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Abstract. In this paper, we answer a question posed by Herzog, Vladoiu,
and Zheng. Their motivation involves a 1982 conjecture of Richard Stan-
ley concerning what is now called the Stanley depth of a module. The
question of Herzog et al., concerns partitions of the non-empty subsets
of {1, 2, . . . , n} into intervals. Specifically, given a positive integer n,
they asked whether there exists a partition P(n) of the non-empty sub-
sets of {1, 2, . . . , n} into intervals, so that |B| ≥ n/2 for each interval
[A, B] in P(n). We answer this question in the affirmative by first em-
bedding it in a stronger result. We then provide two alternative proofs
of this second result. The two proofs use entirely different methods and
yield non-isomorphic partitions. As a consequence, we establish that
the Stanley depth of the ideal (x1, . . . , xn) ⊆ K[x1, . . . , xn] (K a field)
is dn/2e.

1. Introduction

In [4], Herzog, Vladoiu, and Zheng established an interesting connection
between a long-standing question in commutative algebra and special par-
titions of partially ordered sets corresponding to algebraic structures. As
a result, some natural combinatorial partitioning questions have arisen. In
this paper, we address such a question using a purely combinatorial ap-
proach; however, we provide a brief description of the connection to algebra
to make our motivation clear.

In a 1982 paper [6], Richard P. Stanley defined what is now called the
Stanley depth of a Zn-graded module over a commutative ring S. He con-
jectured that the Stanley depth was always at least the depth of the module.
The question is still largely open, but see [1, 2, 3, 5].

Herzog et al., showed in [4] that for a field K, the Stanley depth of
a monomial ideal I of S = K[x1, . . . , xn] can be computed in finite time
(although not efficiently) by looking at partitions of a certain finite subposet
of Nn into intervals. In [4], the authors demonstrate that for the maximal
ideal m = (x1, . . . , xn) ⊆ K[x1, . . . , xn], computing the Stanley depth of
m is equivalent to finding a partition of the non-empty subsets of [n] into
intervals with a particular property. They claim that for n ≤ 9, they were
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able to show sdepth m = dn/2e, raising a combinatorial problem, which the
following theorem answers in the affirmative:

Theorem 1.1. Let n be a positive integer. Then there exists a partition
P(n) of the non-empty subsets of [n] into intervals so that |Y | ≥ n/2 for
each interval [X,Y ] ∈ P(n).

In fact we will prove an even stronger result that gives a very regular
structure to the intervals used in the partition.

The paper begins by precisely stating the relationship between monomial
ideals and posets needed to answer the question raised by Herzog et al. We
then provide two proofs of our main theorem. The first proof is inductive,
while the second is non-inductive and allows for immediate identification of
the interval that contains any given subset. The two proofs provide noniso-
morphic partitions even for relatively small values of n.

2. Background and Notation

2.1. Combinatorics. For a positive integer n, we let [n] = {1, 2, . . . , n},
and we let B(n) denote the Boolean algebra consisting of all subsets of [n].
For sets X, Y ⊆ [n] with X ⊆ Y , we let [X,Y ] = {Z : X ⊆ Z ⊆ Y }. It is
customary to refer to [X, Y ] as an interval in B(n).

In the remainder of this paper, we will concentrate on the case where n
is odd, say n = 2k + 1 for some k ≥ 0. The reason is that if n is odd, and
we have a partition P(n) of the non-empty subsets of [n], with |Y | ≥ n/2
for each interval [X, Y ] ∈ P(n), then Q(n) = P(n)∪ {[{n + 1}, [n + 1]]} is a
partition of the non-empty subsets of [n+1] into intervals and |Y | ≥ (n+1)/2
for each interval [X,Y ] ∈ Q(n).

Keeping this remark on parity in mind, it is then clear that Theorem 1.1
follows as an immediate corollary to the following more structured result.

Theorem 2.1. Let k be a non-negative integer. Then there exists a partition
C(k) of the non-empty subsets of [2k + 1] into intervals so that for each
interval [X,Y ] ∈ C(k), |X| is odd and |Y | = k + 1 + b|X|/2c.

In the next two sections of this paper, we provide alternative proofs of
Theorem 2.1. These proofs lead to non-isomorphic partitions when k ≥ 3.

2.2. Algebra. Let K be a field and S = K[x1, . . . , xn]. For c ∈ Nn, let xc

denote the monomial x
c(1)
1 x

c(2)
2 · · ·xc(n)

n . Let J ⊆ I ⊆ S be monomial ideals.
Say I = (xa1 , xa2 , . . . , xar) and J = (xb1 , xb2 , . . . , xbt) where ai, bj ∈ Nn. Let

g = ∨iai

∨
∨jbj

(the component-wise maximum of the ai and bj). Then the characteristic
poset of I/J with respect to g, denoted P g

I/J , is the induced subposet of Nn

with ground set

{c ∈ Nn | c ≤ g, there is i such that c ≥ ai, and for all j, c 6≥ bj}.
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(Note that such a poset can be defined for any g ≥ ai, bj for all i, j, but it
is simply convenient to take g as the join of the ai and bj .)

Let P be a partition of P g
I/J into intervals. For I = [x, y] ∈ P, define

ZI := {i ∈ [n] | y(i) = g(i)}. Define the Stanley depth of a partition P to
be

sdepthP := min
I∈P
|ZI |

and the Stanley depth of the poset P g
I/J to be sdepth P g

I/J := maxP sdepthP,
where the maximum is taken over all partitions P of P g

I/J into intervals. Her-
zog et al., showed in [4] that sdepth I/J = sdepth P g

I/J . By considering all
partitions of the characteristic poset, this correspondence provides an algo-
rithm (albeit inefficient) to find the Stanley depth of I/J . Given this setting,
it is easy to see the correspondence between P

(1,1,...,1)
m and the set of non-

empty subsets of [n]. (In this context, |ZI | = |Y |.) We will establish, using
purely combinatorial techniques, the following theorem as a consequence of
Theorem 1.1 along with some elementary counting.

Theorem 2.2. Let K be a field and S = K[x1, . . . , xn]. Let m be the
maximal ideal (x1, . . . , xn) ⊆ S. Then

sdepth m =
⌈n

2

⌉
.

3. An Inductive Approach to the Main Theorem

This proof presented here relies on the construction of two auxiliary parti-
tions, to be denoted A(k) and B(k), respectively. In contrast to the partition
C(k) we seek to complete the proof of Theorem 2.1, A(k) and B(k) will each
be partitions of all subsets of [2k + 1] into intervals. The partition C(k) will
then be constructed from A(k) and B(k) using some intervals from one and
some intervals from the other.

It will also be important to keep track of the sizes of the intervals in the
partitions A(k) and B(k).

Size Property:
(1) If [X,Y ] is an interval in the partition A(k), then |Y | = k + 1 +
b|X|/2c.

(2) If [X, Y ] is an interval in the partition B(k), then |Y | = k + d|X|/2e.
We note that when [X, Y ] is an interval in either A(k) or B(k) and |X| is

odd, say |X| = 2s + 1, then |Y | = k + s + 1.
As we proceed with the construction, we will use the partitions A(k) and

B(k) to determine functions, denoted Ak and Bk respectively, mapping the
subsets of [2k + 1] to {0, 1}, by the following rules:

Coloring Rule: Let S ⊆ [2k + 1]. Set Ak(S) = 0 when S belongs to
an interval [X, Y ] in the partition A(k) with |X| even; else set Ak(S) = 1.
Similarly, set Bk(S) = 0 when S belongs to an interval [X,Y ] in the partition
B(k) with |X| even; else set Bk(S) = 1.
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Figure 1. The Inductive Construction

We will maintain the following property inductively:

Coloring Property: For every non-empty subset S ⊆ [2k + 1], Ak(S) =
1−Bk(S).

3.1. Construction of the Two Sequences. First, set

A(0) = {[∅, {1}]} and B(0) = {[∅, ∅], [{1}, {1}]}
Note that these two partitions satisfy the Size Property. Also, note that

A0({1}) = 0 and B0({1}) = 1, so the Coloring Property holds as well.
Now suppose that for some k ≥ 0, we have constructed partitions A(k)

and B(k) of the subsets of [2k + 1] into intervals so that both the Size
Property and the Coloring Property hold.

Then A(k + 1) is defined by

A(k + 1) = {[X, Y ∪ {2k + 2}] : [X, Y ] ∈ A(k)}
∪ {[X ∪ {2k + 3}, Y ∪ {2k + 2, 2k + 3}] : [X, Y ] ∈ B(k)}

and

B(k + 1) = {[X ∪ {2k + 2}, Y ∪ {2k + 2}] : [X, Y ] ∈ A(k)}
∪ {[X,Y ∪ {2k + 3}] : [X, Y ] ∈ B(k)}

∪ {[X ∪ {2k + 2, 2k + 3}, Y ∪ {2k + 2, 2k + 3}] : [X, Y ] ∈ B(k)}
We have found it convenient to view these two constructions using the

suggestive diagram shown in Figure 1.
It is straightforward to verify that A(k + 1) and B(k + 1) are partitions of

the subsets of [2k + 3] into intervals. Also, it is clear that the Size Property
holds. We now show that the functions Ak+1 and Bk+1 satisfy the Coloring
Property. Let S be a non-empty subset of [2k+3]. We distinguish four cases
and show that Ak+1(S) = 1−Bk+1(S) in each case.

Case 1. S ∩ {2k + 2, 2k + 3} = ∅.
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Let [X, Y ] and [Z, W ] be the intervals containing S in A(k) and B(k),
respectively. Then S is contained in the intervals [X,Y ∪ {2k + 2}] and
[Z, W ∪ {2k + 3}] in A(k + 1) and B(k + 1) respectively. This implies that
Ak+1(S) = Ak(S) and Bk+1(S) = Bk(S). Since Ak and Bk satisfy the
Coloring Property, we conclude that Ak+1(S) = Ak(S) = 1 − Bk(S) =
1−Bk+1(S).

Case 2. S ∩ {2k + 2, 2k + 3} = {2k + 2}.
Let T = S−{2k + 2}, and let [X, Y ] be the interval in the partition A(k)

containing T . It follows that S is contained in the interval [X, Y ∪{2k+2}] in
A(k + 1). Thus Ak+1(S) = Ak(T ). On the other hand, S is contained in the
interval [X∪{2k+2}, Y ∪{2k+2}] in B(k+1). Thus Bk+1(S) = 1−Ak(T ),
so that Ak+1(S) = 1−Bk+1(S).

Case 3. S ∩ {2k + 2, 2k + 3} = {2k + 3}.
Let T = S−{2k + 3}, and let [Z, W ] be the interval in the partition B(k)

containing T . It follows that S is contained in the interval [Z∪{2k+3}, W ∪
{2k + 2, 2k + 3}] in A(k + 1). Thus Ak+1(S) = 1 − Bk(T ). On the other
hand, S is contained in the interval [Z, W ∪ {2k + 3}] in B(k + 1). Thus
Bk+1(S) = Bk(T ), so that Ak+1(S) = 1−Bk+1(S).

Case 4. S ∩ {2k + 2, 2k + 3} = {2k + 2, 2k + 3}.
Let T = S − {2k + 2, 2k + 3}, and let [Z, W ] be the interval in B(k)

containing T . It follows that S is in the interval [Z ∪ {2k + 3}, W ∪ {2k +
2, 2k + 3}] in A(k + 1). Thus Ak+1(S) = 1−Bk(T ). On the other hand, S
belongs to the interval [Z∪{2k+2, 2k+3}, W ∪{2k+2, 2k+3}] in B(k+1).
Thus Bk+1(S) = Bk(T ), so that Ak+1(S) = 1−Bk+1(S).

It is worth noting that in the last three cases of the preceding argument,
we did not have to consider whether the set T was empty or not.

3.2. Merging the Partitions. We are now ready to construct the parti-
tion C(k) of the non-empty subsets of [2k + 1] satisfying the conclusion of
Theorem 2.1. The rule is that an interval [X,Y ] belongs to the partition
C(k) if and only if [X, Y ] belongs to one of A(k) and B(k) and |X| is odd.

The fact that C(k) is a partition of the non-empty subsets of [2k + 1]
into intervals is an immediate consequence of the Coloring Property. Also,
the cardinality condition follows immediately from our remark just after the
Size Property. This completes the proof.

4. A Non-Inductive Approach

Throughout this section, we fix a non-negative integer k and consider
the integers in [2k + 1] placed in clockwise natural order around a circle.
We interpret arithmetic cyclically; for example, when k = 9, we say that
18 + 5 = 4, since 18 + 5 = 23 = 19 + 4.

For each element i ∈ [2k + 1], the remaining 2k elements are partitioned
into two blocks each of size k, with the clockwise block consisting of {i +
1, i + 2, . . . , i + k}, and the counterclockwise block consisting of {i − 1, i −



6 BIRÓ, HOWARD, KELLER, TROTTER, AND YOUNG

1 2

4
5

3

6
7

8
9

101112
13

14
15

16
17
18

19 1 2

4
5

3

6
7

8
9

101112
13

14
15

16
17
18

19

Figure 2. Clockwise Natural Order

2, . . . , i− k}. In the discussion to follow, we will denote these two blocks as
cw(i) and ccw(i) respectively. For example, when k = 9,

cw(14) = {15, 16, 17, 18, 19, 1, 2, 3, 4}
and

ccw(14) = {13, 12, 11, 10, 9, 8, 7, 6, 5}

Definition 4.1. A non-empty subset B ⊆ [2k + 1] is balanced if

|B ∩ cw(i)| = |B ∩ ccw(i)| for all i ∈ B.

Clearly, if B is a balanced set, then |B| is odd, and if |B| = 2s + 1, then
there are s elements in cw(i) and s elements in ccw(i), for every i ∈ B.

For example, referring to the circle shown in the left half of Figure 2, when
k = 9, the set B1 = {2, 5, 10, 15, 17} is not balanced since |B1 ∩ cw(5)| = 1
and |B1 ∩ ccw(5)| = 3. However, referring to the circle shown in the right
half of Figure 2, the set B2 = {4, 8, 13, 17, 18} is balanced.

Lemma 4.2. Let s be a non-negative integer, and let B be a balanced subset
of [2k + 1] with |B| = 2s + 1. Then for each j ∈ [2k + 1]−B, either

(1) | cw(j) ∩B| = s and | ccw(j) ∩B| = s + 1, or
(2) | cw(j) ∩B| = s + 1 and | ccw(j) ∩B| = s.

Proof. Let j ∈ [2k + 1] − B. If cw(j) contains at least s + 2 elements of
B, let i be the element of B ∩ cw(j) that is closest to j. Clearly, cw(i)
contains at least s + 1 elements of B, which contradicts the fact that B is
balanced. Thus cw(j) contains at most s + 1 elements of B. Dually, ccw(j)
contains at most s + 1 elements of B. These two statements together imply
the conclusion of the lemma. �

In view of Lemma 4.2, it is natural to partition the elements of [2k+1]−B
into two sets LB and RB with an element j ∈ [2k + 1]−B belonging to LB

when statement (1) of the Lemma holds and RB when statement (2) holds.
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Figure 3. Clockwise Star Order

Lemma 4.3. If B is a balanced set, then |LB| = |RB|. Furthermore, an
element j ∈ [2k + 1] belongs to LB if and only if j + k belongs to RB.

Proof. Suppose first that element j belongs to LB. If j + k belongs to B,
then there are only s − 1 elements of B in ccw(j + k). The contradiction
implies j /∈ B. Furthermore, there are s elements of B in ccw(j + k) so
j + k ∈ RB.

By symmetry, if j + k ∈ RB, then j ∈ LB. �

As suggested by Lemma 4.3, there is another useful way to arrange the
elements of [2k + 1] around a circle in a clockwise manner. We call this
alternative order the clockwise star order. In this order, integer i is followed
by i + k. We illustrate this definitions with the circles shown in Figure 3.

When S is a non-empty subset of [2k + 1] and s ∈ S, we let Z(s, S)
denote the set (possibly empty) of elements of [2k + 1]− S encountered by
starting immediately after s and continuing around the circle in clockwise
star order until just before another element of S is encountered. Note that
when |S| = 1 and S = {s}, Z(s, S) = [2k+1]−S. Also, note that Z(s, S) = ∅
when s is followed immediately by another element of S in the clockwise star
order.

Referring to the circle in the left half of Figure 3, note that when S =
{4, 7, 8, 11, 13, 14, 18}, Z(11, S) = {1, 10, 19, 9} and while Z(14, S) = ∅.

Lemma 4.4. A non-empty subset B ⊆ [2k + 1] is balanced if and only if
|Z(b, B)| is even for every b ∈ B.

Proof. Suppose first that B is balanced. Then let b ∈ B and suppose that
|Z(b, B)| is odd. Then Z(b, B) is a non-empty set whose elements must
alternate between members of LB and RB, starting with an element of LB,
when listed in clockwise star order. By parity, the last element of Z(b, B) in
this listing also belongs to LB. Using Lemma 4.3, this would imply that the
element of B following immediately after the last element of Z(b, B) in the
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clockwise star order belongs to RB. The contradiction shows that |Z(b, B)|
must be even.

Now suppose that B is a non-empty subset of [2k + 1] and that |Z(b, B)|
is even for every b ∈ B. We show that B is balanced.

Let b0 ∈ B. As we proceed around the circle in clockwise star order start-
ing immediately after b0 and continuing full circle through the remaining 2k
elements of [2k+1]−{b0}, note that we alternate between elements of cw(b0)
and ccw(b0), starting with an element of cw(b0) and ending with an element
of ccw(b0). However, since |Z(b, B)| is even for each b ∈ B, the elements of
[2k +1]−B are evenly divided between cw(b0) and ccw(b0). Also, by parity,
this also implies that the remaining elements of B−{b0} are evenly divided
between cw(b0) and ccw(b0). This shows that B is balanced. �

We illustrate Lemma 4.4 with the circles shown in Figure 3. Refer-
ring to the circle on the left half of Figure 3, we see that the set S =
{4, 7, 8, 11, 13, 14, 18} is not balanced since Z(13, S) = {3, 12, 2} so that
|Z(13, S)| = 3. On the other hand, referring to the circle in the right half of
Figure 3, the set B = {1, 4, 6, 8, 9, 13, 14, 16, 18} is balanced.

We state the following elementary fact for emphasis. The proof is an
immediate consequence of Lemma 4.3

Proposition 4.5. When B is a balanced subset of [2k + 1], then for each
b ∈ B with Z(b, B) 6= ∅, the elements of Z(b, B) alternate between elements
of LB and elements of RB, starting with an element of LB, when listed in
the clockwise star order.

Referring again to the right part of Figure 3, we see that for the balanced
set B = {1, 4, 6, 8, 9, 13, 14, 16, 18}, we have

LB = {3, 2, 10, 17, 15} and RB = {12, 11, 19, 7, 5}.
Note that when B is a balanced subset of [2k + 1] and |B| = 2s + 1, then

|LB| = |RB| = k−s. Therefore |B∪LB| = k +s+1. Therefore, the interval
[B, B ∪ LB] satisfies the cardinality constraint of Theorem 2.1.

We next present the technical lemma that is the heart of this alternate
construction.

Lemma 4.6. Let k be a non-negative integer and let S be a non-empty
subset of [2k +1]. Then there is a unique balanced set B for which S belongs
to the interval [B, B ∪ LB].

Proof. Let S be a non-empty subset of [2k + 1].
Then partition S as S = D ∪ U where

D = {s ∈ S : |Z(s, S)| is even}
and

U = S −D = {s ∈ S : |Z(s, S)| is odd}.

Claim 1. D is a balanced subset of [2k + 1].
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Proof. For each d ∈ D, the cardinality of Z(d, D) is even. This follows
from the fact that Z(d, D) is the union of Z(d, S) and a set of blocks of the
form {s} ∪ Z(s, S) where s ∈ U . Using Lemma 4.4, we conclude that D is
balanced.

Claim 2. U ⊆ LD.

Proof. From Proposition 4.5, for each element d ∈ D, the elements of
Z(d, D) alternate between members of LD and members of RD, beginning
with a member of LD. By parity, it follows that all members of U belong to
LD.

We are now ready to complete the proof of the lemma. Let B be a
balanced subset of [2k + 1] with B ⊆ S ⊆ B ∪ LB. We show that B = D.
First, let d ∈ D. If d ∈ LB, then the element of S ocurring immediately
after the last element of Z(d, S) belongs to RB. The contradiction shows
that d ∈ B.

Now let u ∈ U . If u ∈ B, then the next element of D occuring after u in
the clockwise star order belongs to RB. The contradiction shows u ∈ LB.

�

For the sake of completeness, we summarize the contents of this section
with the following statement.

Theorem 4.7. Let k be a non-negative integer, and let n = 2k + 1. Then

C(k) = {[B, B ∪ LB] : B is a balanced subset of [2k + 1]}
is a partition of the non-empty subsets of [2k+1] into intervals. Furthermore,
if B is a balanced set and |B| = 2s + 1, then |B ∪ LB| = k + s + 1.

5. Conclusions

Returning to the original question of Herzog et al., we see that Theo-
rem 1.1 implies that sdepth(x1, . . . , xn) ≥ dn/2e. It remains to show that
no partition can have all of the upper bounds of its intervals further up
in B(n). Let n be a positive integer, and let P(n) be any partition of the
non-empty subsets of [n] into intervals so that |Y | ≥ dn/2e for every interval
[X, Y ] ∈ P(n). When n is odd, say n = 2k + 1, then it is easy to see that
for each i = 1, 2, . . . , 2k + 1, we must have an interval in P(n) of the form
[{i}, Y ] with |Y | = k + 1. Furthermore, there are no intervals in P(n) of
the form [X, Y ] with |X| = 2. However, we do not know whether there are
other cardinality constraints of this type that must apply. On the other
hand, when n is even, say n = 2k, then it is easy to see that there must be
at least one i ∈ [n] for which there is an interval of the form [{i}, Y ] in P(n)
with |Y | = k. Thus, we have completed the proof of Theorem 2.2.

The more general class of poset partitioning questions raised in [4] appears
to have the potential for further interesting mathematics. For example, at
present the best known algorithm for computing the Stanley depth of a
monomial ideal inspects all of the interval partitions of its characteristic
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poset. It would be interesting to know if there is a general way of identifying
the partitions that need to be inspected, providing a more efficient algorithm.
It would also be interesting to examine other classes of monomial ideals
to see if they give rise to easily-recognizable classes of posets for which
combinatorial techniques can find optimal partitions.
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