n, and by the definition of ` we have |Fi| ≤ (i− 1)n+ `2. Hence

∑
q≤m

|Fq| ≤ i|Fi|+ (m− i)|Fm| ≤ i((i− 1)n+ `2) + (m− i)(mn− `).

Hence

m(m− 1)n−
∑
q≤m

|Fq| ≥ m(m− 1)n− [i((i− 1)n+ `2) + (m− i)(mn− `)] = (i− 1)(m− i)n+ (m− i)`− i`2

= [(i− 1)(m− i)n− (i− 1)`2] + [(m− i)`− `2]



Since ` ≤ m− i and ` ≤ n both bracketed terms are non-negative, so m(m−1)n−
∑
q≤m |Fq| ≥ 0, reaching

the desired contradiction.

4.2. Using the short edges as landmarks and a first point of reference. Let us now turn to the proof
of the general case. For 1 ≤ j ≤ p − 1 write sj = ij − ij−1 and let Sj = {ij−1 + 1, ij−1 + 2, . . . , ij}, so that
|Sj | = sj .

By (2) |Fk| ≤ |Fij | for every k ∈ Sj , and hence

(3)
∑
k≤m

|Fk| ≤
∑
j≤p

sj |Fij |

The vertices in Rij are of degree at most n, and hence the number of edges in Fij incident with Rij is at
most n|Rij |. We use n|Rij | as a baseline estimate on |Fij |. In this estimate we are ignoring the edges of Fij
not incident with Rij , and also the double counting of edges.

If there are no short edges then |Rm| = m− 1, and hence |Fm| ≤ n|Rm| = (m− 1)n. Since |Fi| ≤ |Fm| for
all i ≤ m, we have

∑
i≤m |Fi| ≤ m(m− 1)n, a contradiction. We shall use this calculation as a first point of

reference, and to get the real quantities we shall measure the deviations from the estimate |Fi| = (m− 1)n.

The existence of short edges affects the estimate of
∑
j≤p sj |Fij | in two ways - adding something to it, and

deducting something. The first we call “loss”, since it takes us further away from the desired contradiction,
and the second is called “gain”. We shall associate a gain Gj and a loss Lj with each short edge eij , and we
shall show that Gj ≥ Lj for every j ≤ p. Note that our calculation is not uniquely determined, since adding
the same number to Gj and to Lj does not change the total balance.

Clearly, |Rij | is ij − 1, plus the number of short edges contained in Rij . Compared with the estimate
|Rij | = m− 1 above, the estimate |Rij | = ij − 1 gives a gain of m− ij on |Rij |, yielding a gain of n(m− ij)
on the estimate n|Rij | of |Fij |, which yields a total gain of

sj(m− ij)n

in (3). In order to obtain an estimate serving as a second point of reference, we assume that eij ⊆ Rik for all
k > j. This entails a loss of skn in (3) for each such k, so altogether there is a loss of

n(sj+1 + sj+2 + . . .+ sp) = n(m− ij).

So, the net gain with respect to the baseline estimate is so far sj(m− ij)n−n(m− ij) = (sj −1)(m− ij)n.
Writing

(4) GBASICj = (sj − 1)(m− ij)n

we can use GBASICj as a baseline gain.

4.3. The loss on edges outside Rij . In the above calculation there is an overoptimistic assumption: that
all edges in Fij are incident with Rij . In fact this is false for all j < p. By shiftedness and the definition of

`Mj , `
W
j , T

M
j and TWj there can be at most (`Mj + tMj )(`Wj + tWj ) edges that are not incident with Rij .

Remembering that |Fij | is multiplied by sj in (3), this entails a possible loss of

(5) Lj := sj(`
M
j + tMj )(`Wj + tWj )

This is the only loss we encounter, besides the loss incurred by short edges being contained in sets Rij ,

that has already been subsumed in GBASICj .



4.4. Two types of regains. We shall use two types of regains, related to two ways in which |Fij | was
overestimated.

(1) Gains on procrastination. If k < j we were assuming above that eik ⊆ Rij . When this does not
happen we say that j procrastinates with respect to k (meaning that Rij is late to capture the edge
eik), and then |Rij | was overestimated by 1, giving rise to a gain of n in |Fij |, and to a gain of sjn
in the total sum.

(2) Gains on double counting. In the basic estimate n|Rij | of the number of edges incident with Rij
there is an overestimate of 1 on each pair (u, v) of vertices in Rij , where u ∈ M and v ∈ W . This
entitles us to a gain of sj in the total sum.

4.5. A first gain on double counting, and a first offset with Lj.

Without loss of generality we may (and will) assume that `Mj ≥ `Wj , and that tail(eij ) ∈W . Then

(6) Lj ≤ sj [`Mj (`Wj + tMj + tWj ) + tMj t
W
j ]

Here we turn to our first gain on double counting. Let Ej = {ei | i < ij} be the partial rainbow
matching chosen so far. Let T̄Mj = Ej [T

W
j ] (namely the set of vertices in M matched by Ej to TWj ), and

let T̄Wj = Ej [T
M
j ]. The edges of T̄Mj × T̄Wj were counted twice in the estimate nRij of the number of edges

incident with Rij . This entitles us to a gain of tMj t
W
j in the calculation of |Fij |, which results in a regain of

sjt
M
j t

W
j in (3). Offsetting this with part of Lj as appearing in (6), and writing

(7) λj := `Wj + tMj + tWj ,

this leaves us with a loss of at most

(8) Lrj := sj`
M
j λj

The superscript r stands for “remaining”. This loss should be offset by GBASICj and by other gains.

Observation 4.1. λj < n.

Proof. This follows from the fact that W \ Rij contains two disjoint sets: SKIPj , which is of size `Wj , and

TWj , which is of size tWj ; and W ∩Rij contains T̄Wj , which is of size tMj . Thus λj = `Wj + tMj + tWj ≤ |W | = n.
We may assume strict inequality, since otherwise W is completely matched by Ej .

�

5. Gains associated with vertices in SKIPMj

5.1. Six types of vertices in SKIPMj and the regains associated with them.

Notation 5.1. For v ∈ Rm let i(v) be the index i for which v ∈ ei, and let k(v) be the index k < p such that
i(v) ∈ Sk.

Notation 5.2. Let Σj be the set of short edges contained in Rij , and let |Σj | = σj . Also let Mj = M ∩ Rij
and µj = |Mj |.

Notation 5.3. Let ω = ω(j) = min(k : Rik ⊇ eij ).

Lemma 5.4. If k < j and head(eik) ∈ SKIPMj then λk < µj + `Mj .

Proof. This follows from the fact that

Ek[TWk ] ∪ SKIPMk ∪ TMk $ (Rij ∩M) ∪ SKIPMj



Figure 3. Case (1)

and on both sides the terms of the union are disjoint. The reason for the strict containment is that
head(eij ) belongs to the right hand side and not to the left. In fact, the strict inequality in the lemma will
not be used, it is only mentioned for clarification. �

Lemma 5.5. λj ≤ µj + `Mj + tWj .

This follows from the fact that `Wj ≤ `Mj and tMj ≤ µj . �

Lemma 5.6. Riω ⊇ TMj

Proof. By the definition of TMj the vertex head(eij ) is adjacent to its first element, so the initial segment of

head(eij ) in M , together with TMj , is an interval contained in Zij . Applying the definition of Riω yields the
lemma. �

We write Lrj as a sum:

Lrj = Laj + Lbj

where

(9) Laj = `Mj (sj − 1)λj , L
b
j = `Mj λj .

The expression (4) for GBASICj explains why this splitting will be useful: GBASICj will count towards
offsetting Laj .

We shall have two “baskets” of gains for each j, which we shall call Gaj (intended to compensate for Laj )

and Gbj (intended to compensate for Lbj). To compensate for Lbj , we need to assign to each of the `Mj vertices

in SKIPMj a gain of at least λj , which is given to Gbj .

For the purpose of bookkeeping, we gather the vertices of SKIPMj into six types, according to the condi-
tions they satisfy. Vertices of types (2b) and (3) below will give rise to regains on double counting, while all
other types will give rise to regains on procrastination. In all these cases a gain is given to Gbh, where h is
the smaller of j and k, namely if j < k = k(v) at least λj is given to Gbj , and if k = k(v) < j at least λk is

given to Gbk.

In two of the cases, namely (2ai) and (1), the gain will be split between the two indices. The part given
to the larger index will go to Ga of that index.

Here are the explicit classification and the rules by which gains are shared. The regain of λj for each vertex

v ∈ SKIPMj will be apparent in each of the cases, while the regains accumulating to Gaj will be collected at
the end.

(1) k(v) < j, implying that v = head(eik) (see Figure 3). In this case j procrastinates with respect to k,
entitling us to a gain of n on |Fij |, and sjn in total. This gain we split between Gbj , G

a
k and Gbk, as

follows: Gak gets (sj − 1)(µj + `Mj ), Gaj gets (sj − 1)(n− µj − `Mj ) and Gbj gets n.

Denote by Aj the set of vertices of type (1), and let αj = |Aj |. The accumulating regain in Gaj in
this way is



Figure 4. Case 2a(i), one type of crossing
Figure 5. Case 2a(i), another type
of crossing

(10) (sj − 1)(n− µj − `Mj )αj

Gbj gets nαj , and since λj < n this means that it gets more than λj for each vertex of this type,
as promised.

(2) j < k(v). This we divide into the following subcases:
(a) e(v) is long and k = k(v) < ω and eij 6⊆ Rik , or i(v) = ik (see Notation 5.1 for the definition of

i(v)). The latter means that e(v) = eik .
In this case k procrastinates with respect to j, which entitles us to a regain of skn. Note that
there are at most sk − 1 vertices v ∈ SKIPMj that are tails of long edges, and satisfy k(v) = k.

So, distributing this gain among the vertices v ∈ SKIPMj that are tails of long edges, and
satisfy k(v) = k, each gets at least a gain of n. Remembering that λj < n, we are fulfilling the

requirement of “λj gain in Gbj for every vertex in SKIPMj ”.
The splitting of the gain between Gj and Gk is done in this case according to a still finer
classification into subcases:

(i) eij and eik cross (see Definition 3.2. We do not discern in this case between the cases
tail(eik) ∈ M and tail(eik) ∈ W - see Figures 4 and 5 for the two possibilities. We give
a gain of n − 1 to Gbj , saving 1 for a fine point below (see remark after case (3)). By

Observation 4.1 we are giving Gbj at least λj , as required.
(ii) eij and eik are parallel. Here k is procrastinating with respect to j, and thus we are

entitled to a gain of skn. This is the same as Case (1), with the roles of j and k reversed.
This regain (that is shared between stages j and k) was considered in (1) for stage ik, and
hence we do not distribute regains for this case. But recall that Gbj gets in stage ik its
share of (sk−1)(µk +λk) (keep in mind that the roles of the indices j and k are reversed).
By Lemma 5.4 this quantity is at least λj for each such vertex.

(b) eij ⊆ Rik . Then necessarily k = ω (see Figure 6).
With such vertices we associate a regain on double counting in the estimate n|Rik | towards

calculating |Fik |, of all edges in (Mj ∪ SKIPMj ∪ TMj )× {tail(eij )}. The number of these edges

is µj + `Mj + tMj . We give Gbj the amount of h(j)λj , where h(j) is the number of vertices in

SKIPMj having k(v) = ω(j).
Note that no regain of this type is counted more than once. To see this it is best to view the
regain associated with each vertex v of this type as a regain on the calculation of |Fi(v)| itself,
rather than using the inequality |Fi(v)| ≤ |Fik(v)|. Viewed this way, the sets of edges (which are
actually stars) on which there is double counting in |Fi(v)| are disjoint for different v’s. Note also

that by Lemma 5.5 for each vertex of the present type we are adding at least λj to Gbj , as required.

(3) k(v) = j, meaning that v = head(eij ).

On this vertex we have the same regain as on vertices of type (2b), with a gain of µj + `Mj + TMj
given to Gbj .

We have to be careful in this calculation, since in this case there is danger of considering the double
counting of an edge twice. Here it may happen that for distinct j1 and j2 the vertices head(eij1 ) and

head(eij2 ) both represent the same set of edges, namely |Fiω |. Since one side in each edge considered is

tail(eij ), this can happen only in one case: when ω(j1) = ω(j2) for indices j1 6= j2, and that tail(eij1 )



Figure 6. Case 2(b)

and tail(eij2 ) are on different sides. In this case the double counting on the edge (tail(eij1 ), tail(eij2 ))
is taken into account twice, while it should have been taken only once. In this case we can compensate
for this double-double counting in the following way. Without loss of generality assume that j1 < j2.
Since ω(j1) = ω(j2), the index j2 procrastinates with respect to j1, which means that we are entitled
to a gain of n in the calculation of |Fij2 |, hence a gain of sj2n in the total sum. We only used sj2λj1 ,

and since sj2 ≥ 1 and λj1 < n (see Observation 4.1), we have the desired compensation.

Note that the regains given above to Gbj cover all of Lbj .

5.2. Another regain on double counting. We are entitled to another type of regain, on edges containing
Aj vertices. In the calculation of |Fij | all edges between Ej [Aj ] and M ∩ Rij are counted twice, so we are
entitled to a regain of µjαj on |Fij |, and thus of sjµjαj in total. In order to avoid considering this double
counting more than once we do not take into account vertices contained in j-short edges - see Case (2b)
above. Thus the regain is sj(µj − σj)αj , which for ease of later calculations we shall replace by the possibly
smaller

(11) (sj − 1)(µj − σj)αj
Example 5.7. To see why giving gains to the earlier indices is necessary, consider again Example 3.3. There
L1 = q2, which is regained by a double count argument for i2 (the second short edge). In the baseline
argument |Fi2 |, and with it |Fk|, k ∈ S2, k > 2 are estimated as |Ri2 |n. In this calculation all q edges mcw1

in Ri2 are double counted, so there is a gain of q in the calculation of |Fi2 |, resulting in a gain of s2q = q2 in
the baseline calculation - precisely L1.

6. Collecting the Gaj gains

Lemma 6.1. m− ij ≥ `Mj − αj.

Proof. This follows from the fact that every vertex in SKIPMj \Aj is matched by some edge ei, i ≥ ij . �

By the lemma and the definition of GBASICj (see (4)) we have:

(12) GBASICj ≥ (sj − 1)(`Mj − αj)n

Lemma 6.2. n ≥ `Wj + tMj + σj + tWj + αj.

This follows from the fact that that αj , t
M
j , t

W
j , `

W
j and σj are sizes of disjoint subsets of W , namely

Aj , SKIP
W
j , Ej [T

M
j ], TWj and

⋃
Σj ∩W . �

The regain in (10), (sj − 1)(n − µj − `Mj )αj , together with the regain of (11), (sj − 1)αj(µj − σj), and

GBASICj sum up to

(sj − 1)(`Mj − αj)n+ (sj − 1)(n− µj − `Mj )αj + (sj − 1)αj(µj − σj)



and we need to show that this sum, that is a lower bound for Gaj , is at least Laj . Namely, we have to show
that

(sj − 1)(`Mj − αj)n+ (sj − 1)(n− µj − `Mj )αj + (sj − 1)αj(µj − σj) ≥ (sj − 1)`Mj λj .

Canceling out the term sj − 1 and additive terms, we need to prove the following:

`Mj (n− αj)− σjαj ≥ `Mj λj

By Lemma 6.2 λj ≤ n− αj − σj . Thus it is enough to show that `Mj (n− αj)− σjαj ≥ `Mj (n− αj − σj),
which follows from the fact that αj ≤ `Mj (Aj being contained in SKIPMj ).

This shows that Gaj ≥ Laj , thereby completing the proof of Theorem 3.1.

7. Proof of Theorem 1.5

Let F be a collection of hypergraphs satisfying the condition of the theorem. Order the vertices of the
first vertex class V1 as v1, . . . , vn. By Lemma 2.2 we may assume that all Fi are shifted with respect to
this order. Let i1 be such that Fi1 has maximal degree at v1 among all Fi’s. Then we choose i2 6= i1 for
which Fi2 has maximal degree at v2 among all Fi, i 6= i1, and so forth. To save indices, reorder the Fi’s
so that ij = j for all j. Let Hj be the set of 2-edges incident with vj in Fj . It clearly suffices to show
that the collection H = (Hj : j ≤ k) of subgraphs of Kn,n has a rainbow matching, so it suffices to show
that H satisfies the conditions of Theorem 3.1. Assuming it does not, since the sizes |Hj | are descending,∑
k−t<j≤k |Hj | =

∑
k−t<j≤k degFj (vj) ≤ t(t − 1)n for some t < k. We shall reach a contradiction to the

assumption that |Fk| > (k − 1)n2.

Write m for |Hk|. Clearly ∑
j≤k−t

degFk(vj) ≤ (k − t)n2

and by the order by which Fj were chosen∑
k−t<j≤k

degFk(vj) ≤
∑

k−t<j≤k

degFj (vj) ≤ t(t− 1)n

Since
∑
k−t<j≤k degFk(vj) ≥ mt, this implies that m ≤ n(t− 1).

By the shifting property, ∑
k<j≤n

degFk(vj) ≤ m(n− k) ≤ n(t− 1)(n− k)

And so: ∑
j>k−t

degFk(vj) ≤ t(t− 1)n+ (t− 1)n(n− k) = n(t− 1)(t+ n− k) ≤ (t− 1)n2

Hence

|Fk| =
∑
j≤k

degFk(vj) ≤ (k − t)n2 + (t− 1)n2 = (k − 1)n2

Which is the desired contradiction.

8. A remark and further conjectures

Not surprisingly, Conjecture 1.3 is easy for large n.

Remark 8.1. For every r and k there exists n0 = n0(r, k) such that Conjecture 1.3 is true for all n > n0.



Proof. By Lemma 2.2 we may assume that all Fi’s are shifted. Let Ai consist of the first k − 1 vertices in
Vi (i ≤ r), and let A =

⋃
i≤r Ai. Since the number of edges meeting A in two points or more is O(nr−2),

for large enough n for each i there exist at least k − 1 points x in A such that e ∩ A = {x} for some e ∈ Fi.
Hence we can choose edges ei ∈ Fi and distinct points xi ∈ A (i ≤ k − 1) such that ei ∩ A = {xi}. Since
the number of edges going through x1, . . . , xk−1 is no larger than (k − 1)nr−1, there exists an edge ek in Fk
missing x1, . . . , xk−1. Using the shifting property, we can replace inductively each edge ei , i ≤ k − 1, by
an edge e′i ∈ Fi contained in A, missing ek and missing all e′j , j < i. This yields a rainbow matching for
F1, . . . , Fk. �

Theorem 1.4 may be true also under the more general condition of degrees bounded by n.

Conjecture 8.2. Let d > 1, and let F1, . . . , Fk be bipartite graphs on the same ground set, satisfying
∆(Fi) ≤ d and |Fi| > (k − 1)d. Then the system F1, . . . , Fk has a rainbow matching.

For d = 1 this is false, since for every k > 1 there are matchings F1, . . . , Fk of size k not having a rainbow
matching.

Theorem 3.1 has a simpler counterpart, which we believe to be true:

Conjecture 8.3. If Fi, i ≤ k are subgraphs of Kn,n satisfying |Fi| ≥ in for all i ≤ k, then they have a
rainbow matching.

Theorem 8.4. Conjecture 8.3 is true for n >
(
k
2

)
.

Proof. As before, we assume that Fi are all shifted. Number one side of Kn,n as w1, . . . , wn. Let di,j =
degFi(wj). Let M be a k × k 0, 1 matrix, defined by: mi,j = 1 if di,j > k − j and mi,j = 0 otherwise. It
is enough to find a permutation π : [k] → [k] such that mπ(j),j = 1 for all j, since then one can match the
vertices wj in Fπ(j) greedily, one by one, starting at wk: at the j-th step, when wk, . . . , wk−j+1 have already
been matched, since degFπ(j−k)

(wk−j) ≥ j there exists at least one edge in Fπ(k−j) incident with wk−j that

can be added to the rainbow matching.

Assuming that there is no such permutation π, by Hall’s theorem there is a set J of p columns of M and
a set I of k − p + 1 rows, such that mi,j = 0 for all i ∈ I, j ∈ J . Let q be the largest element of I. Then
q ≥ k − p+ 1. We shall show that |Fq| < n(k − p+ 1), contradicting the assumption of the conjecture.

Let J = {j1, j2, . . . , jp}, arranged in ascending order. Since q ∈ I, we have dq,js ≤ k − js for all s ≤ p.
Since the sequence dq,j is non increasing in j, we have:

(13) |Fq| =
∑
j≤n

dq,j ≤ n(j1−1)+(j2−j1)(k−j1)+(j3−j2)(k−j2)+. . .+(jp−1−jp)(k−jp−1)+(n−jp+1)(k−jp)

Call the right hand side of (13) c(J). Suppose that there exists s < p such that js + 1 < js+1. Then,
moving js to the right, namely replacing js in J by js + 1, decreases c(J) by 1 (the decrease in the term
corresponding to js) and increases by js+1− js−1 (corresponding to the increase in the terms between js+ 1
and js+1). This means that c(J) has not decreased. Hence, writing j for jp, we have:

(14) c(J) ≤ c({j − p+ 1, j − p+ 2, . . . , j})
Writing γ(j) for the right hand side of (14), we have:

γ(j) = n(j − p) + (k − j + p− 1) + (k − j + p+ 2) + . . .+ (k − j) + (n− j)(k − j) =(
p

2

)
+ p(k − j) + n(j − p) + (n− j)(k − j)

This is a quadratic expression in j, which attains its maximum at one of the two extremes, j = p or j = k.
In fact, for both values of j it attains the same value,

(
p
2

)
+n(k−p). We have shown that |Fq| <

(
p
2

)
+n(k−p).

By the assumption n >
(
k
2

)
this implies that |Fq| < n(k − p+ 1), which is the desired contradiction.

�

To formulate yet another conjecture we shall use the following notation:



Notation 8.5.

(1) For a sequence a = (ai, 1 ≤ i ≤ k) of real numbers we denote by −→a the sequence rearranged in
non-decreasing order.

(2) Given two sequences a and b of the same length k, we write a ≤ b (respectively a < b) if −→a i ≤
−→
b i

(respectively −→a i <
−→
b i) for all i ≤ k.

Given subgraphs Fi, i ≤ k of Kn,n, define a k × n matrix A = (aij) as follows. Order one side of the
bipartite graph as v1, v2, . . . , vn, and let aij = degFi(vj). The i-th row sum ri(A) of A is then |Fi|. Thus,
Theorem 3.1 can be formulated as follows:

Theorem 8.6. If
∑
i≤j
−→r i > j(j − 1)n for every j ≤ k then there exists a permutation π : [k] → [k] such

that aiπ(i) ≥ (1, 2, . . . , k).

We believe that the following stronger conjecture is true:

Conjecture 8.7. If
∑
i≤j
−→r i > j(j − 1)n for every j ≤ k then there exists a permutation π : [k]→ [k] such

that
∑
i≤j
−→a iπ(i) > j(j − 1) for every j.

9. The case of the complete r-uniform hypergraph

As remarked above, the topic of this paper belongs to the family of Erdős–Ko–Rado problems. It is natural
to assume that an analogous conjecture to Conjecture 1.3 is true in the more involved case of complete r-

uniform hypergraphs, which is the topic of the EKR theory. Denote by
(
[n]
r

)
the set of subsets of size r of

[n]. Let f(n, r, k) be the minimal number such that every hypergraph larger than f(n, r, k) contained in
(
[n]
r

)
contains a matching of size k. The EKR theorem states that if r ≤ n

2 then f(n, r, 2) =
(
n−1
r−1
)
.

Conjecture 9.1. If F1, F2, . . . , Fk ⊆
(
[n]
r

)
are of size larger than f(n, r, k) then there exists a rainbow

matching, i.e. a choice of disjoint edges fi ∈ Fi.

For k = 2 this conjecture follows from results in [9, 11], that in [9] were also extended to two hypergraphs
of different uniformities.

The following was proved in [5]:

Theorem 9.2. If n ≥ kr then f(n, r, k) ≤ (k − 1)
(
n−1
r−1
)
.

A rainbow version of this theorem was proved in [8]:

Theorem 9.3. [8] If F1, . . . , Fk are hypergraphs, where Fi is ri-uniform and n ≥
∑
i≤k ri and |Fi| >

(k − 1)
(
n−1
ri−1

)
then the family (F1, . . . , Fk) has a rainbow matching.

In [7] the case r = 3 of Conjecture 9.1 is solved for n ≥ 4k − 1.

In [3] the value of f(n, 2, k) was determined for all k:

Theorem 9.4. f(n, 2, k) = max{
(
2k−1

2

)
, (k − 1)(n− 1)−

(
k−1
2

)
}.

In [2] this result was given a short proof, using shifting. Meshulam [10] noted that this proof yields also
Conjecture 9.1 for r = 2:

Theorem 9.5. Let F = (Fi, 1 ≤ i ≤ k) be a collection of subsets of E(Kn). If |Fi| > max(
(
2k−1

2

)
, (k −

1)(n− 1)−
(
k−1
2

)
) for all i ≤ k then F has a rainbow matching.

Proof. Enumerate the vertices of Kn as v1, v2, . . . , vn. By Lemma 2.2 we may assume that all Fi’s are shifted
with respect to this enumeration. For each i ≤ k let ei = (vi, v2k−i+1). We claim that the sequence ei is a
rainbow matching for F . Assuming negation, there exists i such that ei 6∈ Fi. Since Fi is shifted, every edge
(vp, vq) in Fi, where p < q, satisfies



(P) p < i or q < 2k − i+ 1.

The number of pairs satisfying p < i is (i − 1)(n − 1) −
(
i−1
2

)
. The number of pairs satisfying p ≥ i and

q < 2k − i+ 1 is
(
2k−2i+1

2

)
, so

|Fi| ≤ (i− 1)(n− 1)−
(
i− 1

2

)
+

(
2k − 2i+ 1

2

)
This is a convex quadratic expression in i, attaining its maximum either at i = 1 (in which case |Fi| ≤(

2k−1
2

)
) or at i = k (in which case |Fi| ≤ (k− 1)(n− 1)−

(
k−1
2

)
). In both cases we get a contradiction to the

assumption on |Fi|. �

We are grateful to Zoltan Füredi and Ron Holzman for useful information, and to Eli Berger and Roy
Meshulam for stimulating discussions.
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