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Abstract. A rainbow matching for (not necessarily distinct) sets F1, . . . , Fk of hypergraph edges is a
matching consisting of k edges, one from each Fi. The aim of the paper is twofold - to put order in the
multitude of conjectures that relate to this concept (some �rst presented here), and to prove partial results
on one of the central conjectures.

1. Introduction

A choice function for a family of sets F = (F1, . . . , Fm) is a choice of elements f1 ∈ F1, . . . , fm ∈ Fm.
It is also called a system of representatives (SR) for F . Many combinatorial questions can be formulated
in terms of SRs that satisfy yet another condition. For example, in Hall's theorem [16] the extra condition
is injectivity. In Rado's theorem [21] the condition is injectivity, plus the demand that the range of the
choice function belongs to a given matroid. In the most general setting, a simplicial complex (closed down
hypergraph) C is given on

⋃
Fi, and the condition is that the range of the function belongs to C. The SR is

then called a C-SR. A partial C-SR is a partial choice function satisfying the above condition. Even injectivity
can be formulated in the terminology of C-SRs, using a trick of making many copies of each element.

Given a graph G, we denote by I(G) the set of independent sets in G. An I(G)-SR is also called an ISR
(independent system of representatives). We also use this term forM-SRs, in the case thatM is a matroid.

If the sets Fi are hypergraphs, and the extra condition is that the edges chosen are disjoint, the system
of representatives is called a rainbow matching for F . Thus, a rainbow matching for sets of edges F1, . . . , Fm
is an ISR in the line graph of

⋃
Fi.

We are motivated by the following conjecture of Aharoni and Berger (not published before):

Conjecture 1.1. k matchings of size k + 1 in a bipartite graph possess a rainbow matching of size k.

This strengthens a conjecture of Brualdi and Stein, on Latin squares. A Latin square of order n is an
n × n matrix whose entries are the symbols 1, . . . , n, each appearing once in every row and once in every
column. A (partial) transversal in a Latin square is a set of entries, each in a distinct row and a distinct
column, containing distinct symbols. A well known conjecture of Ryser [22] is that for n odd every n × n
Latin square contains a transversal of size n. For even n this is false, and Brualdi and Stein [11, 25] raised
independently the following natural conjecture:

Conjecture 1.2. In a Latin square of order n there exists a partial transversal of size n− 1.

A Latin square can be viewed as a 3-partite hypergraph, with sides (R=set of rows, C=set of columns,
S=set of symbols), in which every entry e corresponds to the edge (row(e), column(e), symbol(e)). The
3-partite hypergraph corresponding to a Latin square satis�es stringent conditions - every pair of vertices
in two di�erent sides belongs to precisely one 3-edge. In particular, this means that for every vertex v, the
set of 2-edges complementing v to a 3-edge is a matching in a bipartite graph. Hence the Brualdi-Stein
conjecture would follow from:

Conjecture 1.3. k matchings of size k in a bipartite graph possess a partial rainbow matching of size k−1.

Conjecture 1.3 follows from Conjecture 1.1 by the familiar device of expanding the given matchings of
size k to matchings of size k + 1, adding the same edge to all.

Note that k matchings of size k need not have a rainbow matching of size k. This is shown by a standard
example:
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Example 1.4.

F1 = . . . = Fk−1 = {(a1, b1), (a2, b2), . . . , (ak, bk)}, Fk = {(a1, b2), (a2, b3), . . . , (ak, b1)}

Barát and Wanless [9] constructed clever elaborations of this basic example, of k matchings of size at least
k, with sum of sizes k2 + bk2 c − 1, that do not possess a rainbow matching.

Later on, many rami�cations of Conjecture 1.1 will be mentioned. But we shall start with a natural
endeavor - trying to prove lower bounds that are as small as possible on the size of the matchings, that
guarantee the existence of a rainbow matching.

De�nition 1.5. Let cms(r, k) (standing for �critical matching size�) be the least number t such that every
k matchings of size t in an r-partite hypergraph have a rainbow matching. Also let grs(r, k) (standing for
�guaranteed rainbow matching size�) be the largest number s such that every k matchings of size k in an
r-partite hypergraph possess a partial rainbow matching of size s.

In this terminology, Conjecture 1.1 is that cms(2, k) ≤ k+ 1, and Conjecture 1.3 is that grs(2, k) ≥ k− 1.
Example 1.4 shows that:

Observation 1.6. For k > 1 we have grs(2, k) ≤ k − 1 and cms(2, k) ≥ k + 1.

Greedy arguments yield cms(2, k) ≤ 2k − 1 and grs(2, k) ≥ k
2 . A proof of Woolbright [27] (using the

terminology of transversals in Latin squares) can be adapted to show:

Theorem 1.7. grs(2, k) ≥ k −
√
k.

Another simple fact, already noted above in the case k − grs(r, k) = 1, is:

Observation 1.8. cms(r, k)− k ≥ k − grs(r, k)

Proof. Write p for cms(r, k) − k. Let F1, . . . , Fk be k matchings of size k, in an r-partite hypergraph, we
want to prove the existence of a partial rainbow matching of size k− p. Let Q = {e1, . . . , ep} be a matching,
whose edges are disjoint from

⋃
i≤k Fi, and let F ′i = Fi ∪Q. By the de�nition of cms(r, k), the matchings F ′i

have a rainbow matching of size k, and removing the edges belonging to Q yields a partial rainbow matching
of size at least k − p. �

The following observation shows that k − grs(r, k) is not bounded by a constant:

Observation 1.9. grs(r, 2r−1) ≤ 2r−2.

The proof uses:

Lemma 1.10. For every r > 1 there exists a system of 2r−1 matchings of size 2 in an r-partite hypergraph,
not possessing a partial rainbow matching of size 2.

Proof. Let ai, bi be distinct elements, 1 ≤ i ≤ r, and for every subset T of [r] let eT = {ai : i ∈ T}∪{bi : i 6∈ T}
and fT = {ai : i 6∈ T} ∪ {bi : i ∈ T}, and let MT = {eT , fT }. Since MT = M[r]\T , there are 2r−1 such
matchings, and clearly they do not possess a rainbow matching. �

Proof. (of Observation 1.9): Take 2r−2 disjoint copies Si of the above construction, and let Ni be the set of
2r−1 matchings of size 2 in Si from that construction. Decompose

⋃
Ni into k = 2r−1 matchings Mi of size

k, each consisting of one pair eT , fT from each Si. The largest partial rainbow matching of the matchings
Mi is of size 2r−2, obtained by choosing one edge from each Si. �

We do not know of any examples refuting grs(r, k) ≥ k− 2r−2 or cms(r, k) ≤ k+ 2r−2 (if true, this would
�t in with Conjecture 1.1).

In the next two sections we shall prove the following two theorems:

Theorem 1.11. cms(2, k) ≤ d 7
4ke.

Theorem 1.12. grs(3, k) ≥ b 1
2kc.
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2. Proof of Theorem 1.11

Let G be a bipartite graph with sides A and B, and let Fi, i = 1, . . . , k be matchings of size n in G,
with n ≥ 7k/4. We have to show that they possess a rainbow matching. We assume, for contradiction, that
this is not the case. We also apply an inductive hypothesis, by which we may assume that the matchings
F2, . . . , Fk have a rainbow matching M = {f2, f3, . . . , fk}, where fi ∈ Fi.

By the assumption that F does not possess a rainbow matching, every edge in F1 meets some vertex of⋃
M . Denote by F ′1 the set of edges of F1 that are incident with exactly one vertex in

⋃
M . Since F1 is a

matching of size n, there are at least (n − k + 1) vertices in A \
⋃
M that are incident with an edge of F ′1.

Similarly, there are at least (n− k + 1) vertices in B \
⋃
M that are incident with an edge of F ′1. Hence at

least (n− k+ 1) edges in M meet an edge in F ′1, and since n ≥ 7k/4 implies 2(n− k+ 1) > k, we have that
there must be some edge in M incident with two edges in F ′1. Without loss of generality, assume that f2 is
one of these edges and let f ′1 and f ′′1 be the two edges in F ′1 meeting f2. We may also assume that the edges
of M incident with at least one edge of F ′1 belong, respectively, to F2, F3, . . . , Ft (where, as shown above,
t > n− k).

Now choose, if possible, two edges f ′2, f
′′
2 ∈ F2 satisfying:

(1) both f ′2 and f ′′2 meet fi3 for some 2 < i3 ≤ t.
(2) both f ′2 and f ′′2 do not meet any other edge from M or either of the edges f ′1, f

′′
1 .

Without loss of generality, we may assume that i3 = 3. Then choose, if possible, two edges f ′3, f
′′
3 ∈ F3

incident with fi4 for some 3 < i4 ≤ t, such that both do not meet any other edge from M or any of the edges
f ′j , f

′′
j , j < 3. Without loss of generality, we may assume that i4 = 4. Continuing this way until we reach a

stage p in which a choice as above is impossible, we obtain a sequence of edges f ′j , f
′′
j for 1 ≤ j < p, both

meeting fj+1, but not meeting any other edge of M or any other f ′i or f
′′
i .

Write M1 = {f2, . . . , fp}, and let P1 be the set of vertices
⋃

1≤j<p(f
′
j ∪ f ′′j ) (note that P1 contains all

vertices from
⋃
M1). Let M2 = {fp+1, . . . , ft}, M3 = {ft+1, . . . , fk} and let P2 =

⋃
M2, P3 =

⋃
M3. We

have: |P1| = 4(p− 1), |P2| = 2(t− p), |P3| = 2(k − t). Let S = V (G) \ (P1 ∪ P2 ∪ P3).

Claim 2.1. There are at most t− p edges of Fp joining a vertex of P2 with a vertex of S.

Proof. Since the process of choosing edges f ′j , f
′′
j terminated at j = p, there do not exist g, h ∈ Fp incident

with S and incident with the same f ∈M2. Since M2 contains t− p edges, this proves the claim. �

Claim 2.2. There are no edges of Fp between S and P1 or inside S.

Proof. If such an edge f existed, it would start an alternating path whose application to M would result in
a rainbow matching for F1, . . . , Fk: replace fp by f as a representative for Fp; at least one of f

′
p−1, f

′′
p−1 does

not meet f , and this edge can replace fp−1 as a representative of Fp−1, and so on..., until one of f ′1, f
′′
1 can

represent F1. �

Claim 2.3.

(1) An edge f ∈ Fp contained in P1 must meet both f ′j and f ′′j for some j < p.
(2) There exists at most one index j < p for which there exists an edge in Fp \M that meets f ′j and f

′′
j .

(3) At most p edges of Fp are contained in P1 (these can be the p − 1 edges f2, . . . , fp, plus one edge
connecting the non-M vertices of some f ′j ∪ f ′′j ).

Proof. Part (1) is proved as above - an edge not meeting f ′j and f
′′
j for any j < p would start an alternating

path whose application would yield a of size k rainbow matching for F1, . . . , Fk.
For the proof of part (2) of the claim, let f be an edge in Fp \M and let j < p be such that f meets f ′j

and f ′′j . Recall that by the de�nition of the choice of the edges fi, i ≤ p, we know that there exists f1 ∈ F1

that meets fp. The set of edges f1, f2, . . . , fp−1, f, fp+1, . . . , fk is then a rainbow matching for F1, . . . , Fk,
unless f1 meets f . But since f1 has one end meeting fp it means its other end must meet f ′j ∪ f ′′j , which can
only happen for one value of j < p, so this proves part (2) of the claim.

Part (3) follows from part (1) and part (2). �
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Now we just have to count the number of possible edges in Fp. Denote by

• t1 the number of edges of Fp inside P1.
• t2 the number of edges of Fp between P1 and P2,
• t3 the number of edges of Fp between P1 and P3,
• t4 the number of edges of Fp inside P2,
• t5 the number of edges of Fp between P2 and P3,
• t6 the number of edges of Fp between P2 and S,
• t7 the number of edges of Fp inside P3,
• t8 the number of edges of Fp between P3 and S.

We then have the following relations, the �rst three following from the above claims, and the others from
the fact that Fp is a matching.

•
∑8
i=1 ti = |Fp| = n

• t1 ≤ p
• t6 ≤ t− p
• 2t1 + t2 + t3 ≤ 4(p− 1)
• t2 + 2t4 + t5 + t6 ≤ 2(t− p)
• t3 + t5 + 2t7 + t8 ≤ 2(k − t)

Multiplying the second one by 1, the third one by 1, the fourth one by 1, the �fth one by 2, and the sixth
one by 3 and adding them all gives :

3t1 + 3t2 + 4t3 + 4t4 + 5t5 + 3t6 + 6t7 + 3t8 ≤ p+ (t− p) + 4(p− 1) + 4(t− p) + 6(k − t) < 6k − t
Now we use n =

∑
ti and t > n− k to get the contradiction.

3n ≤ 6k − t
3n < 6k − (n− k)

n < 7k/4,

3. Proof of Theorem 1.12

Let H = (V,E) be a 3-partite hypergraph, and let Fi, 1 ≤ i ≤ k be matchings of size k. We have to
show that they possess a partial rainbow matching of size k/2. Let M be a maximum rainbow matching.
Without loss of generality, assume that M = {f1, . . . , fp}, where fi ∈ Fi. Let i ≤ p and j > p. We say
that fi ∈M is a good edge for Fj if there exists two distinct edges f ′j and f

′′
j in Fj intersecting fi such that

|f ′j ∩
⋃
M | = |f ′′j ∩

⋃
M | = 1.

Claim 3.1. For any j > p, there are at least (k − 2p) good edges for Fj.

Proof. Since M is maximal, every edge in Fj is incident to at least one edge in M . For f ∈M de�ne

φ(f) =
∑
e∈Fj

|e ∩ f |
|e ∩

⋃
M |

Clearly, φ(f) ≤ 3. In the sum de�ning φ(f) there can occur the fractions 1
1 ,

2
2 ,

1
2 ,

1
3 ,

2
3 ,

3
3 . If f is not a good

edge then in the sum de�ning φ(f) there can be at most one term 1
1 . Since the sum of the numerators in

the non-zero terms is at most 3, this implies that if f is not good then φ(f) ≤ 2.
Note also that for each edge e in Fj , we have that

∑
f∈M |f ∩ e| = |e ∩

⋃
M |. Therefore

k =
∑
e∈Fj

1

|e ∩
⋃
M |

∑
f∈M

|f ∩ e| =
∑
f∈M

φ(f) ≤ 2(p− g) + 3g = g + 2p

where g denotes the number of good edges, and this gives the desired inequality. �
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Claim 3.2. No edge in M is good for 3 distinct matchings not represented in M .

Proof. Denote by A,B,C the three sides of the hypergraph. In the following a vertex denoted by ai (resp
bi,ci) will always belong to A (resp. B,C). Moreover ai and aj for distinct i and j will always denote distinct
vertices of the hypergraph. Assume by contradiction that such an edge e exists. Its vertices are (a1, b1, c1),
and it is a good edge for three distinct indices j1, j2, j3.

Therefore for s = 1, 2, 3, there exist in Fjs two edges es and fs meeting e in exactly one vertex. Note

that for s 6= s′ it is not possible that es and es
′
are disjoint. Indeed in that case one could replace e in the

matching by these two edges, contradicting the maximality of M . Of course this is also true for es and fs
′
,

so that amongst these 6 edges all pairs intersect except for the pairs (es, fs) (which are disjoint since they
come from the same matching).

Without loss of generality we can assume that e1 = (a1, b2, c2) and f1 = (a2, b1, c3). Again without loss
of generality we can assume that e2 meets e in a1. Since e

2 has to intersect f1, and since e2 does not contain
b1, this implies that e2 contains c3.

Consider now e3 and f3 : if one of these edges contains b1, since it cannot contain a1, it will fail to meet
both e1 and e2. Without loss of generality we can therefore assume that e3 contains a1 and f3 contains c1.
But then as before, since e3 meets f1, it has to contain c3. But now f2 is subject to the same constraints as
e3 and f3 just before, it cannot contain b1 or else it will fail to intersect e1 and e3. Hence f2 contains c1.

Now we have that e2 and e3 both contains a1 and c3 and f2 and f3 both contain c1. But since f
2 and f3

must intersect e1 it implies that both need to contain b2. But now we get a contradiction because e2 cannot
contain b2 and since f3 cannot contain a1, these two edges do not meet.

�

By Claims 3.1 and 3.2 we have:

2p ≥
∑
j>p

|{e ∈M : e is good for Fj}| ≥ (k − p)(k − 2p)

namely

2p2 − (3k + 2)p+ k2 ≤ 0

which in turn implies that p is larger than the smallest root of the quadratic expression:

p ≥
3k + 2−

√
(3k + 2)2 − 8k2

4
>

3k + 2−
√

(k + 6)2

4
=
k

2
− 1

4. A topological method

Hypergraph matching theory abounds with conjectures and is meager with results. In such a �eld putting
order to the conjectures is of value. One of the aims of this paper is to place Conjecture 1.1 in a general
setting, and relate it to other conjectures, some known and some new. For this purpose, we �rst need to
present a few basic theorems on C-SRs, that use algebraic topology.

As already mentioned, a hypergraph that is closed down (namely, a subset of an edge is necessarily an edge)
is called in topology a �simplicial complex�, or simply a �complex�. The edges are called �simplices�. Com-
plexes have geometric realizations. For example, every graph can be realized geometrically in 3-dimensional
space, by placing the vertices in points of general position, and connecting by straight segments pairs of
vertices that are connected by an edge of the graph. The general position of the points guarantees that
there are no fortuitous intersections of edges. In general, if the maximal size of an edge of the complex is k,
placing the vertices in points of general position in R2k−1 and realizing every edge by the convex hull of the
points corresponding to its vertices yields the desired realization of the complex. It is easy to see that the
realization is unique, up to isomorphism.

The topological connectivity η(C) of a complex C is de�ned as the minimal dimension of a �hole� in the
geometric realization. Namely, it is the minimum over all k such that there exists a continuous function from
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Sk to C that is not extendable to a continuous function from Bk+1 to C, plus 1. An old result of Whitney is
that for a matroid η is either the rank, or in�nity.

In [7] a topological version of Hall's theorem was proved:

Theorem 4.1. If Vi, i ∈ I are subsets of the vertex set of C and η(
⋃
j∈J Vj) ≥ |J | for all J ⊆ I, then there

exists a simplex meeting all Vis.

This theorem becomes useful in combinatorics, when combined with combinatorially formulated lower
bounds on η. For a graph G denoted by γi(G) the maximum, over all independent sets Y in G, of the
minimal size of a set of vertices dominating Y .

Theorem 4.2. [7] η(I(G)) ≥ γi(G).

For a hypergraph H denote by L(H) the line graph of H, namely the graph whose vertices are the edges
of H, two vertices being connected if the corresponding edges meet. Since in the graph L(H) of an r-uniform
hypergraph a vertex (edge of H) can dominate (meet) at most r disjoint edges, we get:

Corollary 4.3. For an r-homogeneous hypergraph H we have η(L(H)) ≥ ν(H)
r .

This was strengthened in [5]:

Theorem 4.4. For an r-homogeneous hypergraph H we have η(L(H)) ≥ ν∗(H)
r .

Combining Theorems 4.4 and 4.1 yields:

Corollary 4.5. [5] Let F = {F1, . . . , Fm} be a set of r-uniform hypergraphs on the same vertex set. If
ν∗(

⋃
i∈I Fi) > r(|I| − 1) for every I ⊆ [m] then F has a rainbow matching.

In [4] a lower bound was proved on the connectivity of the intersection of r matroids. For a hypergraph
H denote by rank(H) the maximal size of an edge in it.

Theorem 4.6. Given matroidsM1, . . . ,Mr on the same ground set, η(
⋂
Mi) ≥ rank(

⋂
Mi)

r .

5. The covering number of a complex

A parameter that will play a crucial role in the results and conjectures below is the covering number.

De�nition 5.1. The covering number (of vertices by edges) of a complex C, denoted by β(C), is the minimal
number of edges of C needed to cover V (C).

This parameter is sometimes denoted by ρ, but since we shall apply it also to matroids, and there ρ may
be interpreted as rank, we prefer the β notation. For example, for a graph G we have β(I(G)) = χ(G) (for
which reason the covering number is denoted in [4] by χ).

The fractional counterpart β∗(C) is the minimal sum of weights on edges from C, such that every vertex
belongs to edges whose sum of weights is at least 1.

In [4] the following was proved:

Theorem 5.2. β(C) ≤ maxI⊆V (C)
|I|

η(C[I]) .

For C a matroid, this is a classical theorem of Edmonds. Remember that for matroids η is the rank.

6. Putting the main conjecture in context

While Conjecture 1.1 generalizes the Brualdi-Ryser-Stein conjecture, its most natural background is prob-
ably the following observation, proved by a greedy argument:

Observation 6.1. Any set F = (F1, . . . , Fk) of independent sets in a matroidM, where |Fi| = k for all i, has
anM-SR.

As often happens, when a fact is true for a very simple reason, it can be strengthened, and acquire depth
by the addition of other ingredients. In this particular case, we are aware of three possible such ingredients:

(1) Adding another matroid, namely replacingM by the intersection of two matroids.
A special case is that of rainbow matchings in bipartite graphs, and as noted, this renders Obser-

vation 6.1 false: a price of 1 has to be paid. The conjecture becomes:
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Conjecture 6.2. [3] Let M and N be two matroids on the same vertex set. If F1, . . . , Fk are sets
of size k + 1 belonging toM∩N , then they have anM∩N -SR.

(2) Decomposability, meaning requiring the existence of �many� M-SR's, in the sense that
⋃
F is the

union of k M-SR's.
In this case Observation 6.1 becomes a famous conjecture of Rota:

Conjecture 6.3. [19] Given a set F = (F1, . . . , Fk) of independent sets in a matroid M, where
|Fi| = k for all i, the multiset union

⋃
F can be decomposed into k M-SRs.

(3) A �scrambled� version, obtained by scrambling the Fis, resulting in another family of k sets of size
k. The resulting family, call it G1, . . . , Gk, has the property that

⋃
Gi, considered as a multiset,

is decomposable into k independent sets. In this case, the observation remains true. In fact, a
more general fact is true, making the scrambled version more interesting: the number of Gis can be
general.

Theorem 6.4. If G = (G1, . . . , Gm) is a set of disjoint, but not necessarily independent, sets of size
k in a matroidM, and if β(M) ≤ k, then G has anM-SR.

Proof. Rado's theorem [21] states that a necessary and su�cient condition for G to have anM-SR
is that for every set of indices i1, . . . , ik the rank of G :=

⋃
1≤j≤kGij is at least k. Since |G| = kn,

there exists some ij such that G contains at least k elements from Gij , and since Gij is independent,
it follows that rank(G) ≥ k. �

Things become more complicated, and more interesting, when two of the ingredients are added together,
or even all three. These combinations we study below.

7. Scrambling and covering numbers

We shall need the following easy corollary of Edmonds' matroids intersection theorem [14]:

Theorem 7.1. IfM,N are matroids on the same ground set V , then rank(M∩N ) ≥ |V |
max(β(M),β(N )) .

In the following theorem a matroid is added, and at the same time the covering number of the complex
is bounded.

Theorem 7.2. If M, N are matroids on the same vertex set satisfying max(β(M), β(N )) ≤ k, and F =
(F1, . . . , Fm) is a family of disjoint sets belonging toM∩N , all of size 2k, then F has aM∩N -SR.

Proof. By Theorem 4.1 it su�ces to show that for J ⊆ [m] it is true that η((M∩N )[
⋃
j∈J Fj ]) ≥ |J |. By

Theorem 7.1 we have rank((M∩N )[
⋃
j∈J Fj ]) ≥

|
⋃

j∈J Fj |
k ≥ 2k|J|

k = 2|J |. By Theorem 4.6 it follows that

η((M∩N )[
⋃
j∈J Fj ]) ≥ |J |, as required. �

WhenM and N are partition matroids,M∩N is the complex of matchings in a bipartite graph G. By
König's edge coloring theorem, the condition β(M∩ N ) ≤ k is equivalent to ∆(G) ≤ k (as usual, ∆(G)
denotes the maximal degree of a vertex). This case of the observation can be generalized:

Theorem 7.3. Let F = {F1, . . . , Fm} be a set of r-uniform hypergraphs on the same vertex set. If |Fi| ≥
r∆(

⋃
j≤m Fj) for all i (here the union is taken as a multiset, namely degrees are counted with multiplicity),

then F has a rainbow matching.

Proof. For every subset I of [m] the constant function f(e) = 1
∆(

⋃
i∈I Fi)

is a fractional matching of
⋃
i∈I Fi.

This shows that ν∗(
⋃
i∈I Fi) ≥ r|I|, which, by Theorem 4.4, implies the existence of a rainbow matching. �

Theorem 7.3 is tight even when the hypergraphs Fi are r-partite. In the next example, provided to us by
Philipp Sprüssel and Shira Zerbib [24], the hypergraphs Fi are multihypergraphs, meaning that they contain
repeated edges.

Example 7.4. For i = 1, . . . , k let Fi be a matching Mi of size r, repeated k times (each edge of Mi is of
size r). Let Fk+1 consist of k matchings Ni, each of size r, such that each edge in Ni meets each edge in
Mi. Then |Fi| = kr for all i ≤ k + 1, the degree of every vertex in

⋃
Fi is kr + 1, and there is no rainbow

matching.
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With Eli Berger we found also examples of simple hypergraphs showing tightness. We do not describe
them here.
In the r-partite case, possibly something stronger is true.

Conjecture 7.5. There exists a function d(r) such that if the Fis consist of edges in an r-partite hypergraph
and |Fi| ≥ (r − 1)∆(

⋃
j≤m Fj) + d(r) for all i then there exists a rainbow matching.

For r such that there exists a projective plane of edge size r this conjecture is sharp (namely, r−1 cannot
be replaced by a smaller function of r).

Here is a conjectured matroidal version of Theorem 7.3:

Conjecture 7.6. Let M1, . . . ,Mr be r matroids on the same vertex set, and let F = (Fi, i ≤ m) be a
family of disjoint sets, all belonging to

⋃
i≤mMi. If β(Mi) ≤ k for all i ≤ r and |Fi| ≥ rk then F has a⋃

i≤mMi-SR.

It may well be the case that the conclusion of Theorem 7.3 can be strengthened, in the spirit of Rota's
conjecture. Namely, that there exists not merely a single rainbow matching, but many.

Conjecture 7.7. [2]
Let F1, . . . , Fm be r-uniform hypergraphs satisfying |Fi| ≥ r∆(

⋃
j≤m Fj) for all i. Then

⋃
i≤m Fi can be

decomposed into maxi≤m |Fi| rainbow matchings.

For r = 2 Conjecture 7.7 is a generalization of a conjecture of Hilton [18]:

Conjecture 7.8. An n× 2n Latin rectangle can be decomposed into 2n transversals.

In [17] Hilton's conjecture was proved for n× (1 + o(1))n Latin rectangles.
In [2] Conjecture 7.7 was proved for |S| = 2. Another result there was that the conjecture is true up to a

factor of 2, namely under the stronger condition deg(u) ≥ 2(r − 1)deg(v) for every u ∈ S and v ∈ V \ S.

8. Scrambling and decomposing into rainbow matchings

What happens in Rota's conjecture if we �rst scramble the elements? That is, if the sets Fi, i = 1, . . . , k
are not necessarily bases, but

⋃
i≤k Fi is the (multiset) union of k bases? In [8] it was shown that for all

k > 2 there exist examples of Fis as above, with no decomposition into k M-SRs. However, the following
may be true:

Conjecture 8.1. [8] If F1, . . . , Fm are sets of size k in a matroidM satisfying β(M) ≤ k, then there exist
k − 1 disjointM-SRs.

A dual conjecture relates to covering, rather than packing:

Conjecture 8.2. Given sets F1, . . . , Fm of size k in a matroid M satisfying β(M) ≤ k, there exist k + 1
M-SRs whose union is

⋃
i≤m Fi.

The following is a far reaching generalization, made by the �rst author and Eli Berger:

Conjecture 8.3. [4] For any pair of matroidsM, N on the same ground set,

β(M∩N ) ≤ max(β(M), β(N )) + 1.

In Rota's conjecture one of the matroids is the partition matroid whose parts are the sets Fi. Conjecture
8.3 is close in spirit to a well known conjecture of Goldberg and Seymour [15, 23]:

Conjecture 8.4. In any multigraph χ′ ≤ χ′∗ + 1.

The kinship between the two conjectures was given a precise formulation in [6], where a common gener-
alization of the two was suggested, in terms of 2-polymatroids.

As often happens in this �eld, Conjecture 8.3 is known up to a factor of 2:

Theorem 8.5. [4] ForM, N as above, β(M∩N ) ≤ 2 max(β(M), β(N )).

This follows from Theorems 4.6, 5.2 and 7.1.

Corollary 8.6.

If F1, . . . , Fm are disjoint sets of size k in a matroidM satisfying β(M) ≤ k then there exist 2k M-SRs
whose union is

⋃
i≤m Fi.
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9. Distinct edges

It is an intriguing fact that in some theorems and conjectures on hypergraph matchings the only known
examples showing sharpness use repeated edges. It is tempting to conjecture that under an assumption of
distinctness (of either edges or sets) the conditions can be weakened. Here are two examples:

Theorem 9.1. [13, 3]
2k − 1 matchings of size k in a bipartite graph have a partial rainbow matching of size k.

The example showing sharpness is F1 = . . . = Fk−1 = {(a1, b1), (a2, b2), . . . , (ak, bk)}, and Fk = Fk+1 =
. . . = F2k−2 = {(a1, b2), (a2, b3), . . . , (ak, b1)}.

Conjecture 9.2. k + 1 disjoint matchings of size k in a bipartite graph have a partial rainbow matching of
size k.

Here is yet another generalization of the Ryser-Brualdi-Stein conjecture:

Conjecture 9.3. In a d-regular n× n× n 3-partite simple (i.e., not containing repeated edges) hypergraph
there exists a matching of size at least dd−1

d ne.

For d = 2 the conjecture is true, by the inequality ν ≥ 1
2τ proved in [1] (in a regular n× n× n 3-partite

hypergraph τ = n, because τ∗ = ν∗ = n). The Ryser-Brualdi-Stein conjecture is obtained by taking d = n.
If true, the conjecture is sharp for all n and d. To see this, write n = kd+ `, where ` < d, and take k disjoint
copies of a 3-partite d-regular d×d×d hypergraph with ν = d−1, together with a disjoint `×`×` d-regular
3-partite hypergraph. To see that the non-repetition of edges is essential, take the Fano plane with a vertex
deleted (containing 4 edges: (a1, b1, c1), (a1, b2, c2), (a2, b1, c2), (a2, b2, c1)), and repeat every edge d/2 times
for any d even. Then the degree of every vertex is d, and the matching number is 1.

In [12] some progress on the conjecture was made:

Theorem 9.4. In a d-regular n×n×n 3-partite hypergraph with no pair of edges intersecting in more than
one vertex, there exists a matching of size at least max(d(1− 1√

n
), d− n

n−d ,
5n
9 −O( n√

d
)).

Acknowledgements: The authors are indebted to János Barát, Eli Berger, Philipp Sprüssel, Ian Wanless
and Shira Zerbib for helpful discussions. Part of the research of the �rst author was done while visiting Barát
and Wanless at Monash University.
Note added in proof: Since the submission of this paper, the result of Theorem 1.11 has been improved
upon by Kotlar and Ziv [20], who proved that cms(2, k) ≤ 5

3k.
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