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Abstract. The linear discrepancy of a poset P is the least k such that there

is a linear extension L of P such that if x and y are incomparable, then

|hL(x)− hL(y)| ≤ k. Whereas the weak discrepancy is the least k such that
there is a weak extension W of P such that if x and y are incomparable,

then |hW (x)− hW (y)| ≤ k. This paper resolves a question of Tanenbaum,

Trenk, and Fishburn on characterizing when the weak and linear discrepancy
of a poset are equal. Although it is shown that determining whether a poset

has equal weak and linear discrepancy is NP-complete, this paper provides a

complete characterization of the minimal posets with equal weak and linear
discrepancy. Further, these minimal posets can be completely described as a

family of interval orders.

1. Introduction

In [10] Fishburn, Tanenbaum, and Trenk introduce the notion of the linear dis-
crepancy of a poset as a measure of the “distance” of a poset from a linear order.
In essence, the linear discrepancy of a poset measure how far apart incomparable
elements are forced in a linear extension of the poset. One can analogously define
weak discrepancy as how far apart incomparable elements of a poset are forced in
a weak extension [4]. Intuitively, it is clear that the weak discrepancy should be at
most the linear discrepancy, and in fact this bound is tight. In this paper we an-
swer a question of Fishburn, Tanenbaum, and Trenk [10] and characterize the tight
examples. More precisely, we expand upon the idea of irreducibility with respect
to linear discrepancy, introduced in [1] and expanded upon in [6, 7], to define and
characterize the class of irreducible posets with equal linear and weak discrepancy.

1.1. Preliminaries. More formally, if P is a poset let O (P ) be the collection of
order preserving maps from P to N and let I (P ) be the collection of injective order
preserving maps from P to N. Then the linear discrepancy of P , denoted ld(P ), is

min
f∈I(P )

max
x‖y
|f(x)− f(y)| ,

where x‖ y means that x is incomparable to y in P . Similarly, the weak discrepancy
of P , denoted wd(P ), is

min
f∈O(P )

max
x‖y
|f(x)− f(y)| .

Now since I (P ) ⊆ O (P ) it is clear that wd(P ) ≤ ld(P ). Tanenbaum, et al. provide
an explicit formula for the linear and weak discrepancy of the disjoint union of chains
in [10]. From these formula it is easy to see that the disjoint union of a chain of
length 2d − 1 and a chain of length 1 has linear and weak discrepancy equal to d,
and thus the inequality is tight.
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At this point it is worth noting that calculating the linear discrepancy of a poset is
NP-complete via a reduction to the bandwidth of its co-comparability graph [3, 10]
while the weak discrepancy can be calculated in polynomial time [4, 9]. Thus it is
natural to hope that the answer to the question of Tanenbaum, et al. is in the form
of a polynomial time algorithm, however, the following reduction indicates that this
is unlikely to be the case. That is, there is not a polynomial time algorithm unless
P = NP.

A key component of the reduction is the following lemma from [10].

Lemma 1. If P can be partitioned into two sets U and V such that for all u ∈ U and
v ∈ V , u < v, then ld(P ) = max {ld(U) , ld(V )} and wd(P ) = max {wd(U) , wd(V )}.

Theorem 2. Determining whether ld(P ) = wd(P ) is NP-complete.

Proof. Since determining the linear discrepancy is in NP and determining the weak
discrepancy is polynomial, determining whether they are equal is clearly in NP.
Thus it suffices to show that there is an NP-complete problem that can be reduced
in polynomial time to determining whether the linear and weak discrepancy are
equal. The natural candidate for this is determining the linear discrepancy of a
poset P . If ld(P ) = wd(P ) the linear discrepancy may be determined by finding
the weak discrepancy of P , therefore we may assume that wd(P ) < ld(P ).

Now for all j, let Pj be the poset consisting of a chain of length 2j and a single
isolated point and observe that ld(Pj) = wd(Pj) = j. Let X be the ground set of P
and let Yj be the ground set of Pj . For each j from 1 to |X| define the poset P ′j on
the ground set X∪Yj by letting P ′j be equal to P on X, equal to Pj on Yj and letting
y < x for every y ∈ Yj and x ∈ X. Now by Lemma 1, ld

(
P ′j
)

= max {ld(P ) , ld(Pj)}
and wd

(
P ′j
)

= max {wd(P ) , wd(Pj)}. Thus for 1 ≤ j < ld(P ) we have wd
(
P ′j
)
6=

ld
(
P ′j
)

and for j ≥ ld(P ) we have wd
(
P ′j
)

= ld
(
P ′j
)
. Thus ld(P ) is the first j such

that ld
(
P ′j
)

= wd
(
P ′j
)
. Hence if calculating whether linear and weak discrepancy

are equal were polynomial, then determining the linear discrepancy of P would be
as well, and thus determining whether linear and weak discrepancy are equal is
NP-complete. �

Thus, rather than attempting to explicitly characterize all posets for which linear
and weak discrepancy are the same, we follow the work in [1, 6, 7] and determine
essential characteristics of posets with equal linear and weak discrepancy. To that
end, we recall that a poset P is d-linear-discrepancy-irreducible if ld(P ) = d and
for any x ∈ P we have ld(P − {x}) < d. We define d-weak-discrepancy-irreducible
analogously. Additionally, we say a poset P is (s, t)-discrepancy irreducible (or sim-
ply (s, t)-irreducible) if ld(P ) = s and wd(P ) = t and for any point x ∈ P either
ld(P − {x}) < s or wd(P − {x}) < t. If s = t then we may replace, without loss
of generality, the second condition with for any x ∈ P , wd(P − {x}) < t. That is,
if a poset is (d, d)-irreducible then it is also d-weak-discrepancy-irreducible. Fur-
ther, we note that if a poset P is such that ld(P ) = s and wd(P ) = t then there
are induced subposets of P , denoted Ps, Pt and P(s,t), such that Ps is s-linear-
discrepancy-irreducible, Pt is t-weak-discrepancy-irreducible, and P(s,t) is (s, t)-
irreducible. With these definitions in hand we review some preliminary work on
weak discrepancy.

1.2. Weak Discrepancy Preliminaries. In a poset P a forcing cycle is a se-
quence of elements C = c1, c2, . . . , ck such that for all i either ci < ci+1 or ci ‖ ci+1
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and (without loss of generality) c1 ‖ ck. Given a forcing cycle C, define up(C)
as |{i | ci < ci+1, 1 ≤ i ≤ k − 1}| and side(C) as 1 + |{i | ci ‖ ci+1, 1 ≤ i ≤ k − 1}|.
That is, up(C) is the number of up steps along the cycle and side(C) is the number
of incomparable steps when viewing C cyclically since c1 ‖ ck. Using this notation,
Gimbel and Trenk, prove the following theorem [4].

Theorem 3. Let P be a poset and C be the set of forcing cycles on P , then wd(P ) =
maxC∈C

⌈
up(C)
side(C)

⌉
. Furthermore, if C = c1, c2, . . . , ck is a maximal forcing cycle and

f is a fractional labelling of P where f(c1) = 0 and f(ci+1) = f(ci) + 1 if ci < ci+1

and f(ci+1) = f(ci)− up(C)
side(C) if ci ‖ ci+1. Then dfe is an optimal weak discrepancy

labelling.

In fact, Gimbel and Trenk prove the stronger result that the f provided is in
fact optimal over all fractional weak order preserving maps, yielding a fractional
weak discrepancy of maxC∈C

up(C)
side(C) .

In addition to Theorem 3 which provides combinatorial certification for wd(P ) ≤
k, the following theorem, which is implicit in the work of Choi and West [2], will
be key in characterizing the (d, d)-irreducible posets.

Theorem 4. A poset P on n points is d-weak-discrepancy irreducible if and only
if every forcing cycle C that is maximal with respect to up(C)

side(C) has size t side steps
and (d− 1)t + 1 up steps and n = t + (d− 1)t + 1.

2. (d, d)-irreducible Posets

Let Wd be the collection of d-weak-discrepancy-irreducible posets where there
exists a maximal forcing cycle with all the up steps consecutive, in particular, there
exists a forcing cycle C = a1, a2, . . . , a(d−1)t+2, b1, b2, . . . , bt−1 using all the elements
where ai < aj if i < j, bj ‖ bj+1 for 1 ≤ j ≤ t− 2, a(d−1)t+2 ‖ b1, a1 ‖ bt−1. We claim
that Wd is the set of all (d, d)-irreducible posets. First we show that all elements
of Wd are (d, d)-irreducible. Since the elements of Wd are d-weak-discrepancy-
irreducible by construction, it suffices to show that they all have linear discrepancy
d.

Lemma 5. If W ∈ Wd, then ld(W ) = d.

Proof. Let W ∈ Wd have td + 1 points and let C = a0 < c1
1 < c2

1 < · · · < cd−1
1 <

c1
2 < · · · < cd−1

2 < · · · < c1
t < · · · < cd−1

t < at ‖ at−1 ‖ at−2 ‖ · · · ‖ a1 be the optimal
forcing cycle. Now since W is d-weak-discrepancy irreducible let f be the function
witnessing the optimal fractional weak discrepancy of (d − 1) + 1

t as provided in
Theorem 3. In particular, f(ai) =

(
d− 1 + 1

t

)
i and f(cj

i ) = (i−1)(d−1)+j. Define
the function g : W −→ {0, . . . , dt} by g(ai) = di and g(cj

i ) = (i− 1)d + j. We claim
g is an order preserving map of W witnessing linear discrepancy at most d. First
we observe that by construction if g(x) = g(y), then x = y. Now if f(ai) < f(cj

ı̂ ),
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then ⌈
f(ai)
d− 1

⌉
≤

⌈
f(cj

ı̂ )
d− 1

⌉
⌈

(d− 1 + 1
t )i

d− 1

⌉
≤
⌈

(̂ı− 1)(d− 1) + j

d− 1

⌉
⌈
i +

i

t(d− 1)

⌉
≤
⌈
ı̂− 1

j

d− 1

⌉
i + 1 ≤ ı̂.

Thus i < ı̂ so g(ai) < g(cj
ı̂ ). Similarly, if f(cj

ı̂ ) < f(ai), then

f(cj
ı̂ )

d− 1
<

f(ai)
d− 1

ı̂− 1 +
j

d− 1
< i +

i

t(d− 1)

ı̂− 1 +
tj − i

t(d− 1)
< i.

But then, since tj ≥ i, we have ı̂− 1 < i and hence g(cj
ı̂ ) < g(ai). Thus since f is

a weak extension and for any x, y ∈ W if f(x) < f(y), then g(x) < g(y), then g is
a weak order preserving map of W . But, since g is one-to-one, this implies that g
is an order preserving map of W .

Now suppose x ‖ y and |g(x)− g(y)| > d. If x, y ∈ {a0, a1, . . . , at}, then
|g(x)− g(y)| > d implies that the indices of x and y differ by at least two and
hence |f(x)− f(y)| ≥ 2

(
d− 1 + 1

t

)
and so x and y are comparable since f is wit-

nesses fractional weak discrepancy at most d−1+ 1
t . Thus precisely one of {x, y} is

a point of the form cj
i and the other is a point of the form ak with 1 ≤ k ≤ t−1. We

will show that if
∣∣∣g(cj

i )− g(ak)
∣∣∣ > d then cj

i and ak are comparable. In particular,

we wish to show that if g(cj
i )−g(ak) > d then cj

i > ak and if g(ak)−g(cj
i ) > d then

ak > cj
i . Since the cj

i form a chain, it suffices to consider the minimal cj
i such that

g(cj
i )− g(ak) > d and the maximal cj

i such that g(ak)− g(cj
i ) > d. We note that∣∣∣g(ak)− g(cj

i )
∣∣∣ = |dk − (i− 1)d− j|

= |d(k − i + 1)− j|
≤ d |k − i + 1|+ j

≤ d |k − i + 1|+ (d− 1),

and thus, if g(cj
i ) − g(ak) > d then i ≥ k + 2 and if g(ak) − g(cj

i ) > d then i ≤ k.
However, for i = k we have∣∣∣g(ak)− g(cj

i )
∣∣∣ = |d− j| < d,

and thus we need only consider i < k. Since g(c1
k+2)−g(ak) = d+1 = g(ak)−g(cd−1

k−1

it suffice to only consider c1
k+2 and cd−1

k−1. Now observe that c1
k+2 exists only if
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k ≤ t− 2, we have

f(c1
k+2)− f(ak) = (k + 1)(d− 1) + 1− (d− 1)k +

k

t

= (d− 1) +
t− k

t

> (d− 1) +
1
t
.

Thus ak < c1
k+2 since f witnesses fractional weak discrepancy at most d − 1 + 1

t .
Similarly, cd−1

k−1 exists only if k ≥ 2 and then

f(ak)− f(cd−1
k−1) = (d− 1)k +

k

t
− (k − 2)(d− 1)− (d− 1)

= (d− 1) +
k

t

> (d− 1) +
1
t
.

Thus cd−1
k−1 < ak and hence g is an order preserving map of W that witnesses

linear discrepancy at most d. But then since d = wd(W ) ≤ ld(W ) ≤ d, the linear
discrepancy of W is exactly d. �

The following theorem shows that not only are all elements ofWd (d, d)-irreducible,
every (d, d)-irreducible poset is a member of Wd.

Theorem 6. Let P be a poset with ld(P ) = d. Then wd(P ) = d if and only if
there exists a subposet W of P such that W ∈ Wd.

Proof. First suppose there is some subposet W of P such that W ∈ Wd. Then
since d = ld(P ) ≥ wd(P ) ≥ wd(W ) = d, we have wd(P ) = d.

Suppose then that ld(P ) = wd(P ) = d. Then it is clear that there is some
subposet W ′ of P such that W ′ is (d, d)-irreducible. Now since the removal of any
point from W ′ decreases either the weak discrepancy or the linear discrepancy and
wd(P ) ≤ ld(P ) for all P , we know that W ′ is d-weak-discrepancy irreducible. Thus
it suffices to show that the maximal forcing cycle has all the up steps consecutive.

Since W ′ is d-weak-discrepancy irreducible, |W ′| = dt + 1 for some t and there
is a maximal forcing cycle C using dt + 1 points. This forcing cycle naturally
partitions the elements of W ′ into chains C1, C2, . . . , Ct by using the side steps as
break points in the chain. For all chains Ci, let ai be the minimal element and let bi

be the maximal element (note that it is not necessarily the case that ai 6= bi). We
say that a side move (b, a) ∈ {(bi, ai+1) | 1 ≤ i ≤ t− 1} ∪ {(bt, a1)}, encompasses a
point x with respect to a linear extension L if b <L x <L a or a <L x <L b.

Fix an arbitrary linear extension L of W ′. Suppose x ∈ Ci and ai ≤ x < bi (and
hence x is not in a trivial chain) and x is not encompassed by any side move. Then,
since x < bi, by traversing the cycle we can conclude that x ≤L aj for any 1 ≤ j ≤ t.
But then x ≤L y for any y ∈W ′ and hence is the minimum element of L. Similarly
if ai < x ≤ bi, then x is the maximum element of L. Thus the only elements of P
that are not encompassed by a side step with respect to L are the minimum and
maximum elements of L and the elements belonging to a trivial chain. Now let
T be the set of trivial chains. Then, as there are t side steps, there exists some
side move (bL, aL) encompassing at least

⌈
dt+1−(2+|T |)

t

⌉
= d −

⌊
1+|T |

t

⌋
elements
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in the linear extension L. Thus if |T | < t − 1, then (bL, aL) encompasses at least
d elements with respect to L and hence |hL(bL)− hL(aL)| ≥ d + 1. But since L
was an arbitrary linear extension this implies that ld(W ′) ≥ d + 1, a contradiction.
Thus |T | = t − 1 and so all but one of the chains is trivial and hence all the up
steps are consecutive in the forcing cycle. �

3. Characterization of Wd

In examining the nature ofWd it is clear that, contrary to most results on posets,
Wd is specified through explicit local restrictions on the set of comparabilities and
incomparabilities rather than global restriction on the structure of the poset. That
is, Wd is defined as the set of solutions to a collection of transitively oriented
sandwich problems [5] where the order among some pairs of elements are defined
and other pairs of points are defined to be incomparable. However, we can exploit
the structure of elements of Wd to provide a more natural description of the class
as interval orders. This characterization of Wd as a collection of interval orders
joins with results such as the forbidden subposet characterization of posets with
linear discrepancy at most two [6, 7], the NP-completeness of linear discrepancy [3],
and the behavior of online algorithms for linear discrepancy [8] in emphasizing the
centrality of interval orders in the study of linear and weak discrepancy.

Let W ∈ Wd and let C = a0 < c1
1 < c2

1 < · · · < cd−1
1 < c1

2 < · · · < cd−1
2 <

· · · < c1
t < · · · < cd−1

t < at ‖ at−1 ‖ at−2 ‖ · · · ‖ a1 be an optimal forcing cycle of
W . We first note that if ai < aj , then ai < c1

i+2 and cd−1
j−1 < aj . But then, since

j ≥ i + 2, this implies that every element of the chain a0 < c1
1 < · · · < cd−1

t < at

is comparable to either ai or aj . Thus W does not contain a 2 + 2 and hence is
an interval order. Now in order to characterize the elements of Wd it suffices to
provide a collection of intervals or rules for generating the intervals that will realize
every element of Wd. We note that since ai < aj implies that every element of the
chain ao < c1

1 < c2
1 < · · · < cd−1

1 < c1
2 < · · · < cd−1

2 < · · · < c1
t < · · · < cd−1

t < at

is comparable to either ai or aj , we may assume that the intervals associated with
the long chain are degenerate. In particular, we assume that the interval for cj

i is
{(i− 1)d + j} and that the intervals for a0 and at are {0} and {dt}, respectively.

Now for 1 ≤ i ≤ t − 1 let the endpoints of the interval associated with ai be
`i and ri. Using that cj

i is assigned to the degenerate interval {(i− 1)d + j} it is
clear that we may assume for 1 ≤ i ≤ t − 1, [`i, ri] ⊆ (d(i− 1)− 1, d(i + 1) + 1).
The constraint that ai ‖ ai+1 and that ai < ai+2 imposes that `i+1 < ri < `i+2. In
fact, any interlaced sequence −1 < `2 < r1 < `3 · · · < `t < rt−1 < dt + 1 such that
ri < d(i + 1) + 1 for 1 ≤ i < t− 1 and d(j − 1)− 1 < `j for 1 < j ≤ t will yield an
interval representation of an element of Wd. For example see Figure 1.
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(b) Interval Representation

Figure 1: A element of W3 on 13 points.
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