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Abstract. Fix integers n and k with n ≥ k ≥ 3. Duffus and Sands proved
that if P is a finite poset and n ≤ |C| ≤ n+ (n− k)/(k− 2) for every maximal

chain in P , then P must contain k pairwise disjoint maximal antichains. They

also constructed a family of examples to show that these inequalities are tight.
These examples are 2-dimensional which suggests that the dual statement may

also hold. In this paper, we show that this is correct. Specifically, we show

that if P is a finite poset and n ≤ |A| ≤ n+ (n− k)/(k− 2) for every maximal
antichain in P , then P has k pairwise disjoint maximal chains. Our argument

actually proves a somewhat stronger result, and we are able to show that an

analogous result holds for antichains.

1. Introduction

Let k be an integer with k ≥ 2. In [1], Duffus and Sands investigated conditions
that force a finite poset to have k-pairwise disjoint maximal antichains. They
noted that the case k = 2 is easy to solve, since in order to have 2 pairwise disjoint
maximal antichains, it is necessary and sufficient that P not contain a point which
is incomparable with all other points, i.e., P cannot have a trivial maximal chain
consisting of a single point.

But the situation when k ≥ 3 is more complicated, as reflected in the following
intriguing result [1].

Theorem 1.1. [Duffus and Sands] Let n and k be integers with n ≥ k ≥ 3, and let
P be a finite poset. If n ≤ |C| ≤ n + (n − k)/(k − 2), for every maximal chain C
in P , then P has k pairwise disjoint maximal antichains.

For each pair n and k with n ≥ k ≥ 3, Duffus and Sands also constructed a
poset P (n, k) satisfying the following properties:

(1) If C is a maximal chain in P (n, k), then n ≤ |C| ≤ n+1+b(n−k)/(k−2)c.
(2) P (n, k) does not have k pairwise disjoint maximal antichains.

These examples show that the inequality in Theorem 1.1 is best possible.
Duffus and Sands also initiated an investigation of the dual problem: conditions

that force a poset to have k pairwise disjoint maximal chains. When k = 2, they
proved that a poset P has 2 pairwise disjoint chains if and only if it does not
contain a point which is comparable with all other points, i.e., P cannot have a
trivial maximal antichain consisting of a single point.
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They also noted that for each pair n and k with n ≥ k ≥ 3, the poset P (n, k)
has dimension 2. As a consequence, there is a complementary poset Q(n, k) such
that:

(1) If A is a maximal antichain in Q(n, k), then n ≤ |A| ≤ n + 1+
b(n− k)/(k − 2)c.

(2) Q(n, k) does not have k pairwise disjoint maximal chains.

Accordingly, it is natural to ask whether the dual form of the Duffus/Sands
theorem holds, and the principal goal of this paper will be to provide an affirmative
answer by proving the following theorem.

Theorem 1.2. Let n and k be integers with n ≥ k ≥ 3, and let P be a finite poset.
If n ≤ |A| ≤ n + (n− k)/(k − 2) for every maximal antichain A in P , then P has
k pairwise disjoint maximal chains.

As the reader will note, the argument we present for Theorem 1.2 is completely
different from the argument given by Duffus and Sands for Theorem 1.1. In fact,
we will actually prove a more technical and somewhat stronger result and derive
our principal theorem as a corollary. In Section 5, we will then show how a dual
version of our technical result can be proved for families of pairwise disjoint maximal
antichains. As a consequence, we provide here an alternative proof of their main
theorem.

Although the results of this paper are very much in the spirit of Dilworth’s
theorem and its dual form, as well as the classic theorems of Greene [2] and Greene
and Kleitman [3], we have not been able to establish any direct connection.

2. Applications of Network Flows

Let P be a finite poset. In discussions concerning families of pairwise disjoint
maximal chains in P , we find it useful to apply well known concepts and techniques
from network flows. We attach to P a source with edges from the source to each
of the minimal elements of P . Similarly, we attach a sink with edges to the sink
from each of the maximal elements in P . The remaining edges in this network are
the edges of the cover graph, oriented from x to y when x is covered by y in P . All
edges in the network have capacity 1. Also, each node of P has capacity 1. Clearly,
an integer flow of value k in this network corresponds to a family of k pairwise
disjoint maximal chains in P . Accordingly, we have the following basic proposition.

Proposition 2.1. The maximum number of pairwise disjoint maximal chains in
P equals the minimum cardinality of a set intersecting all maximal chains in P .

In view of the network flow setup, the following notation and terminology be-
comes natural. We will say that a chain C in a finite poset P is saturated if either
|C| = 1 or if |C| = r > 1 and C = {x1 < x2 < · · · < xr}, then xi is covered by xi+1

for each i = 1, 2, . . . , r − 1.
A saturated chain in P whose least element is a minimal element of P will

be called an initial chain. Dually a saturated chain whose greatest element is a
maximal element of P will be called a terminal chain. A maximal chain is always
saturated and is both an initial chain and a terminal chain. Trivially, for every
point u in P , there is an initial chain whose greatest element is u, and there is a
terminal chain whose least element is u. The union of these two chains is a maximal
chain containing u.
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Note also that whenever u < v in P , there is always a saturated chain C with u
the least element of C and v the greatest element of C. We say such a chain is a
linking chain for u and v.

3. Cut Sets and Support Structures

Let P be a finite poset and let W be a subset of P that intersects all maximal
chains in P . We will refer to W as a cutset in P . In this section, we develop some
additional structural information concerning cutsets.

First, recall that the height of an element x in a finite poset P , denoted hP (x),
is the largest integer t for which there exists a chain of t elements in P with x the
greatest element of this chain. Also, the height of the poset P is just the cardinality
of a maximum chain in P .

Now let s be a positive integer, and let W be an s-element cutset in P . Then
let r be the height of the subposet W , and let W = W1 ∪W2 ∪ · · · ∪Wr be the
partition of W determined by setting Wi = {w ∈ W : hW (w) = i}, for each
i = 1, 2, . . . , r. Then for each i = 1, 2, . . . , r, let Ai be the maximal elements of the
set {x ∈ P : x 6> w, for all w ∈ Wi}. It is obvious that Ai is a maximal antichain
in P and that Wi ⊆ Ai. Paralleling the discussion in [1], we refer to the maximal
antichains in the family {Ai : 1 ≤ i ≤ r} as flat antichains. Note that Ai and Aj

need not be disjoint when i 6= j. However, the following important property does
hold.

Claim 1. If 1 ≤ i < j ≤ r, u ∈ Ai and v ∈ Aj , then u 6> v in P .

Proof. Suppose to the contrary that u > v in P . Since v is a maximal element of
the set {x ∈ P : x 6> w}, for all w ∈ Wj}, then there exists some element w ∈ Wj

with u > w in P . Since i < j, there is then some element w′ ∈ Wi with w > w′ in
P . By transitivity, this implies that x > w′ in P with both x and w′ belonging to
the antichain Ai. The contradiction completes the proof of the claim.

Let u be an element of P . We say u is reachable if there is an initial chain C
having u as its greatest element so that C ∩W = ∅. Evidently, no point of W is
reachable. Also, all minimal elements of P that do not belong to W are reachable.
On the other hand, no maximal element of P is reachable, as this would imply that
there is a maximal chain in P that does not intersect W .

For each i = 1, 2, . . . , r, let Ri denote the set of reachable points in the antichain
Ai, and let Ni = Ai −Wi −Ri. Elements of Ni are not reachable.

Claim 2. N1 = Rr = ∅.

Proof. Suppose first that N1 6= ∅, and let u ∈ N1. We show that u is reachable.
As noted previously, this statement holds trivially if u is a minimal element of P , so
we may assume u is not a minimal element. Then let C an initial chain in P having
u as its greatest element. We show that C ∩W = ∅ and thus that u is reachable.
Suppose to the contrary that w ∈ C ∩W . Since u ∈ A1 and w < u, we know that
w 6∈ A1. Thus, w ∈Wj for some j with 1 < j ≤ r, which then contradicts Claim 1.
We conclude that N1 = ∅.

Now suppose that Rr 6= ∅, and let u ∈ Rr. Choose an initial chain C whose
greatest element is u so that C ∩W = ∅. Then let D be any terminal chain with
u the least element of D. Just as before, we conclude that D ∩ W = ∅, which
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would imply that C ∪D is a maximal chain in P that does not intersect W . The
contradiction shows Rr = ∅.
Claim 3. For each i = 1, 2, . . . , r−1, Ri and Ni+1 are disjoint sets and Ri∪Ni+1

is an antichain in P .

Proof. The two sets are evidently disjoint, since points in Ri are reachable, while
points in Ni+1 are not. We now show that Ri ∪Ni+1 is an antichain in P . Suppose
to the contrary that it is not. Then it is clear that there must exist elements u ∈ Ri

and v ∈ Ni+1 that are comparable in P . By Claim 1, this requires u < v in P . Let
C be an initial chain having u as its greatest element with C ∩W = ∅, and let D
be a saturated chain linking u and v. Then C ′ = C ∪D is an intial chain in P with
v as its greatest element. If C ′ ∩W = ∅, then v is reachable. The contradiction
shows that there must exist some w ∈ C ′ ∩W . Clearly this implies that u < w < v
in P . However, the fact that u ∈ Ai implies (using Claim 1) that w cannot belong
to W1 ∪W2 ∪ · · · ∪Wi. On the other hand, the fact that v ∈ Ai+1 implies that w
cannot belong to Wi+1 ∪Wi+2 ∪ · · · ∪Wr. The contradiction completes the proof
that Ri ∪Ni+1 is an antichain in P .

Again, paralleling the discussion in [1], we refer to the antichains in the family
S = {Ri ∪Ni+1 : 1 ≤ i ≤ r− 1} as slanted antichains. Note that slanted antichains
need not be maximal. Also, we refer to the family {Ai = Wi ∪Ri ∪Ni : 1 ≤ i ≤ r}
as the support structure for the cutset W in P . Strictly speaking, the support
structure of a cutset W is determined entirely by W and P , but we find it useful to
carry along the additional information given by the family of flat antichains, and
the set of reachable elements.

4. Proof of the Principal Theorem

We now have the tools necessary to provide the proof of Theorem 1.2. As noted
previously, we elect to prove a more technical and somewhat stronger result and
derive Theorem 1.2 as a corollary.

Theorem 4.1. Let P be a poset, let s denote the maximum number of pairwise
disjoint maximal chains in P , and let W be an s-element cutset in P . If the height
of W is r, the width of P is t and n = min{|Ai| : 1 ≤ i ≤ r}, then the following
inequality holds:

(1) rn ≤ s + t(r − 1)

Proof. Let {Ai = Wi ∪ Ri ∪Ni : 1 ≤ i ≤ r} be the support structure of W . Since
|N1| = |Rr| = 0, it is immediate that

r∑
i=1

|Ai| = s +

r∑
i=1

|Ri|+ |Ni| = s +

r−1∑
i=1

|Ri ∪Ni+1|

Since |Ai| ≥ n for each i = 1, 2, . . . , r and |Ri∪Ni+1| ≤ t, for each i = 1, 2, . . . , r−1,
inequality 1 follows. �

To see how our main Theorem now follows easily as a corollary to Theorem 4.1,
let n and k be integers with n ≥ k ≥ 3. Then let P be a finite poset in which
every maximal antichain has at least n elements. If P does not have k pairwise
disjoint chains, then there is some positive intger s with s < k for which there is an
s-element cutset W in P . Let r denote the height of W and let t denote the width
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of P . From Theorem 4.1, we know that rn ≤ s + t(r − 1), and this inequality may
be rewritten as t ≥ n + (n− s)/(r − 1). Since r ≤ s and s ≤ k − 1, this implies

t ≥ n +
n− s

r − 1
≥ n +

n− s

s− 1
≥ n +

n− k + 1

k − 2
The contradiction completes the proof.

5. Some Notes on the Original Problem

It is worth noting that the approach we have followed in proving Theorems 4.1
and 1.2 cannot be applied (at least not without modification) to the original problem
studied by Duffus and Sands. The reason is that the dual version of Proposition 2.1
is not valid. Specifically, it is not true that the maximum number of pairwise disjoint
antichains in a finite poset P equals the minimum cardinality of a set intersecting
all maximal antichains in P .

Lemma 5.1. For every n ≥ 2, there exists a poset Pn in which the maximum
number of pairwise disjoint antichains is 2, but the minimum cardinality of a set
of points intersecting all maximal antichains is 2n.

Proof. Consider a finite projective plane Fn of order n. Let X denote the set of
points in Fn and let Y denote the set of lines in Fn. Then |X| = |Y | = n2 + n + 1;
each line contains n + 1 points; each point is on n + 1 lines; each pair of distinct
points determine a unique line; and each pair of distinct lines intersect in a unique
point.

We construct a poset Pn of height 2 with X as the set of minimal elements and
Y as the set of maximal elements. Furthermore, if x ∈ X and y ∈ Y , we set x < y
in Pn if and only if point x is not on line y in Fn.

It follows immediately that in addition to the set of minimal elements and the
set of maximal elements, Pn has 2(n2 + n + 1) other maximal antichains. They
come in two different types, with Type 1 corresponding to points in Fn and Type 2
corresponding to lines in Fn.

Type 1: For each x ∈ X, the set Ax = {x}∪{y ∈ Y : x 6< y} is a maximal antichain.
Type 2: For each y ∈ Y , the set By = {y}∪{x ∈ X : x 6< y} is a maximal antichain.

Claim 1. The maximum number of pairwise disjoint maximal antichains in Pn is
two.

Proof. It is easy to see that the poset Pn has 2 pairwise disjoint maximal an-
tichains, for example, the set of minimal elements and the set of maximal elements.
We now show that Pn does not have 3 pairwise disjoint maximal antichains.

Suppose to the contrary that F = {I1, I2, I3} is a family of 3 pairwise disjoint
maximal antichains in Pn. Then at most one antichain in F is a Type 1 antichain,
since if x and x′ are distinct points, then the line y which they determines belongs
to Ax and to Ax′ . Dually, at most member of F is a Type 2 antichain.

So one of the members of F is either the set of minimal elements or the set of
maximal elements. But in this case, no member of F can be either a Type 1 or
a Type 2 antichain, since each of these contains both a minimal element and a
maximal element. The contradiction completes the proof of the claim.

Claim 2. The minimum cardinality of a set intersecting all maximal antichains
in Pn is 2n.
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Proof. Let W be a set which intersects all maximal antichains in Pn. There
are 2(n2 + n + 1) antichains of Types 1 and 2, but any element of Pn belongs to
exactly n + 2 maximal antichains from these two types. This implies that

|W | ≥
⌈2(n2 + n + 1)

n + 2

⌉
≥ 2n− 1 ≥ 3

Furthermore, if x and x′ are distinct points, then there is one maximal antichain
of Type 2 to which both belong. Also, if y and y′ are distinct lines, then there is
one maximal antichain of Type 1 to which both belong. An easy calculation shows
that if W consists entirely of minimal elements or entirely maximal elements, then
|W | ≥ 2n + 1. But if W contains at least one maximal element and at least one
minimal element, then |W | ≥ 2n.

We now show that there is a set W with |W | = 2n so that W intersects every
maximal antichain in Pn. Choose a point x0 and a line y0 which passes through
x0. Then W = {x ∈ X : x 6< y0, x 6= x0} ∪ {y ∈ Y : x0 6< y, y 6= y0} contains 2n
elements. We now show that if I is a maximal antichain in Pn, then W intersects I.
This is certainly true if I is either the set of maximal elements or the set of minimal
elements. If I = Ax is a Type 1 antichain, and x is not on the line y0 in Fn, then
x 6= x0, and if y is the line determined by x and x0, then y 6= y0. It follows that y
belongs to the antichain I as well as to W . On the other hand, if x is on the line
determined by by y0 and x 6= x0, then x belongs to I and to W . Furthermore, if
x = x0, then y ∈W ∩ I, for every line y passing through x0, with y 6= y0.

A dual argument shows that W intersects every Type 2 antichain, and with this
observation, the proof of the claim is complete. �

In spite of the apparent difficulties presented by Lemma 5.1, there is a natural
framework within which we can derive a dual version of Theorem 4.1 and then
proceed to derive the Duffus/Sands result as a corollary.

Let P be a finite poset and let t denote the height of P . Then, for each i =
1, 2, . . . , t, let Li = max{x : hP (x) ≤ i}. We refer to {Li : 1 ≤ i ≤ t} as the family
of level antichains in P . It is straightforward to verify that each level antichain is
a maximal antichain. Furthermore, we have the following important property:

Proposition 5.2. If 1 ≤ i < j ≤ r, u ∈ Li and v ∈ Lj, then u 6> v in P .

We then have the following basic result.

Theorem 5.3. The maximum number of pairwise disjoint level antichains is equal
to the minimum number of points in a set intersecting all of them.

Proof. We show that that there is a partition {1, 2, . . . , t} = B1 ∪B2 ∪ · · · ∪Bs, so
that for each p = 1, 2, . . . , s:

(1) Bp = [bp, cp] is a block of consecutive integers with bp = 1 + cp−1 when
p > 1.

(2) There is a point xp common to all antichains in {Li : i ∈ Bp}.
(3) If cp < i ≤ t, then Li ∩ Lbp = ∅.

Once this partition has been constructed, we will then have a family {Lbp : 1 ≤ p ≤
s} of s pairwise disjoint maximal antichains and an s-element set W = {xp : 1 ≤
p ≤ s} which intersects all level antichains.

The construction proceeds inductively Set c0 = 0. Suppose for some p ≥ 1, we
have a value of cp−1 and if p ≥ 2, the properties listed above hold for the blocks
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B1, B2, . . . , Bp−1. If cp−1 < t, set bp = 1 + cp−1 and let cp be the largest integer
for which cp ≤ t and Lbp ∩ Lcp 6= ∅. Then choose xp as an element from Lbp ∩ Lcp .
It follows from Proposition 5.2 that xp belongs to every antichain in {Li : i ∈ Bp}.
Furthermore, if cp < i ≤ t, then Li ∩ Lbp = ∅. �

Now we can state and prove a dual version for Theorem 4.1

Theorem 5.4. Let P be a poset, let s denote the maximum number of pairwise dis-
joint antichains in the family of level antichains in P , and let W be an s-element set
intersecting all level antichains in P . Let r be the width of W and let C1, C2, . . . , Cr

be maximal chains in P that cover W . If n = min{|Ci| : 1 ≤ i ≤ r}, then the fol-
lowing inequality holds:

(2) rn ≤ s + t(r − 1)

Proof. Let x ∈ W and let B = [b, c] be the set of consecutive integers from
{1, 2, . . . , t} so that x ∈ Lj if and only if j ∈ B. It follows that hP (x) = b.
Furthermore, if x ∈ Ci, then there are no points in Ci that have height j where
b < j ≤ c. Since |Ci| ≥ n for each i = 1, 2, . . . , r and and we have eliminated
points at all heights from {1, 2, . . . , t}, except for the heights of elements of W , we
conclude that rn ≤ rt− t + s, which is equivalent to inequality 2. �

Note that Theorem 1.1 again follows immediately from this more technical result.
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