CROSS-INTERSECTING PAIRS OF HYPERGRAPHS

RON AHARONI AND DAVID HOWARD

Abstract

Two hypergraphs H_{1}, H_{2} are called cross-intersecting if $e_{1} \cap e_{2} \neq \emptyset$ for every pair of edges $e_{1} \in H_{1}, e_{2} \in H_{2}$. Each of the hypergraphs is then said to block the other. Given integers n, r, m we determine the maximal size of a sub-hypergraph of $[n]^{r}$ (meaning that it is r-partite, with all sides of size n) for which there exists a blocking sub-hypergraph of $[n]^{r}$ of size m. The answer involves a self-similar sequence, first studied by Knuth. We also study the same question with $\binom{n}{r}$ replacing $[n]^{r}$. These results yield new proofs of some known Erdős-Ko-Rado type theorems.

1. Blockers in r-PARTITE HYPERGRAPHS

1.1. Blockers. For a set A and a number r let $\binom{A}{r}$ be the set of all subsets of size r of A, in other words the complete r-uniform hypergraph on A. Given numbers r and n let $[n]=\{1,2, \ldots, n\}$, and let $[n]^{r}$ be the complete r-partite hypergraph with all sides being equal to $[n]$. Let U be either $\binom{[n]}{r}$ or $[n]^{r}$, and let F be a sub-hypergraph of U. The blocker $B(F)=B(U, F)$ of F is the set of those edges of U that meet all edges of F. For a number t we denote by $b_{p}(t)$ (resp. $b_{c}(t)$ - reference to the uniformity r is suppressed in both notations) the maximal size of $\left|B\left([n]^{r}, F\right)\right|$ (resp. $\left.\left|B\left(\binom{[n]}{r}, F\right)\right|\right)$, where F ranges over all sets of t edges in $[n]^{r}$ (resp. $\binom{[n]}{r}$). The subscript p alludes at "partite", and the subscript c alludes at "complete". The aim of this paper is to calculate $b_{p}(t)$ and $b_{c}(t)$ for all values of n, r and t. As a side benefit, this will enable us to give new proofs of some well-known Erdős-Ko-Rado type results.
1.2. Cross intersecting versions of the Erdős-Ko-Rado theorem. The famous Erdős-Ko-Rado (EKR) theorem [9] states that if $r \leq \frac{n}{2}$ and a hypergraph $H \subseteq\binom{[n]}{r}$ has more than $\binom{n-1}{r-1}$ edges, then H contains two disjoint sets. Many extensions of this theorem have been proved for pairs of hypergraphs. In [17, 20] the following was proved:
Theorem 1.1. If $r \leq \frac{n}{2}$, and $H_{1}, H_{2} \subseteq\binom{[n]}{r}$ satisfy $\left|H_{1}\right|\left|H_{2}\right|>\binom{n-1}{r-1}^{2}$ (in particular if $\left|H_{i}\right|>\binom{n-1}{r-1}$, $i=$ $1,2)$, then there exist disjoint edges, $e_{1} \in H_{1}, e_{2} \in H_{2}$.

In [17] this was also extended to hypergraphs of different uniformities. Versions of this result were proved for cross t-intersecting pairs of hypergraphs, in [13, 21, 23].

The EKR theory has been also extended to sets living in $[n]^{r}$, rather than $\binom{[n]}{r}$. An easy observation is that any subset of $[n]^{r}$ of size larger than n^{r-1} contains two disjoint edges. This can be proved from the fact that $[n]^{r}$ is the union of n^{r-1} perfect matchings. More interesting are cross-intersecting type results:
Theorem 1.2. A pair F_{1}, F_{2} of subsets of $[n]^{r}$ satisfying $\left|F_{1}\right|>n^{r-1}$ and $\left|F_{2}\right| \geq n^{r-1}$ has a rainbow matching.

And the even stronger:
Theorem 1.3. If $F_{1}, F_{2} \subseteq[n]^{r}$ and $\left|F_{1} \| F_{2}\right|>n^{2(r-1)}$ then the pair $\left(F_{1}, F_{2}\right)$ has a rainbow matching.
Theorem 1.3 was proved in [18]. It was generalized to cross t-intersecting pairs of hypergraphs and to hypregaphs of different uniformities in $[1,3,4,13,19,22]$ ($[1,22]$ use spectral methods).

At the end of the next section we shall use the techniques of the present paper to give new proofs for these results.

[^0]
2. A SELF-SIMILAR SEQUENCE

Denote the sides of $[n]^{r}$ by V_{1}, \ldots, V_{r} (so, all V_{i} 's are of size n). Choose one vertex v_{i} from each V_{i}. Let Ψ_{r} be the set of (possibly empty) sequences σ of length at most $r-1$ consisting of \wedge 's and \vee 's. Let $\Sigma_{r}=\Psi_{r} \cup\{\alpha, \omega\}$, where $\alpha=\alpha_{r}$ and $\omega=\omega_{r}$ are new elements. Note that $\left|\Sigma_{r}\right|=2^{r}+1$. We define hypergraphs $F_{r}(\sigma)$ for all $\sigma \in \Sigma_{r}$, as follows. Let $F_{r}(\alpha)=\emptyset$ and $F_{r}(\omega)=[n]^{r}$. For a sequence $\sigma \in \Psi_{r}$ having length $m \geq 0$, and whose j-th term is denoted by $\sigma_{j}(j \leq m)$, let:

$$
F_{r}(\sigma)=\left\{e \in[n]^{r} \mid v_{1} \in e \sigma_{1}\left(v_{2} \in e \sigma_{2}\left(v_{3} \in e \ldots \sigma_{m}\left(v_{m+1} \in e\right) \ldots\right)\right\}\right.
$$

For example, $F_{r}(\emptyset)=\left\{e \in[n]^{r} \mid v_{1} \in e\right\}$ and $F_{r}(\wedge, \wedge, \vee)$ is the set of edges $e \in[n]^{r}$ satisfying:

$$
v_{1} \in e \wedge\left(v_{2} \in e \wedge\left(v_{3} \in e \vee\left(v_{4} \in e\right)\right)\right)
$$

Let $f_{r}(\sigma)=\left|F_{r}(\sigma)\right|$. Note that $\Psi_{r-1} \subseteq \Psi_{r}$.

Lemma 2.1.

If $\sigma \in \Psi_{r-1}$ then
(1) $f_{r}(\sigma)=n f_{r-1}(\sigma)$
(2) $f_{r}(\wedge, \sigma)=f_{r-1}(\sigma)$
(3) $f_{r}(\vee, \sigma)=n^{r-1}+(n-1) f_{r-1}(\sigma)$

Part 1 is true since $F_{r}(\sigma)=F_{r-1}(\sigma) \times V_{r}$. Part 2 is true since an edge in $F_{r}(\wedge, \sigma)$ is obtained from an edge $f \in F_{r-1}(\sigma)$, with indices shifted by 1 , by adding v_{1}. Part 3 is true since $F_{r}(\vee, \sigma)=\left\{v_{1}\right\} \times V_{2} \times \ldots \times$ $V_{r} \cup\left(V_{1} \backslash\left\{v_{1}\right\}\right) \times F_{r-1}(\sigma)$ (where, again, edges in $F_{r-1}(\sigma)$ have their indices shifted by 1).

Order $f_{r}(\sigma)$ by size:

$$
0=f_{r}(\alpha)<f_{r}\left(\sigma_{1}\right)<f_{r}\left(\sigma_{2}\right)<\ldots<f_{r}\left(\sigma_{2^{r}}\right)=n^{r}
$$

Let $N(i)=f_{r}\left(\sigma_{i}\right)\left(0 \leq i \leq 2^{r}\right)$ (the mention of r is suppressed in this notation).

Example 2.2.

(1) $N(0)=f_{r}(\alpha)=0$.
(2) $N(1)=f_{r}(\wedge, \wedge, \ldots, \wedge)(r-1$ times $)$, which is 1 .
(3) $N(2)=f_{r}(\wedge, \wedge, \ldots, \wedge)(r-2$ times $)$, which is n.
(4) $N\left(2^{r-1}\right)=f_{r}(\emptyset)=n^{r-1}$.
(5) $N\left(2^{r}\right)=f_{r}(\omega)=n^{r}$.

In accord we order Σ_{r} as $\sigma(i)\left(0 \leq i \leq 2^{r}\right)$. For example $\sigma(0)=\alpha, \sigma\left(2^{r}\right)=\omega$. We also define the inverse function, which we name " i ": if $\sigma(q)=\tau$, then $i(\tau)=q$.

Clearly, for every $\beta, \gamma, \delta \in \Psi_{r}$ such that (β, \wedge, γ) and (β, \vee, δ) belong to Ψ_{r} we have:

$$
\begin{equation*}
i((\beta, \wedge, \gamma))<i(\beta)<i((\beta, \vee, \delta)) \tag{1}
\end{equation*}
$$

The elements of Ψ_{r} can be viewed as the nodes of a binary tree, the depth of a node being the length of the sequence (so the root, with depth 0 , is the empty sequence). The order on Ψ_{r}, uniquely determined by (1), is known as the "in-order depth first search" on the tree, where \wedge ("left") precedes \vee ("right").

This description of the order on Ψ_{r} entails an explicit formula for $\sigma(i)$. Represent $i \neq 0,2^{r}$ in binary form: $i=2^{k_{0}}+2^{k_{1}}+\ldots+2^{k_{s}}$, where $k_{0}>k_{1}>\ldots>k_{s}$. Then $\sigma(i)$ is of length $r-k_{s}-1$, and it consists of s symbols of \vee and $r-k_{s}-1-s$ symbols of \wedge. It starts with $r-k_{0}-1$ (possibly zero) \wedge 's; if $s>0$ these are followed by a \vee; this is followed by $k_{0}-k_{1}-1$ (possibly zero) \wedge 's, and if $s>1$ this is followed by a \vee, followed by $k_{1}-k_{2}-1 \wedge$'s, and so forth.

For example, $\sigma_{6}(13)=\sigma_{6}\left(2^{3}+2^{2}+2^{0}\right)=(\wedge, \wedge, \vee, \vee, \wedge)$.

The numbers $N(i)$ can also be written explicitly:

$$
N(i)=\sum_{s \leq i} n^{k_{s}}(n-1)^{s}
$$

The explicit description of $\sigma(i)$ and the formula for $N(i)$ will not be used below, and hence their proofs are omitted.

Example 2.3. The values of N_{3} are:
$0,1, n, n+(n-1), n+n(n-1)=n^{2}, n^{2}+(n-1), n^{2}+(n-1) n, n^{2}+(n-1)(2 n-1), n^{2}+(n-1) n^{2}=n^{3}$.
Lemma 2.4.
(1) For $i \leq 2^{r-1}$ we have $N_{r}(i)=N_{r-1}(i)$, namely the sequence $N_{r-1}(i)$ is an initial segment of $N_{r}(i)$.
(2) $\sigma\left(2^{p}\right)=(\wedge, \wedge, \ldots, \wedge)$, a sequence of $r-p-1 \wedge$'s, and $N\left(2^{p}\right)=n^{p}$.
(3) For $i<2^{p}$ the sequences $\sigma(i)$ are of the form $\left(\sigma\left(2^{p}\right), \wedge, \beta\right)$ (β being some sequence), and for $2^{p}<i<$ 2^{p+1} the sequences $\sigma(i)$ are of the form $\left(\sigma\left(2^{p}\right), \vee, \beta\right)$.
(4) For $p \leq r-1$ and $i \leq 2^{p}$, we have

$$
N\left(2^{p}+i\right)=N\left(2^{p}\right)+(n-1) N(i)=n^{p}+(n-1) N(i)
$$

Part 1 is true by part 2 of Lemma 2.1, since $\sigma(1), \ldots, \sigma\left(2^{r-1}-1\right)$ all start with a \wedge. Parts 2 and 3 follow from Equation (1) and the remark following it. Part 4 follows from part 3 of Lemma 2.1.

Part 4 says that for fixed n, the numbers $N_{r}(i)$ have a self-similar pattern. Each sequence N_{r} is obtained from the sequence N_{r-1} by concatenating it with the sequence M defined by $M(i)=n^{r}+(n-1) N_{r-1}(i)$. The concatenation includes also an identification of elements: the first element of M is identified with the last element of N_{r-1}, both being equal to n^{r-1}. This entails:

Lemma 2.5. If $b, c \leq 2^{p}$ then $N\left(2^{p}+b\right)-N\left(2^{p}+c\right)=(n-1)(N(b)-N(c))$.
2.1. Shifting. Shifting is an operation on a hypergraph H, defined with respect to a specific linear ordering " $<$ " on its vertices. For $x<y$ in $V(H)$ define $s_{x y}(e)=e \cup x \backslash\{y\}$ if $x \notin e$ and $y \in e$, provided $e \cup x \backslash\{y\} \notin H$; otherwise let $s_{x y}(e)=e$. We also write $s_{x y}(H)=\left\{s_{x y}(e) \mid e \in H\right\}$. If $s_{x y}(H)=H$ for every pair $x<y$ then H is said to be shifted.

Given an r-partite hypergraph G with sides M and W together with linear orders on each of its sides, an r-partite shifting is a shifting $s_{x y}$ where x and y belong to the same side. G is said to be r-partitely shifted if $s_{x y}(H)=H$ for all pairs $x<y$ that belong to the same side.

Given a collection $\mathcal{H}=\left(H_{i}, i \in I\right)$ of hypergraphs, we write $s_{x y}(\mathcal{H})$ for $\left(s_{x y}\left(H_{i}\right), i \in I\right)$.
As observed in [8] (see also [2]), shifting does not increase the matching number of a hypergraph. This can be generalized to rainbow matchings.

Lemma 2.6. Let $\mathcal{F}=\left(F_{i} \mid i \in I\right)$ be a collection of hypergraphs, sharing the same linearly ordered ground set V, and let $x<y$ be elements of V. If $s_{x y}(\mathcal{F})$ has a rainbow matching, then so does \mathcal{F}.

Proof. Let $R=s_{x y}\left(e_{i}\right), i \in I$, be a rainbow matching for $s_{x y}(\mathcal{F})$. We may assume that $s_{x y}\left(e_{i}\right) \neq e_{i}$ for some $i \in I$, meaning that $y \in e_{i}$ and $x \notin e_{i}$. Since R is a matching, only one edge in R can contain x, so $s_{x y}\left(e_{j}\right)=e_{j}$ for all $j \neq i$.

Assume first that $y \notin s_{x y}\left(e_{j}\right)$ for any $j \in I$. Then replacing $s_{x y}\left(e_{i}\right)$ by e_{i} as a representative for F_{i} results in a rainbow matching for \mathcal{F}. So, we may assume that $y \in s_{x y}\left(e_{j}\right)$ for some $j \neq i$. Then $e_{j}^{\prime}=e_{j} \backslash\{y\} \cup\{x\} \in F_{j}$, or else $s_{x y}\left(e_{j}\right) \neq e_{j}$, contrary to our previous conclusion. Then replacing $e_{j}=s_{x y}\left(e_{j}\right)$ in R by e_{j}^{\prime} as a representative for F_{j} and replacing $s_{x y}\left(e_{i}\right)$ by e_{i} as a representative for F_{i} results in a rainbow matching for \mathcal{F}.
2.2. The size of blocking hypergraphs. For $\sigma \in \Psi_{r}$ we denote by $\bar{\sigma}$ the sequence obtained by replacing each \wedge by a \vee and vice versa. We also define $\bar{\alpha}=\omega$ and $\bar{\omega}=\alpha$. Clearly, $i(\sigma)>i(\tau)$ if and only if $i(\bar{\sigma})<i(\bar{\tau})$, and hence we have:

$$
\begin{equation*}
i(\bar{\sigma})=2^{r}-i(\sigma) \tag{2}
\end{equation*}
$$

By De Morgan's law, we have:
Lemma 2.7. $B\left(F_{r}(\sigma)\right)=F_{r}(\bar{\sigma})$.

Lemma 2.8.

(1) $N(j+i) \geq N(j)+N(i)$.
(2) If $i \leq j$ then $N(j+i) \geq N(j)+(n-1) N(i)$.

Proof. Clearly, (2) implies (1). So, it suffices to prove (2) using an induction assumption on both (1) and (2), where the induction is on $i+j$. Assume that the lemma is true for all i^{\prime}, j^{\prime} satisfying $i^{\prime}+j^{\prime}<i+j$. Let $j=2^{p}+s$, where $s<2^{p}$. Assume first that $j+i \leq 2^{p+1}$, and write $j+i=2^{p}+t$, where $t \leq 2^{p}$. By part 4 of Lemma 2.4 N-distances beyond 2^{p} are the N-distances below 2^{p} magnified $(n-1)$-fold. Hence we have

$$
N(j+i)-N(j)=(n-1)(N(t)-N(s)) .
$$

By the induction hypothesis on (1) $N(t)-N(s) \geq N(t-s)=N(i)$, and thus $N(j+i)-N(j) \geq(n-1) N(i)$.
Assume next that $j+i>2^{p+1}$. Let $j+i=2^{p+1}+w$. Then $i=2^{p}+w-s$. Since $2^{p}+w<2^{p+1}+w=i+j$, we can apply the induction hypothesis on (1) to the pair (i, s), to obtain

$$
N\left(2^{p}+w\right)-N(s) \geq N(i)
$$

By Lemma 2.5 $N\left(2^{p+1}\right)-N\left(2^{p}+s\right)=(n-1)\left(N\left(2^{p}\right)-N(s)\right)$ and $N\left(2^{p+1}+w\right)-N\left(2^{p+1}\right)=(n-1)\left(N\left(2^{p}+\right.\right.$ $\left.w)-N\left(2^{p}\right)\right)$. Adding the last two equalities gives $N(j+i)-N(j)=(n-1)\left(N\left(2^{p}+w\right)-N(s)\right)$, which by the above is at least $(n-1) N(i)$, completing the proof.

A converse inequality is also true, namely for every $k>1$ it is true that:

$$
\begin{equation*}
N(k)=\max \{N(j)+(n-1) N(i) \mid j+i=k, i \leq j\} \tag{3}
\end{equation*}
$$

Proof. Let p be maximal such that $2^{p}<k$, and let $k=2^{p}+j$. By Lemma $2.4(4) N(k)=N(i)+(n-1) N(j)$. Combining this with Lemma 2.8 proves the desired equality.

In [16] (3) was used as a defining recursion rule for the sequence $N(i)$ (which appeared there in a different context.)

For a number $t \leq n^{r}$ denote by $N^{*}(t)$ the number q such that $N(q-1)<t \leq N(q)$. This is an approximate inverse of N.

Theorem 2.9. $b_{p}(t)=N\left(2^{r}-N^{*}(t)\right)$ for every $t \leq n^{r}$.
Proof. Let $F=F_{r}\left(\sigma\left(N^{*}(t)\right)\right.$. Then $|F| \geq t$, and since $B(F)=F_{r}(\bar{\sigma})$, we have $|B(F)|=N\left(2^{r}-N^{*}(t)\right)$. This proves that $b_{p}(t) \geq N\left(2^{r}-N^{*}(t)\right)$. To complete the proof we have to show that for every $F \subseteq[n]^{r}$ of size t we have $|B(F)| \leq N\left(2^{r}-N^{*}(t)\right)$. Write $q=N^{*}(t)$. We wish to show that $|B(F)| \leq N\left(2^{r}-q\right)$. We do this by induction on r. The case $r=1$ is easy, so assume that we know the result for $r-1$ and we wish to prove it for r.

Let $F^{+}=\left\{e \backslash V_{r} \mid v_{r} \in e \in F\right\}$ and $F^{-}=\left\{e \backslash V_{r} \mid e \in F, v_{r} \notin e\right\}$.
By Lemma 2.6 we may assume that F is r-partitely shifted, with v_{i} being the first element in V_{i} in the order used for the shifting. In particular, this entails $F^{-} \subseteq F^{+}$. Let $B^{+}=B_{[n]^{r-1}}\left(F^{+}\right)$and $B^{-}=B_{[n]^{r-1}}\left(F^{-}\right)$, and let $f^{+}=\left|F^{+}\right|, f^{-}=\left|F^{-}\right|, b^{+}=\left|B^{+}\right|, b^{-}=\left|B^{-}\right|$. Then $b^{-} \leq b^{+}$.
Notation 2.10. If H is a hypergraph and S a set disjoint from $V(H)$, we define $H \diamond S=\{h \cup S \mid h \in H\}$.

Clearly:

$$
B(F)=\left(B^{-} \diamond\left\{v_{r}\right\}\right) \cup\left(B^{+} \diamond\left(V_{r} \backslash\left\{v_{r}\right\}\right)\right)
$$

and hence

$$
\begin{equation*}
|B(F)|=b^{-}+(n-1) b^{+} \tag{4}
\end{equation*}
$$

Let $i=N^{*}\left(f^{-}\right)$and $j=N^{*}\left(f^{+}\right)$. Also let $i^{\prime}=N^{*}\left(b^{+}\right), j^{\prime}=N^{*}\left(b^{-}\right)$. By Lemma 2.8 we have:

$$
|F| \leq f^{+}+(n-1) f^{-} \leq N(i+j)
$$

and hence $i+j \geq q$. By the inductive hypothesis $j^{\prime} \leq 2^{r-1}-i$, and $i^{\prime} \leq 2^{r-1}-j$, and hence $i^{\prime}+j^{\prime} \leq$ $2^{r}-(i+j) \leq 2^{r}-q$. By (4) and Lemma 2.8, $|B(F)| \leq N\left(i^{\prime}+j^{\prime}\right) \leq N\left(2^{r}-q\right)$, as desired.

Our result readily implies Theorem 1.2. Let $t=n^{r-1}$. Then $n^{r-1}=N\left(2^{r-1}\right)$ and $N^{*}(t)=2^{r-1}$. So it follows that $b_{p}(t)=N\left(2^{r}-N^{*}(t)\right)=N\left(2^{r}-2^{r-1}\right)=N\left(2^{r-1}\right)=n^{r-1}$, yielding the theorem.

Theorem 1.3 also follows from Theoerm 2.9. The proof requires yet another lemma:
Lemma 2.11. $N(a) N(b) \leq N(a b)$.
Proof. By induction on $a+b$. The case $a+b=0$ is trivial. By (3) $N(a)=N(c)+(n-1) N(d)$ for some $c \leq d<a$ such that $c+d=a$, and $N(b)=N(e)+(n-1) N(f)$ for some $e \leq f<b$ such that $e+f=b$. Then

$$
N(a) N(b)=N(c) N(e)+(n-1)[N(d) N(e)+N(c) N(f)]+(n-1)^{2} N(d) N(f)
$$

Using the induction hypothesis, we get:

$$
N(a) N(b) \leq N(c e)+(n-1)[N(d) N(e)+N(c) N(f)]+(n-1)^{2} N(d f)
$$

Using Lemma 2.8 twice we get:

$$
N(a) N(b) \leq N(c e+c f)+(n-1) N(d e+d f) \leq N(c e+c f+d e+d f)=N(a b)
$$

The lemma implies that $N\left(2^{r-1}-q\right) N\left(2^{r-1}+q\right) \leq N\left(2^{2(r-1)}\right)$ for every $q \leq 2^{r-1}$, meaning that $t b_{p}(t) \leq$ $n^{2(r-1)}$ for every $t \leq n^{r-1}$, which is another way of formulating Theorem 1.3.

3. Blockers in $\binom{[n]}{r}$

3.1. Sequences of V 's and \wedge 's and the sets they define. Let n be a positive integer. For a sequence $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$ of \wedge 's and \vee 's $(m<n)$ let $T(\sigma)$ be the set of subsets e of [n], satisfying

$$
1 \in e \sigma_{1}\left(2 \in e \sigma_{2}\left(3 \in e \ldots \sigma_{m}(m+1 \in e)\right) \ldots\right)
$$

For a number $r \leq n$ let $T_{r}(\sigma)=T(\sigma) \cap\binom{[n]}{r}$. Let also $t_{r}(\sigma)=\left|T_{r}(\sigma)\right|$ (this is the analogue of $f_{r}(\sigma)$ of the first section).

Example 3.1.

(1) If $\sigma=(\vee, \wedge, \vee, \wedge)$ then $T(\sigma)=\{e \in[n] \mid 1 \in e \vee(2 \in e \wedge(3 \in e \vee(4 \in e \wedge 5 \in e)))\}$.
(2) $T_{r}(\emptyset)=\left\{\left.e \in\binom{[n]}{r} \right\rvert\, 1 \in e\right\}$, and thus $t_{r}(\emptyset)=\binom{n-1}{r-1}$.
(3) If $\sigma=\wedge^{r-1}$ (meaning that $\sigma_{i}=\wedge$ for all $i<r$) then $T_{r}(\sigma)=\left\{\left.e \in\binom{[n]}{r} \right\rvert\,\{1,2, \ldots, r\} \subseteq e\right\}=\{[r]\}$, meaning that $t_{r}(\sigma)=1$.

For a positive integer r, let Υ_{r} be the set of sequences $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$ consisting of fewer than r symbols of \wedge and fewer than r symbols of \vee. Let $\Theta_{r}=\Upsilon_{r} \cup\{\alpha\} \cup\{\omega\}$, where α and ω are two new elements. Define $T_{r}(\alpha)=\emptyset$ and $T_{r}(\omega)=\binom{[n]}{r}$.
Lemma 3.2. $\left|\Theta_{r}\right|=\binom{2 r}{r}+1$.

Proof. define a map from $\Upsilon_{r} \backslash\{\emptyset\}$ to the set of sequences of r symbols \wedge and r symbols \vee, in which σ goes to a sequence $\psi(\sigma)$ obtained by appending to it at its end a sequence of the form $\wedge \wedge \ldots \wedge \vee \vee \ldots \vee$ or $\vee \vee \ldots \vee \wedge \wedge \ldots \wedge$, in which the first symbol is the opposite of the last symbol of σ. Clearly, σ is reconstructible from $\psi(\sigma)$, since the last symbol of σ is recognizable - it is the first symbol, going from right to left, in the third stretch of identical symbols in $\psi(\sigma)$. The two sequences $\vee \vee \ldots \vee \wedge \wedge \ldots \wedge$ and $\wedge \wedge \ldots \wedge \vee \vee \ldots \vee$ are missing from the image, and remembering that $\emptyset \in \Upsilon_{r}$ this proves that $\left|\Upsilon_{r}\right|=\binom{2 r}{r}-1$.

We now wish to order Θ_{r}. For this purpose we extend every sequence in Υ_{r} by appending a symbol $*$ at its end, and then ordering Υ_{r} lexicographically, with the convention $\wedge<*<\vee$ (the "*" is then discarded). We also define α to be the minimal element and ω to be the largest element of Θ_{r}.
3.2. The sequence $M_{r}(i)$. Write $m=\binom{2 r}{r}$. Let $\sigma_{0}=\alpha<\sigma_{1}<\sigma_{2}<\ldots<\omega=\sigma_{m}$ be the order defined above on Θ_{r}, and let $M_{r}(i)=t_{r}\left(\sigma_{i}\right)$. The identity of r being assumed to be known, we omit its mention and write $M(i)$. This is the analogue of the sequence $N(i)$ in the r-partite case.
Observation 3.3. The sequence $M(i)$ is strictly ascending.
Here is for example the sequence for $r=3$ and general n :

$$
\begin{aligned}
& 0,1,2,3, n-2, n-1, n, 2 n-5,2 n-4,3 n-9,\binom{n-1}{2},\binom{n-1}{2}+1,\binom{n-1}{2}+2,\binom{n-1}{2}+n-3,\binom{n-1}{2}+n-2,\binom{n-1}{2}+ \\
& 2 n-7,\binom{n-1}{2}+\binom{n-2}{2},\binom{n-1}{2}+\binom{n-2}{2}+1,\binom{n-1}{2}+\binom{n-2}{2}+n-4,\binom{n-1}{2}+\binom{n-2}{2}+\binom{n-3}{2},\binom{n}{3} .
\end{aligned}
$$

This sequence does not seem to behave as nicely as the sequence $N(i)$, but like the sequence $N(i)$ it has landmarks.

Theorem 3.4.

(1) $\sigma\left(\binom{2 r-i}{r}\right)=\wedge^{i-1}$.
(2) $\sigma\left(\binom{2 r}{r}-\binom{2 r-i}{r-i}\right)=\mathrm{V}^{i-1}$.
(3) $M\left(\binom{2 r-i}{r}\right)=\binom{n-i}{r-i}$.
(4) $M\left(\binom{2 r}{r}-\binom{2 r-i}{r-i}\right)=\binom{n-1}{r-1}+\binom{n-2}{r-1}+\ldots+\binom{n-i}{r-1}$.

Proof. Part (1): the sequences preceding \wedge^{i-1} are those that start with \wedge^{i}. Using the same idea as in the proof of Lemma 3.2, we define a map between the set of the sequences σ preceding \wedge^{i-1} and the set of sequences of r symbols of \vee and $r-i$ symbols of \wedge : we complete σ to a sequence of r symbols \vee and r symbols \wedge by appending to σ at its end a sequence $\vee \vee \ldots \vee \wedge \wedge \ldots \wedge$ or $\wedge \wedge \ldots \wedge \vee \vee \ldots \vee$, where the first symbol of the appended sequence is the opposite of the last symbol of σ. The only sequence that is not in the image of this map is $\wedge^{r} \vee^{r}$, and hence the number of sequences preceding \wedge^{i-1} is $\binom{2 r-i}{r}-1$.

Part (2) follows by symmetry. Parts (3) and (4) follow by simple counting.
3.3. Calculating $b_{c}(t)$ for $t \leq\binom{ n}{r}$. For $\sigma \in \Upsilon_{r}$ denote by $\bar{\sigma}$ the sequence obtained from σ by replacing each \wedge by a \vee and vice versa. Also define $\bar{\alpha}=\omega$ and $\bar{\omega}=\alpha$. By De Morgan's law, we have:
Lemma 3.5. $B\left(T_{r}(\sigma)\right)=T_{r}(\bar{\sigma})$.
The main result of this section is:
Theorem 3.6. For every number $0 \leq t \leq\binom{ n}{r}$ there exists $0 \leq i \leq\binom{ 2 r}{r}$ such that $b_{c}(t)=M(i)$.
The proof uses an already mentioned idea of Daykin [5], who gave a proof of the EKR theorem using the Kruskal-Katona theorem.

For a hypergraph F and a number r, the r-shadow of F, denoted by $S_{r}(F)$, is $\bigcup_{f \in F}\binom{f}{r}$. A hypergraph F of uniformity k is said to be in "cascade form" if there exist sets $B_{0}=[n] \supseteq B_{1} \supsetneqq \ldots \supsetneqq B_{s+1}$ and elements $x_{i} \in B_{i-1} \backslash B_{i}(1 \leq i \leq s)$, such that

$$
F=\binom{B_{1}}{k} \cup x_{1} \diamond\binom{B_{2}}{k-1} \cup x_{1} \diamond x_{2} \diamond\binom{B_{3}}{k-2} \cup \ldots \cup x_{1} \diamond x_{2} \diamond \ldots \diamond x_{s} \diamond\binom{B_{s+1}}{k-s}
$$

Here $x \diamond S$ stands for $\{x\} \diamond S$ (for the meaning of the latter, see Notation 2.10).

Theorem 3.7. [14, 15] Given numbers m, n and $r \leq k$, the minimum of $\left|S_{r}(H)\right|$ over all $H \subseteq\binom{H}{k}$ is attained at a hypergraph H having cascade form.

Proof of Theorem 3.6 We have to show that there exists $\beta \in \Upsilon_{r}$ satisfying the following condition: the maximum of $|B(H)|$ over all hypergraphs $H \subseteq\binom{n}{r}$ of cardinality t is attained at a hypergraph H for which $B(H)=T_{r}(\beta)$ for some sequence $\beta \in \Upsilon_{r}$.

Clearly, $B(H)=S_{r}(\bar{H})^{c}$, where \bar{H} is the set of complements of edges in H, and $S_{r}(\bar{H})^{c}$ denotes the set of all edges of size r that do not belong to $S_{r}(\bar{H})$. By Theorem 3.7 the maximal value of $|B(H)|$ over all $H \subseteq\binom{n}{r}$ is attained at a hypergraph H for which \bar{H} has cascade form. Let this form be

$$
\begin{equation*}
\bar{H}=\binom{B_{1}}{n-r} \cup x_{1} \diamond\binom{B_{2}}{n-r-1} \cup x_{1} \diamond x_{2} \diamond\binom{B_{3}}{n-r-2} \cup \ldots \cup x_{1} \diamond x_{2} \diamond \ldots \diamond x_{s} \diamond\binom{B_{s+1}}{n-r-s} \tag{5}
\end{equation*}
$$

Here possibly $s=0$. As above, we define $B_{0}=[n]$. For each $0 \leq i \leq s$ let $B_{i} \backslash\left(B_{i+1} \cup\left\{x_{i}\right\}\right)=\left\{z_{1}^{i}, \ldots, z_{t_{i}}^{i}\right\}$, where $t_{i}=\left|B_{i} \backslash B_{i+1}\right|-1$ (Here possibly $t_{i}=0$).

Assertion 3.8. $B(H)=T(\theta)$, where

$$
\theta=z_{1}^{0} \vee\left(z _ { 2 } ^ { 0 } \ldots \vee \left(z _ { t _ { 0 } } ^ { 0 } \vee \left(x _ { 1 } \wedge \left(z _ { 1 } ^ { 1 } \vee \left(z _ { 2 } ^ { 1 } \vee \ldots \vee \left(z _ { t _ { 1 } } ^ { 1 } \vee \left(x _ { 2 } \wedge \left(z _ { 1 } ^ { 2 } \vee \left(z _ { 2 } ^ { 2 } \vee \ldots \vee \left(z_{t_{2}}^{2} \ldots\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.
$$

if $B_{1} \neq[n]$ and $\theta=\alpha$ if $B_{1}=[n]$.
To prove the assertion, we have to show that a set e of size r belongs to $S_{r}(\bar{H})^{c}$ if and only if it satisfies the conditions imposed by θ. If e contains one of $z_{1}^{0}, z_{2}^{0} \ldots, z_{t_{0}}^{0}$ then it does not belong to $S_{r}(\bar{H})$ because edges in \bar{H} are contained in $\left\{x_{1}\right\} \cup B_{0}$. If e does not contain any of these vertices, it may still belong to $S_{r}(\bar{H})^{c}$, if it contains x_{1}. In such a case if e also contains none of $z_{1}^{1}, z_{2}^{1} \ldots, z_{t_{1}}^{1}, x_{2}$ then it belongs to $S_{r}(\bar{H})$. So, we may assume that e contains one of these vertices or it contains x_{2} together with x_{1}, and so on. This completes the proof of the assertion.

Next note that since e is of size r, it suffices to stop just after x_{r}, and obtain a condition that is satisfied by e if and only if $e \in T(\theta)$. For example, for $r=2$ a set of size 2 satisfies the condition

$$
x_{1} \wedge\left(z_{1}^{1} \vee\left(x_{2} \wedge\left(z_{1}^{2} \vee x_{3}\right)\right)\right)
$$

if and only if it satisfies the condition

$$
x_{1} \wedge\left(z_{1}^{1} \vee x_{2}\right)
$$

Let β be the formula obtained by truncating θ after x_{r}, if indeed x_{r} appears, and let $\beta=\theta$ otherwise.
Note also that the number of V 's in θ is equal to the number of z_{i}^{j} 's in θ. The assumption is that the set $\binom{B_{s+1}}{n-r-s}$ appearing in (5) is non-empty, which implies that $\left|B_{s+1}\right| \geq n-r-s$. This is easily seen to imply that the number of z_{i}^{j} 's is at most r. Thus $\beta \in \Upsilon_{r}$, which completes the proof of Theorem 3.6.

We can now achieve our aim - the calculation of $b_{c}(t)$ for every $t \leq\binom{ n}{r}$.
Theorem 3.9. If $M(i-1)<t \leq M(i)$ then $b_{c}(t)=M\left(\binom{2 r}{r}-i\right)$.

Proof. By Lemma $\left.3.5 b_{c}(M(j))=M\binom{2 r}{r}-j\right)$ for all $0 \leq j \leq\binom{ 2 r}{r}$. Since $b_{c}(c) \leq b_{c}(d)$ whenever $c \geq d$, this implies that $M\left(\binom{2 r}{r}-i\right) \leq b_{c}(t) \leq M\left(\binom{2 r}{r}-i+1\right)$, and by Theorem 3.6 it follows that either $b_{c}(t)=$ $M\left(\binom{2 r}{r}-i+1\right)$ or $b_{c}(t)=M\left(\binom{2 r}{r}-i\right)$. By the definition of the function b we have $b_{c}\left(b_{c}(t)\right) \geq t$, and hence if $b_{c}(t)=M\left(\binom{2 r}{r}-i+1\right)$ then $t \leq b_{c}\left(M\left(\binom{2 r}{r}-i+1\right)=M(i-1)\right.$, contradicting the assumption of the theorem. Thus $b_{c}(t)=M\left(\binom{2 r}{r}-i\right)$.

References

[1] N. Alon, Private communication.
[2] J. Akiyama and P. Frankl, On the Size of Graphs with Complete-Factors, J. Graph Theory 9(1)(1985), 197-201.
[3] P. Borg, Cross-intersecting integer sequences, http://arxiv.org/abs/1212.6955.
[4] P. Borg, The maximum product of weights of cross-intersecting families, http://arxiv.org/abs/1512.09108 to appear in J. London Math. Soc.
[5] D. E Daykin, Erdős-Ko-Rado from Kruskal-Katona, J. Combin. Th. Ser. A, 17 (1974), 254-255.
[6] D. Ellis, E. Friedgut and H. Pilpel, Intersecting families of permutations. J. Amer. Math. Soc. 24 (2011), 649-682.
[7] P. Erdős, A problem of independent r-tuples, Ann. Univ. Budapest 8 (1964), 93-95.
[8] P. Erdős and T. Gallai, On the minimal number of vertices representing the edges of a graph, Publ. Math. Inst. Hungar . Acad. Sci. 6(1961) 1-203.
[9] P. Erdős, C. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math Oxford Ser. (2) 12(1961), 313-320.
[10] P. Frankl, Shadows and shifting. Graphs and Combinatorics, 7 (1991), 23-29.
[11] P. Frankl, The shifting technique in extremal set theory, in Surveys in combinatorics, London Math. Soc. Lecture Note Ser. 123, Cambridge Univ. Press, Cambridge, (1987), 81-110.
[12] P. Frankl, Z. Füredi, G. Kalai, Shadows of colored complexes. Math. Stand., 63 (1988), 169-178.
[13] P. Frankl, S.J. Lee, M. Siggers, N. Tokushige, An Erdős-Ko-Rado theorem for cross t-intersecting families, J. Combin. Th. Ser. A, 128 (2014), 207-249.
[14] J. B. Kruskal, The number of simplices in a complex, in Mathematical Optimization Techniques, R. Bellman ed., University of California Press (1963).
[15] G. O. H. Katona, A theorem of finite sets, Theory of Graphs, P. Erdős and G. Katona eds., Akadémiai Kiadó and Academic Press (1968).
[16] D. E. Knuth, A recurrence involving maxima, American Mathematical Monthly 114 (2007), 835; solution in 116 (2009), 649.
[17] M. Matsumoto, N. Tokushige, The exact bound in the Erdős-Ko-Rado theorem for cross-intersecting families, J. Combin. Theory Ser. A 52 (1989), 90-97.
[18] A. Moon, An analogue of the Erdős-Ko-Rado Theorem for the Hamming Schemes $H(n, q)$, J. Combin. Theory Ser. A 32 (1982), 386-390.
[19] J. Pach and G. Tardos, Cross-Intersecting Families of Vectors, Graphs and Comb. 31 (2015), 477-495.
[20] L. Pyber, A new generalization of the Erdos-Ko-Rado theorem, J. Combin. Theory Ser. A 43 (1986), 85-90.
[21] N. Tokushige, On cross t-intersecting families of sets, J. Combin. Theory Ser. A 117 (2010), 1167-1177.
[22] N. Tokushige, Cross t intersecting integer sequences from weighted Erdős-Ko-Rado, Combinatorics, Probability and Computing 22 (July 2013), 622-637.
[23] N. Tokushige, The eigenvalue method for cross t-intersecting families, J. Algebraic Combin. 38 (2013), 653-662.

Department of Mathematics, Technion
E-mail address, Ron Aharoni: raharoni@gmail.com
Department of Mathematics, Colgate University
E-mail address, David Howard: dmhoward@colgate.edu

[^0]: The research of the first author was supported by BSF grant no. 2006099, by GIF grant no. I $-879-124.6 / 2005$, by the Technion's research promotion fund, and by the Discont Bank chair.
 The research of the second author was supported by BSF grant no. 2006099, and by ISF grants Nos. 779/08, 859/08 and 938/06.

