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Abstract. Two hypergraphs H1, H2 are called cross-intersecting if e1 ∩ e2 ̸= ∅ for every pair of edges

e1 ∈ H1, e2 ∈ H2. Each of the hypergraphs is then said to block the other. Given integers n, r,m we
determine the maximal size of a sub-hypergraph of [n]r (meaning that it is r-partite, with all sides of size
n) for which there exists a blocking sub-hypergraph of [n]r of size m. The answer involves a self-similar
sequence, first studied by Knuth. We also study the same question with

(n
r

)
replacing [n]r. These results

yield new proofs of some known Erdős-Ko-Rado type theorems.

1. Blockers in r-partite hypergraphs

1.1. Blockers. For a set A and a number r let
(
A
r

)
be the set of all subsets of size r of A, in other words

the complete r-uniform hypergraph on A. Given numbers r and n let [n] = {1, 2, . . . , n}, and let [n]r be the

complete r-partite hypergraph with all sides being equal to [n]. Let U be either
(
[n]
r

)
or [n]r, and let F be a

sub-hypergraph of U . The blocker B(F ) = B(U,F ) of F is the set of those edges of U that meet all edges
of F . For a number t we denote by bp(t) (resp. bc(t) - reference to the uniformity r is suppressed in both

notations) the maximal size of |B([n]r, F )| (resp. |B(
(
[n]
r

)
, F )| ), where F ranges over all sets of t edges in

[n]r (resp.
(
[n]
r

)
). The subscript p alludes at “partite”, and the subscript c alludes at “complete”. The aim

of this paper is to calculate bp(t) and bc(t) for all values of n, r and t. As a side benefit, this will enable us
to give new proofs of some well-known Erdős-Ko-Rado type results.

1.2. Cross intersecting versions of the Erdős-Ko-Rado theorem. The famous Erdős-Ko-Rado (EKR)

theorem [9] states that if r ≤ n
2 and a hypergraph H ⊆

(
[n]
r

)
has more than

(
n−1
r−1

)
edges, then H contains

two disjoint sets. Many extensions of this theorem have been proved for pairs of hypergraphs. In [17, 20] the
following was proved:

Theorem 1.1. If r ≤ n
2 , and H1,H2 ⊆

(
[n]
r

)
satisfy |H1||H2| >

(
n−1
r−1

)2
(in particular if |Hi| >

(
n−1
r−1

)
, i =

1, 2), then there exist disjoint edges, e1 ∈ H1, e2 ∈ H2.

In [17] this was also extended to hypergraphs of different uniformities. Versions of this result were proved
for cross t-intersecting pairs of hypergraphs, in [13, 21, 23].

The EKR theory has been also extended to sets living in [n]r, rather than
(
[n]
r

)
. An easy observation is

that any subset of [n]r of size larger than nr−1 contains two disjoint edges. This can be proved from the fact
that [n]r is the union of nr−1 perfect matchings. More interesting are cross-intersecting type results:

Theorem 1.2. A pair F1, F2 of subsets of [n]r satisfying |F1| > nr−1 and |F2| ≥ nr−1 has a rainbow
matching.

And the even stronger:

Theorem 1.3. If F1, F2 ⊆ [n]r and |F1||F2| > n2(r−1) then the pair (F1, F2) has a rainbow matching.

Theorem 1.3 was proved in [18]. It was generalized to cross t-intersecting pairs of hypergraphs and to
hypregaphs of different uniformities in [1, 3, 4, 13, 19, 22] ([1, 22] use spectral methods).

At the end of the next section we shall use the techniques of the present paper to give new proofs for these
results.
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Technion’s research promotion fund, and by the Discont Bank chair.
The research of the second author was supported by BSF grant no. 2006099, and by ISF grants Nos. 779/08, 859/08 and 938/06.
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2. A self-similar sequence

Denote the sides of [n]r by V1, . . . , Vr (so, all Vi’s are of size n). Choose one vertex vi from each Vi.
Let Ψr be the set of (possibly empty) sequences σ of length at most r − 1 consisting of ∧’s and ∨’s. Let
Σr = Ψr ∪ {α, ω}, where α = αr and ω = ωr are new elements. Note that |Σr| = 2r + 1. We define
hypergraphs Fr(σ) for all σ ∈ Σr, as follows. Let Fr(α) = ∅ and Fr(ω) = [n]r. For a sequence σ ∈ Ψr having
length m ≥ 0, and whose j-th term is denoted by σj (j ≤ m), let:

Fr(σ) = {e ∈ [n]r | v1 ∈ e σ1(v2 ∈ e σ2(v3 ∈ e . . . σm(vm+1 ∈ e) . . .)}

For example, Fr(∅) = {e ∈ [n]r | v1 ∈ e} and Fr(∧,∧,∨) is the set of edges e ∈ [n]r satisfying:

v1 ∈ e ∧ (v2 ∈ e ∧ (v3 ∈ e ∨ (v4 ∈ e)))

Let fr(σ) = |Fr(σ)|. Note that Ψr−1 ⊆ Ψr.

Lemma 2.1.

If σ ∈ Ψr−1 then

(1) fr(σ) = nfr−1(σ)
(2) fr(∧, σ) = fr−1(σ)
(3) fr(∨, σ) = nr−1 + (n− 1)fr−1(σ)

Part 1 is true since Fr(σ) = Fr−1(σ) × Vr. Part 2 is true since an edge in Fr(∧, σ) is obtained from an
edge f ∈ Fr−1(σ), with indices shifted by 1, by adding v1. Part 3 is true since Fr(∨, σ) = {v1} × V2 × . . .×
Vr ∪ (V1 \ {v1})× Fr−1(σ) (where, again, edges in Fr−1(σ) have their indices shifted by 1).

Order fr(σ) by size:

0 = fr(α) < fr(σ1) < fr(σ2) < . . . < fr(σ2r ) = nr

Let N(i) = fr(σi) (0 ≤ i ≤ 2r) (the mention of r is suppressed in this notation).

Example 2.2.

(1) N(0) = fr(α) = 0.
(2) N(1) = fr(∧,∧, . . . ,∧) (r − 1 times), which is 1.
(3) N(2) = fr(∧,∧, . . . ,∧) (r − 2 times), which is n.
(4) N(2r−1) = fr(∅) = nr−1.
(5) N(2r) = fr(ω) = nr.

In accord we order Σr as σ(i) (0 ≤ i ≤ 2r). For example σ(0) = α, σ(2r) = ω. We also define the inverse
function, which we name “i”: if σ(q) = τ , then i(τ) = q.

Clearly, for every β, γ, δ ∈ Ψr such that (β,∧, γ) and (β,∨, δ) belong to Ψr we have:

(1) i((β,∧, γ)) < i(β) < i((β,∨, δ))

The elements of Ψr can be viewed as the nodes of a binary tree, the depth of a node being the length of
the sequence (so the root, with depth 0, is the empty sequence). The order on Ψr, uniquely determined by
(1), is known as the “in-order depth first search” on the tree, where ∧ (“left”) precedes ∨ (“right”).

This description of the order on Ψr entails an explicit formula for σ(i). Represent i ̸= 0, 2r in binary form:
i = 2k0 + 2k1 + . . . + 2ks , where k0 > k1 > . . . > ks. Then σ(i) is of length r − ks − 1, and it consists of s
symbols of ∨ and r − ks − 1 − s symbols of ∧. It starts with r − k0 − 1 (possibly zero) ∧’s; if s > 0 these
are followed by a ∨; this is followed by k0 − k1 − 1 (possibly zero) ∧’s, and if s > 1 this is followed by a ∨,
followed by k1 − k2 − 1 ∧’s, and so forth.

For example, σ6(13) = σ6(2
3 + 22 + 20) = (∧,∧,∨,∨,∧).



CROSS-INTERSECTING PAIRS OF HYPERGRAPHS 3

The numbers N(i) can also be written explicitly:

N(i) =
∑
s≤i

nks(n− 1)s

The explicit description of σ(i) and the formula for N(i) will not be used below, and hence their proofs
are omitted.

Example 2.3. The values of N3 are:

0, 1, n, n+(n−1), n+n(n−1) = n2, n2+(n−1), n2+(n−1)n, n2+(n−1)(2n−1), n2+(n−1)n2 = n3.

Lemma 2.4.

(1) For i ≤ 2r−1 we have Nr(i) = Nr−1(i), namely the sequence Nr−1(i) is an initial segment of Nr(i).
(2) σ(2p) = (∧,∧, . . . ,∧), a sequence of r − p− 1 ∧’s, and N(2p) = np.
(3) For i < 2p the sequences σ(i) are of the form (σ(2p),∧, β) (β being some sequence), and for 2p < i <

2p+1 the sequences σ(i) are of the form (σ(2p),∨, β).
(4) For p ≤ r − 1 and i ≤ 2p, we have

N(2p + i) = N(2p) + (n− 1)N(i) = np + (n− 1)N(i)

Part 1 is true by part 2 of Lemma 2.1, since σ(1), . . . , σ(2r−1 − 1) all start with a ∧. Parts 2 and 3 follow
from Equation (1) and the remark following it. Part 4 follows from part 3 of Lemma 2.1.

Part 4 says that for fixed n, the numbers Nr(i) have a self-similar pattern. Each sequence Nr is obtained
from the sequence Nr−1 by concatenating it with the sequence M defined by M(i) = nr + (n − 1)Nr−1(i).
The concatenation includes also an identification of elements: the first element of M is identified with the
last element of Nr−1, both being equal to nr−1. This entails:

Lemma 2.5. If b, c ≤ 2p then N(2p + b)−N(2p + c) = (n− 1)(N(b)−N(c)).

2.1. Shifting. Shifting is an operation on a hypergraph H, defined with respect to a specific linear ordering
“<” on its vertices. For x < y in V (H) define sxy(e) = e∪x\{y} if x ̸∈ e and y ∈ e, provided e∪x\{y} ̸∈ H;
otherwise let sxy(e) = e. We also write sxy(H) = {sxy(e) | e ∈ H}. If sxy(H) = H for every pair x < y then
H is said to be shifted.

Given an r-partite hypergraph G with sides M and W together with linear orders on each of its sides, an
r-partite shifting is a shifting sxy where x and y belong to the same side. G is said to be r-partitely shifted if
sxy(H) = H for all pairs x < y that belong to the same side.

Given a collection H = (Hi, i ∈ I) of hypergraphs, we write sxy(H) for (sxy(Hi), i ∈ I).

As observed in [8] (see also [2]), shifting does not increase the matching number of a hypergraph. This
can be generalized to rainbow matchings.

Lemma 2.6. Let F = (Fi | i ∈ I) be a collection of hypergraphs, sharing the same linearly ordered ground
set V , and let x < y be elements of V . If sxy(F) has a rainbow matching, then so does F .

Proof. Let R = sxy(ei), i ∈ I, be a rainbow matching for sxy(F). We may assume that sxy(ei) ̸= ei for
some i ∈ I, meaning that y ∈ ei and x ̸∈ ei. Since R is a matching, only one edge in R can contain x, so
sxy(ej) = ej for all j ̸= i.

Assume first that y ̸∈ sxy(ej) for any j ∈ I. Then replacing sxy(ei) by ei as a representative for Fi results in
a rainbow matching for F . So, we may assume that y ∈ sxy(ej) for some j ̸= i. Then e′j = ej \{y}∪{x} ∈ Fj ,
or else sxy(ej) ̸= ej , contrary to our previous conclusion. Then replacing ej = sxy(ej) in R by e′j as a
representative for Fj and replacing sxy(ei) by ei as a representative for Fi results in a rainbow matching for
F .

�
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2.2. The size of blocking hypergraphs. For σ ∈ Ψr we denote by σ the sequence obtained by replacing
each ∧ by a ∨ and vice versa. We also define α = ω and ω = α. Clearly, i(σ) > i(τ) if and only if i(σ) < i(τ),
and hence we have:

(2) i(σ) = 2r − i(σ)

By De Morgan’s law, we have:

Lemma 2.7. B(Fr(σ)) = Fr(σ).

Lemma 2.8.

(1) N(j + i) ≥ N(j) +N(i).
(2) If i ≤ j then N(j + i) ≥ N(j) + (n− 1)N(i).

Proof. Clearly, (2) implies (1). So, it suffices to prove (2) using an induction assumption on both (1) and
(2), where the induction is on i+ j. Assume that the lemma is true for all i′, j′ satisfying i′ + j′ < i+ j. Let
j = 2p + s, where s < 2p. Assume first that j + i ≤ 2p+1, and write j + i = 2p + t, where t ≤ 2p. By part 4
of Lemma 2.4 N -distances beyond 2p are the N -distances below 2p magnified (n− 1)-fold. Hence we have

N(j + i)−N(j) = (n− 1)(N(t)−N(s)).

By the induction hypothesis on (1) N(t)−N(s) ≥ N(t− s) = N(i), and thus N(j+ i)−N(j) ≥ (n− 1)N(i).

Assume next that j+ i > 2p+1. Let j+ i = 2p+1+w. Then i = 2p+w−s. Since 2p+w < 2p+1+w = i+j,
we can apply the induction hypothesis on (1) to the pair (i, s), to obtain

N(2p + w)−N(s) ≥ N(i).

By Lemma 2.5 N(2p+1)−N(2p + s) = (n− 1)(N(2p)−N(s)) and N(2p+1 +w)−N(2p+1) = (n− 1)(N(2p +
w) −N(2p)). Adding the last two equalities gives N(j + i) −N(j) = (n− 1)(N(2p + w) −N(s)), which by
the above is at least (n− 1)N(i), completing the proof.

�

A converse inequality is also true, namely for every k > 1 it is true that:

(3) N(k) = max{N(j) + (n− 1)N(i) | j + i = k, i ≤ j}

Proof. Let p be maximal such that 2p < k, and let k = 2p+j. By Lemma 2.4 (4) N(k) = N(i)+(n−1)N(j).
Combining this with Lemma 2.8 proves the desired equality. �

In [16] (3) was used as a defining recursion rule for the sequence N(i) (which appeared there in a different
context.)

For a number t ≤ nr denote by N∗(t) the number q such that N(q−1) < t ≤ N(q). This is an approximate
inverse of N .

Theorem 2.9. bp(t) = N(2r −N∗(t)) for every t ≤ nr.

Proof. Let F = Fr(σ(N
∗(t)). Then |F | ≥ t, and since B(F ) = Fr(σ̄), we have |B(F )| = N(2r −N∗(t)). This

proves that bp(t) ≥ N(2r −N∗(t)). To complete the proof we have to show that for every F ⊆ [n]r of size t
we have |B(F )| ≤ N(2r −N∗(t)). Write q = N∗(t). We wish to show that |B(F )| ≤ N(2r − q). We do this
by induction on r. The case r = 1 is easy, so assume that we know the result for r− 1 and we wish to prove
it for r.

Let F+ = {e \ Vr | vr ∈ e ∈ F} and F− = {e \ Vr | e ∈ F, vr ̸∈ e}.

By Lemma 2.6 we may assume that F is r-partitely shifted, with vi being the first element in Vi in the order
used for the shifting. In particular, this entails F− ⊆ F+. Let B+ = B[n]r−1(F+) and B− = B[n]r−1(F−),

and let f+ = |F+|, f− = |F−|, b+ = |B+|, b− = |B−|. Then b− ≤ b+.

Notation 2.10. If H is a hypergraph and S a set disjoint from V (H), we define H ⋄ S = {h ∪ S | h ∈ H}.
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Clearly:
B(F ) = (B− ⋄ {vr}) ∪ (B+ ⋄ (Vr \ {vr}))

and hence

(4) |B(F )| = b− + (n− 1)b+

Let i = N∗(f−) and j = N∗(f+). Also let i′ = N∗(b+), j′ = N∗(b−). By Lemma 2.8 we have:

|F | ≤ f+ + (n− 1)f− ≤ N(i+ j)

and hence i + j ≥ q. By the inductive hypothesis j′ ≤ 2r−1 − i, and i′ ≤ 2r−1 − j, and hence i′ + j′ ≤
2r − (i+ j) ≤ 2r − q. By (4) and Lemma 2.8 , |B(F )| ≤ N(i′ + j′) ≤ N(2r − q), as desired.

�

Our result readily implies Theorem 1.2. Let t = nr−1. Then nr−1 = N(2r−1) and N∗(t) = 2r−1. So it
follows that bp(t) = N(2r −N∗(t)) = N(2r − 2r−1) = N(2r−1) = nr−1, yielding the theorem.

Theorem 1.3 also follows from Theoerm 2.9. The proof requires yet another lemma:

Lemma 2.11. N(a)N(b) ≤ N(ab).

Proof. By induction on a + b. The case a + b = 0 is trivial. By (3) N(a) = N(c) + (n − 1)N(d) for some
c ≤ d < a such that c+ d = a, and N(b) = N(e)+ (n− 1)N(f) for some e ≤ f < b such that e+ f = b. Then

N(a)N(b) = N(c)N(e) + (n− 1)[N(d)N(e) +N(c)N(f)] + (n− 1)2N(d)N(f)

Using the induction hypothesis, we get:

N(a)N(b) ≤ N(ce) + (n− 1)[N(d)N(e) +N(c)N(f)] + (n− 1)2N(df)

Using Lemma 2.8 twice we get:

N(a)N(b) ≤ N(ce+ cf) + (n− 1)N(de+ df) ≤ N(ce+ cf + de+ df) = N(ab).

�

The lemma implies that N(2r−1 − q)N(2r−1 + q) ≤ N(22(r−1)) for every q ≤ 2r−1, meaning that tbp(t) ≤
n2(r−1) for every t ≤ nr−1, which is another way of formulating Theorem 1.3.

3. Blockers in
(
[n]
r

)
3.1. Sequences of ∨’s and ∧’s and the sets they define. Let n be a positive integer. For a sequence
σ = (σ1, σ2, . . . , σm) of ∧’s and ∨’s (m < n) let T (σ) be the set of subsets e of [n], satisfying

1 ∈ e σ1 (2 ∈ e σ2 (3 ∈ e . . . σm (m+ 1 ∈ e)) . . .)

For a number r ≤ n let Tr(σ) = T (σ) ∩
(
[n]
r

)
. Let also tr(σ) = |Tr(σ)| (this is the analogue of fr(σ) of the

first section).

Example 3.1.

(1) If σ = (∨,∧,∨,∧) then T (σ) = {e ∈ [n] | 1 ∈ e ∨ (2 ∈ e ∧ (3 ∈ e ∨ (4 ∈ e ∧ 5 ∈ e)))}.
(2) Tr(∅) = {e ∈

(
[n]
r

)
| 1 ∈ e}, and thus tr(∅) =

(
n−1
r−1

)
.

(3) If σ = ∧r−1 (meaning that σi = ∧ for all i < r) then Tr(σ) = {e ∈
(
[n]
r

)
| {1, 2, . . . , r} ⊆ e} = {[r]},

meaning that tr(σ) = 1.

For a positive integer r, let Υr be the set of sequences σ = (σ1, σ2, . . . , σm) consisting of fewer than r
symbols of ∧ and fewer than r symbols of ∨. Let Θr = Υr ∪{α}∪{ω}, where α and ω are two new elements.

Define Tr(α) = ∅ and Tr(ω) =
(
[n]
r

)
.

Lemma 3.2. |Θr| =
(
2r
r

)
+ 1.
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Proof. define a map from Υr \ {∅} to the set of sequences of r symbols ∧ and r symbols ∨, in which σ
goes to a sequence ψ(σ) obtained by appending to it at its end a sequence of the form ∧ ∧ . . . ∧ ∨ ∨ . . .∨ or
∨∨ . . .∨∧∧ . . .∧, in which the first symbol is the opposite of the last symbol of σ. Clearly, σ is reconstructible
from ψ(σ), since the last symbol of σ is recognizable - it is the first symbol, going from right to left, in the
third stretch of identical symbols in ψ(σ). The two sequences ∨ ∨ . . . ∨ ∧ ∧ . . .∧ and ∧ ∧ . . . ∧ ∨ ∨ . . .∨ are
missing from the image, and remembering that ∅ ∈ Υr this proves that |Υr| =

(
2r
r

)
− 1. �

We now wish to order Θr. For this purpose we extend every sequence in Υr by appending a symbol ∗ at
its end, and then ordering Υr lexicographically, with the convention ∧ < ∗ < ∨ (the “*” is then discarded).
We also define α to be the minimal element and ω to be the largest element of Θr.

3.2. The sequence Mr(i). Write m =
(
2r
r

)
. Let σ0 = α < σ1 < σ2 < . . . < ω = σm be the order defined

above on Θr, and let Mr(i) = tr(σi). The identity of r being assumed to be known, we omit its mention and
write M(i). This is the analogue of the sequence N(i) in the r-partite case.

Observation 3.3. The sequence M(i) is strictly ascending.

Here is for example the sequence for r = 3 and general n:

0, 1, 2, 3, n−2, n−1, n, 2n−5, 2n−4, 3n−9,
(
n−1
2

)
,
(
n−1
2

)
+1,

(
n−1
2

)
+2,

(
n−1
2

)
+n−3,

(
n−1
2

)
+n−2,

(
n−1
2

)
+

2n− 7,
(
n−1
2

)
+
(
n−2
2

)
,
(
n−1
2

)
+
(
n−2
2

)
+ 1,

(
n−1
2

)
+

(
n−2
2

)
+ n− 4,

(
n−1
2

)
+
(
n−2
2

)
+

(
n−3
2

)
,
(
n
3

)
.

This sequence does not seem to behave as nicely as the sequence N(i), but like the sequence N(i) it has
landmarks.

Theorem 3.4.

(1) σ(
(
2r−i
r

)
) = ∧i−1.

(2) σ(
(
2r
r

)
−

(
2r−i
r−i

)
) = ∨i−1.

(3) M(
(
2r−i
r

)
) =

(
n−i
r−i

)
.

(4) M(
(
2r
r

)
−

(
2r−i
r−i

)
) =

(
n−1
r−1

)
+
(
n−2
r−1

)
+ . . .+

(
n−i
r−1

)
.

Proof. Part (1): the sequences preceding ∧i−1 are those that start with ∧i. Using the same idea as in the
proof of Lemma 3.2, we define a map between the set of the sequences σ preceding ∧i−1 and the set of
sequences of r symbols of ∨ and r − i symbols of ∧: we complete σ to a sequence of r symbols ∨ and r
symbols ∧ by appending to σ at its end a sequence ∨ ∨ . . . ∨ ∧ ∧ . . .∧ or ∧ ∧ . . . ∧ ∨ ∨ . . .∨, where the first
symbol of the appended sequence is the opposite of the last symbol of σ. The only sequence that is not in
the image of this map is ∧r∨r, and hence the number of sequences preceding ∧i−1 is

(
2r−i
r

)
-1.

Part (2) follows by symmetry. Parts (3) and (4) follow by simple counting. �

3.3. Calculating bc(t) for t ≤
(
n
r

)
. For σ ∈ Υr denote by σ the sequence obtained from σ by replacing each

∧ by a ∨ and vice versa. Also define α = ω and ω = α. By De Morgan’s law, we have:

Lemma 3.5. B(Tr(σ)) = Tr(σ).

The main result of this section is:

Theorem 3.6. For every number 0 ≤ t ≤
(
n
r

)
there exists 0 ≤ i ≤

(
2r
r

)
such that bc(t) =M(i).

The proof uses an already mentioned idea of Daykin [5], who gave a proof of the EKR theorem using the
Kruskal-Katona theorem.

For a hypergraph F and a number r, the r-shadow of F , denoted by Sr(F ), is
∪

f∈F

(
f
r

)
. A hypergraph F

of uniformity k is said to be in “cascade form” if there exist sets B0 = [n] ⊇ B1 % . . . % Bs+1 and elements
xi ∈ Bi−1 \Bi (1 ≤ i ≤ s), such that

F =

(
B1

k

)
∪ x1 ⋄

(
B2

k − 1

)
∪ x1 ⋄ x2 ⋄

(
B3

k − 2

)
∪ . . . ∪ x1 ⋄ x2 ⋄ . . . ⋄ xs ⋄

(
Bs+1

k − s

)
Here x ⋄ S stands for {x} ⋄ S (for the meaning of the latter, see Notation 2.10).
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Theorem 3.7. [14, 15] Given numbers m,n and r ≤ k, the minimum of |Sr(H)| over all H ⊆
(
H
k

)
is

attained at a hypergraph H having cascade form.

Proof of Theorem 3.6 We have to show that there exists β ∈ Υr satisfying the following condition: the
maximum of |B(H)| over all hypergraphs H ⊆

(
n
r

)
of cardinality t is attained at a hypergraph H for which

B(H) = Tr(β) for some sequence β ∈ Υr.

Clearly, B(H) = Sr(H̄)c, where H̄ is the set of complements of edges in H, and Sr(H̄)c denotes the set
of all edges of size r that do not belong to Sr(H̄). By Theorem 3.7 the maximal value of |B(H)| over all
H ⊆

(
n
r

)
is attained at a hypergraph H for which H̄ has cascade form. Let this form be

(5) H̄ =

(
B1

n− r

)
∪ x1 ⋄

(
B2

n− r − 1

)
∪ x1 ⋄ x2 ⋄

(
B3

n− r − 2

)
∪ . . . ∪ x1 ⋄ x2 ⋄ . . . ⋄ xs ⋄

(
Bs+1

n− r − s

)

Here possibly s = 0. As above, we define B0 = [n]. For each 0 ≤ i ≤ s let Bi\(Bi+1∪{xi}) = {zi1, . . . , ziti},
where ti = |Bi \Bi+1| − 1 (Here possibly ti = 0).

Assertion 3.8. B(H) = T (θ), where

θ = z01 ∨ (z02 . . . ∨ (z0t0 ∨ (x1 ∧ (z11 ∨ (z12 ∨ . . . ∨ (z1t1 ∨ (x2 ∧ (z21 ∨ (z22 ∨ . . . ∨ (z2t2 . . .

if B1 ̸= [n] and θ = α if B1 = [n].

To prove the assertion, we have to show that a set e of size r belongs to Sr(H̄)c if and only if it satisfies
the conditions imposed by θ. If e contains one of z01 , z

0
2 . . . , z

0
t0 then it does not belong to Sr(H̄) because

edges in H̄ are contained in {x1} ∪ B0. If e does not contain any of these vertices, it may still belong to
Sr(H̄)c, if it contains x1. In such a case if e also contains none of z11 , z

1
2 . . . , z

1
t1 , x2 then it belongs to Sr(H̄).

So, we may assume that e contains one of these vertices or it contains x2 together with x1, and so on. This
completes the proof of the assertion.

Next note that since e is of size r, it suffices to stop just after xr, and obtain a condition that is satisfied
by e if and only if e ∈ T (θ). For example, for r = 2 a set of size 2 satisfies the condition

x1 ∧ (z11 ∨ (x2 ∧ (z21 ∨ x3)))

if and only if it satisfies the condition

x1 ∧ (z11 ∨ x2)

Let β be the formula obtained by truncating θ after xr, if indeed xr appears, and let β = θ otherwise.

Note also that the number of ∨’s in θ is equal to the number of zji ’s in θ. The assumption is that the set(
Bs+1

n−r−s

)
appearing in (5) is non-empty, which implies that |Bs+1| ≥ n − r − s. This is easily seen to imply

that the number of zji ’s is at most r. Thus β ∈ Υr, which completes the proof of Theorem 3.6.

We can now achieve our aim - the calculation of bc(t) for every t ≤
(
n
r

)
.

Theorem 3.9. If M(i− 1) < t ≤M(i) then bc(t) =M(
(
2r
r

)
− i).

Proof. By Lemma 3.5 bc(M(j)) = M(
(
2r
r

)
− j) for all 0 ≤ j ≤

(
2r
r

)
. Since bc(c) ≤ bc(d) whenever c ≥ d,

this implies that M(
(
2r
r

)
− i) ≤ bc(t) ≤ M(

(
2r
r

)
− i+ 1), and by Theorem 3.6 it follows that either bc(t) =

M(
(
2r
r

)
− i+ 1) or bc(t) = M(

(
2r
r

)
− i). By the definition of the function b we have bc(bc(t)) ≥ t, and hence

if bc(t) = M(
(
2r
r

)
− i+ 1) then t ≤ bc(M(

(
2r
r

)
− i+ 1) = M(i − 1), contradicting the assumption of the

theorem. Thus bc(t) =M(
(
2r
r

)
− i). �
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Press (1968).

[16] D. E. Knuth, A recurrence involving maxima, American Mathematical Monthly 114 (2007), 835; solution in 116 (2009),
649.
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