
SIZE CONDITIONS FOR THE EXISTENCE OF RAINBOW MATCHINGS

RON AHARONI AND DAVID HOWARD

Abstract. Let f(n, r, k) be the minimal number such that every hypergraph larger than f(n, r, k) contained

in
([n]

r

)
contains a matching of size k, and let g(n, r, k) be the minimal number such that every hypergraph

larger than g(n, r, k) contained in the r-partite r-graph [n]r contains a matching of size k. The Erdős-Ko-Rado

theorem states that f(n, r, 2) =
(n−1
r−1

)
(r ≤ n

2
) and it is easy to show that g(n, r, k) = (k − 1)nr−1.

The conjecture inspiring this paper is that if F1, F2, . . . , Fk ⊆
([n]

r

)
are of size larger than f(n, r, k) or

F1, F2, . . . , Fk ⊆ [n]r are of size larger than g(n, r, k) then there exists a rainbow matching, i.e. a choice of

disjoint edges fi ∈ Fi. In this paper we deal mainly with the second part of the conjecture, and prove it

for the cases r ≤ 3 and k = 2. The proof of the r = 3 case uses a Hall-type theorem on rainbow matchings
in bipartite graphs. For the proof of the k = 2 case we prove a Kruskal-Katona type theorem for r-partite

hypergraphs.

We also prove that for every r and k there exists n0 = n0(r, k) such that the r-partite version of the

conjecture is true for n > n0.

1. Motivation

1.1. The Erdős-Ko-Rado theorem and rainbow matchings. The largest size of a matching in a hy-
pergraph H is denoted by ν(H). The famous Erdős-Ko-Rado (EKR) theorem states that if r ≤ n

2 and a

hypergraph H ⊆
(
[n]
r

)
has more than

(
n−1
r−1
)

edges, then ν(H) > 1. This has been extended in more than one

way to pairs of hypergraphs. For example, in [14] the following was proved:

Theorem 1.1. If H1, H2 ⊆
(
[n]
r

)
satisfy |H1||H2| >

(
n−1
r−1
)2

(in particular if |Hi| >
(
n−1
r−1
)
, i = 1, 2) then

there exist disjoint edges, e1 ∈ H1, e2 ∈ H2.

It is natural to try to extend this to more than two hypergraphs. The relevant notion is that of “rainbow
matchings”.

Definition 1.2. Let F = (Fi | 1 ≤ i ≤ k) be a collection of hypergraphs. A choice of disjoint edges, one from
each Fi, is called a rainbow matching for F .

Notation 1.3. For n, r, k satisfying r ≤ n
2 we denote by f(n, r, k) the smallest number such that ν(H) ≥ k

for every H ⊆
(
n
r

)
larger than f(n, r, k).

The value of f(n, r, k) is known asymptotically:

Theorem 1.4. [8] For every r, k there exists n0 = n0(r, k) such that for every n ≥ n0:

f(n, r, k) =

(
n

r

)
−
(
n− k + 1

r

)
The following is true for all values of n:

Theorem 1.5. f(n, r, k) ≤ (k − 1)
(
n−1
r−1
)
.

Here is a quick proof in the case r|n. Denote by P the set of perfect matchings in
(
[n]
r

)
, and write p = |P |.

Form a bipartite graph Γ whose one side is P and the other side is
(
[n]
r

)
, and in which e ∈

(
[n]
r

)
is connected
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to M ∈ P if e ∈ M . Let q be the degree of each vertex e ∈
(
[n]
r

)
, namely the number of perfect matchings

containing e. Counting the edges of Γ in two ways we get n
r p =

(
n
r

)
q, namely p =

(
n−1
r−1
)
q. Let H ⊆

(
[n]
r

)
be

of size larger than (k− 1)
(
n−1
r−1
)
. Then the total number of edges going out of H in Γ is larger than (k− 1)p,

and hence there exists a matching in P containing at least k edges from H, proving ν(H) ≥ k.

For general r the theorem can be proved using the idea from the Katona proof of the EKR theorem [12],
which is of similar spirit.

It is a natural guess that Theorem 1.1 can be extended to general k, as follows.

Conjecture 1.6. Let F = (F1, . . . , Fk) be a system of hypergraphs contained in
(
[n]
r

)
. If |Fi| > f(n, r, k) (in

particular if |Fi| > (k − 1)
(
n−1
r−1
)
) for all i ≤ k then F has a rainbow matching.

In Section 2.2 we shall present a proof by Meshulam for the r = 2 case of this conjecture.

1.2. The r-partite case. An r-uniform hypergraph H is called r-partite if V (H) is partitioned into sets
V1, . . . , Vr, called the sides of H, and each edge meets every Vi in precisely one vertex. If all sides are of the
same size n, H is called n-balanced. The complete n-balanced r-partite hypergraph can be identified with
[n]r.

Note that matchability of one side Vi in an r-partite hypergraph is equivalent to the existence of a rainbow
matching of the hypergraphs Hv consisting of the r − 1-edges incident with the vertex v ∈ Vi.

Conditions of different types are known for the existence of rainbow matchings. For example, in [11] a
sufficient condition was formulated in terms of domination in the line graph of

⋃
i∈I Fi (I ranging over all

subsets of [k]). In [2, 3] conditions were considered in terms of lower bounds on ν(
⋃
i∈K⊆I Fi) . There are

also many open conjectures on rainbow matchings, of which we mention here one, from [2], strengthening a
conjecture of Ryser, Brualdi and Stein [16], [6, p.103].

Conjecture 1.7. Any system of k matchings in a bipartite graph, each of size k+1, has a rainbow matching.

Here we shall be interested in conditions formulated in terms of the sizes of the hypergraphs.

Observation 1.8. If F is a set of edges in an n-balanced r-partite hypergraph and |F | > (k − 1)nr−1 then
ν(F ) ≥ k.

Proof. The complete n-balanced r-partite hypergraph [n]r can be decomposed into nr−1 matchings Mi, each
of size n. Writing F =

⋃
i≤nr−1(F ∩Mi) shows that one of the matchings F ∩Mi has size at least k. �

The r-partite analogue of Conjecture 1.6 is:

Conjecture 1.9. If F = (F1, F2, . . . , Fk) is a set of sets of edges in an n-balanced r-partite hypergraph and
|Fi| > (k − 1)nr−1 for all i ≤ k then F has a rainbow matching.

The following result, stating the case r = 2, will be subsumed by later results, but it is worth while to see
a short proof:

Theorem 1.10. If F = (F1, F2, . . . , Fk) is a set of sets of edges in an n-balanced bipartite graph and
|Fi| > (k − 1)n for all i ≤ k then F has a rainbow matching.

Proof. Denote the sides of the bipartite graph M and W . Since
∑
v∈M dF1

(v) = |F1| > (k− 1)n, there exists
a vertex v1 ∈ M such that dF1

(v1) ≥ k. Write F ′2 = F2 − v1. Since dF2
(v1) ≤ n, we have |F ′2| > (k − 2)n,

and hence there exists a vertex v2 6= v1 such that dF2
(v2) ≥ k− 1. Continuing this way we obtain a sequence

v1, . . . , vk of distinct vertices in M , satisfying dFi
(vi) > k− i. Since dFk

(vk) > 0 there exists an edge ek ∈ Fk
containing vk. Since dFk−1

(vk−1) > 1 there exists an edge ek−1 ∈ Fk−1 containing vk−1 and missing ek. Since
dFk−2

(vk−2) > 2 there exists an edge ek−2 ∈ Fk−2 containing vk−2 and missing ek and ek−1. Continuing this
way, we construct a rainbow matching e1, . . . , ek for F . �

We shall prove:

Theorem 1.11. Conjecture 1.9 is true for k = 2.

Theorem 1.12. Conjecture 1.9 is true for r = 3.



2. Shifting

Shifting is an operation on a hypergraph H, defined with respect to a specific linear ordering “<” on its
vertices. For x < y in V (H) define sxy(e) = e∪x\{y} if x 6∈ e and y ∈ e, provided e∪x\{y} 6∈ H; otherwise
let sxy(e) = e. We also write sxy(H) = {sxy(e) | e ∈ H}. If sxy(H) = H for every pair x < y then H is said
to be shifted.

Given an r-partite hypergraph G with sides M and W , and linear orders on its sides, an r-partite shifting
is a shifting sxy where x and y belong to the same side. G is said to be r-partitely shifted if sxy(H) = H for
all x < y on the same side.

Given a collection H = (Hi, i ∈ I) of hypergraphs, we write sxy(H) for (sxy(Hi), i ∈ I).

Observation 2.1. Define a partial order on pairs of vertices by (vi, vj) ≤ (vk, v`) if i ≤ k and j ≤ `. Write
(vi, vj) < (vk, v`) if (vi, vj) ≤ (vk, v`) and (vi, vj) 6= (vk, v`). A set F being shifted is equivalent to its being
closed downward in this order, which in turn is equivalent to the fact that the complement of F is closed
upward.

As observed in [8] (see also [4]) shifting does not increase the matching number of a hypergraph. This can
be generalized to rainbow matchings:

Lemma 2.2. Let F = (Fi | i ∈ I) be a collection of hypergraphs, sharing the same linearly ordered ground
set V , and let x < y be elements of V . If sxy(F) has a rainbow matching, then so does F .

Proof. Let sxy(ei), i ∈ I, be a rainbow matching for sxy(F). There is at most one i such that x ∈ ei, say
ei = a ∪ {x} (where a is a set).

If there is no edge es containing y, then replacing ei by a∪ {y} as a representative of Fi, leaving all other
es as they are, results in a rainbow matching for F . If there is an edge es containing y, say es = b ∪ {y},
then there exists an edge b∪ {x} ∈ Fs (otherwise the edge es would have been shifted to b∪ {x}.) Replacing
then ei by a ∪ {y} and es by b ∪ {x} results in a rainbow matching for F . �

3. Conjecture 1.6 for r = 2

In [8] the value of f(n, 2, k) was determined for all k:

Theorem 3.1. f(n, 2, k) = max(
(
2k−1

2

)
, (k − 1)(n− 1)−

(
k−1
2

)
).

In [4] this result was given a short proof, using shifting. Meshulam [15] noticed that this proof yields also
Conjecture 1.6 for r = 2:

Theorem 3.2. Let F = (Fi, 1 ≤ i ≤ k) be a collection of subsets of E(Kn). If |Fi| > max(
(
2k−1

2

)
, (k −

1)(n− 1)−
(
k−1
2

)
) for all i ≤ k then F has a rainbow matching.

Proof. Enumerate the vertices of Kn as v1, v2, . . . , vn. By Lemma 2.2 we may assume that all Fi’s are shifted
with respect to this enumeration. For each i ≤ k let ei = (vi, v2k−i+1). We claim that the sequence ei is a
rainbow matching for F . Assuming negation, there exists i such that ei 6∈ Fi. Since Fi is shifted, every edge
(vp, vq) in Fi, where p < q, satisfies
(P) p < i or q < 2k − i+ 1.

The number of pairs satisfying p < i is (i − 1)(n − 1) −
(
i−1
2

)
. The number of pairs satisfying p ≥ i and

q < 2k − i+ 1 is
(
2k−2i+1

2

)
, so

|Fi| ≤ (i− 1)(n− 1)−
(
i− 1

2

)
+

(
2k − 2i+ 1

2

)
This is a convex quadratic expression in i, attaining its maximum either at i = 1 (in which case |Fi| ≤(

2k−1
2

)
) or at i = k (in which case |Fi| ≤ (k− 1)(n− 1)−

(
k−1
2

)
). In both cases we get a contradiction to the

assumption on |Fi|. �



4. A Kruskal-Katona type theorem for blocking pairs in r-partite hypergraphs

4.1. Blockers. Daykin [5] showed how the EKR theorem follows from the Kruskal-Katona theorem. His

proof also yields that for r ≤ n
2 , if F1, F2 are sets in

(
[n]
r

)
and |F1| ≥

(
n−1
r−1
)
, |F2| >

(
n−1
r−1
)

then F1, F2 have

a rainbow matching. The idea of the proof is that if |F | is large then, by the Kruskal-Katona theorem, the
r-shadow of the complements of the sets in F is large, and hence the number of the r-sets that meet all edges
in F is small. In this section we use a similar idea in the case of r-partite hypergraphs. For this purpose, we
shall need a Kruskal-Katona type theorem on the maximal number of edges meeting all edges in an r-partite
hypergraph. The blocker B(F ) of a subset F of [n]r is the set of those edges of [n]r that meet all edges of F .
For a number t we denote by b(t) the maximal size of |B(F )|, F ranging over all sets of t edges in [n]r. The
theorem in question determines b(t) for all t ≤ nr.

4.2. A self similar sequence. Consider an n-balanced hypergraph with sides V1, . . . , Vr, and choose one
vertex vi from each Vi. Let Ψr be the set of sequences σ of length 0 ≤ k ≤ r − 1 of ∧’s and ∨’s, and let
Σr = Ψr together with two special elements, α = αr and ω = ωr. Note that |Σr| = 2r + 1. We define
hypergraphs Fr(σ) for all σ ∈ Σr, as follows. Let Fr(α) = ∅ and Fr(ω) = [n]r. For a sequence σ ∈ Ψr having
length m ≥ 0, and whose j-th component is denoted by σj (j ≤ m), let:

Fr(σ) = {e ∈ [n]r | v1 ∈ e σ1(v2 ∈ e σ2(v3 ∈ e . . . σm(vm+1 ∈ e) . . .)}

For example, Fr(∅) = {e ∈ [n]r | v1 ∈ e} and Fr(∧,∧,∨) is the set of edges e ∈ [n]r satisfying:

v1 ∈ e ∧ (v2 ∈ e ∧ (v3 ∈ e ∨ (v4 ∈ e)))

Write fr(σ) = |Fr(σ)|.

Lemma 4.1.

(1) fr(σ) = nfr−1(σ)
(2) fr(∧, σ) = fr−1(σ)
(3) fr(∨, σ) = nr−1 + (n− 1)fr−1(σ)

Part 1 is true since Fr(σ) = Fr−1(σ) × Vr. Part 2 is true since an edge in Fr(∧, σ) is obtained from an
edge f ∈ Fr−1(σ), with indices shifted by 1, by adding v1. Part 3 is true since Fr(∨, σ) = {v1} × V2 × . . .×
Vr ∪ (V1 \ {v1})× Fr−1(σ) (where, again, edges in Fr−1(σ) have their indices shifted by 1).

We order fr(σ) by size, and rename them N(i) = Nr(i) (0 ≤ i ≤ 2r).

Example 4.2.

(1) N(0) = fr(α) = 0.
(2) N(1) = fr(∧,∧, . . . ,∧) (r − 1 times), which is 1.
(3) N(2) = fr(∧,∧, . . . ,∧) (r − 2 times) which is n.
(4) N(2r−1) = fr(∅) = nr−1.
(5) N(2r) = fr(ω) = nr.

In accord we order Σr as σ(i) (0 ≤ i ≤ 2r). For example σ(0) = α, σ(2r) = ω. We also define the inverse
function, which we name “i”: if σ(q) = τ , then i(τ) = q.

Clearly, for every β ∈ Ψr

(1) i((β,∧)) < i(β) < i((β,∨))

The elements of Ψr can be viewed as the nodes of a binary tree, the depth of a node being the length of
the sequence (so the root, with depth 0, is the empty sequence). The order on Ψr, uniquely determined by
(1), is known as the “in-order depth first search” on the tree, where ∧ (“left”) precedes ∨ (“right”).

This description of the order on Ψr entails an explicit formula for σ(i). Represent i 6= 0, 2r in binary form:
i = 2k0 + 2k1 + . . .+ 2ks , where k0 > k1 > . . . > ks. Then σ(i) is of length r− ks − 1, and it consists of s ∨’s
and r− ks − 1− s ∧’s. It starts with r− k0 − 1 (possibly zero) ∧’s; if s > 0 these are followed by a ∨; this is



followed by k0 − k1 − 1 (possibly zero) ∧’s, and if s > 1 this is followed by a ∨, followed by k1 − k2 − 1 ∧’s,
and so forth.

For example, σ6(13) = σ6(23 + 22 + 20) = (∧,∧,∨,∨,∧).

The numbers N(i) can also be written explicitly:

N(i) =
∑
i≤s

nki(n− 1)i

The explicit description of σ(i) and the formula for N(i) will not be used below, and hence their proofs
are omitted.

Example 4.3. The values of N3 are:

0, 1, n, n+ (n− 1), n+ n(n− 1) = n2, n2 + (n− 1), n2 + (n− 1)(2n− 1), n2 + (n− 1)n2 = n3.

Lemma 4.4.

(1) For i ≤ 2r−1 we have Nr(i) = Nr−1(i), namely the sequence Nr−1(i) is an initial segment of Nr(i).
(2) σ(2p) = (∧,∧, . . . ,∧), a sequence of r − p− 1 ∧’s, and N(2p) = np.
(3) For i < 2p the sequences σ(i) are of the form (σ(2p),∧, β) (β being some sequence), and for 2p < i <

2p+1 the sequences σ(i) are of the form (σ(2p),∨, β).
(4) For p ≤ r − 1 and i ≤ 2p, we have

N(2p + i) = N(2p) + (n− 1)N(i) = np + (n− 1)N(i)

Part 1 is true by part 2 of Lemma 4.1, since σ(1), . . . , σ(2r−1 − 1) all start with a ∧. Parts 2 and 3 follow
from Equation (1) and the remark following it. Part 4 follows from part 3 of Lemma 4.1. Part 4 says that
the numbers N(i) have a fractal-like pattern, where each sequence Nr is obtained from Nr−1 by adding on
its right an n− 1-times magnified image of itself, the first element of the right sequence being identified with
the last element of the left copy, both being equal to nr−1. This entails:

Lemma 4.5. If b, c ≤ 2p then N(2p+1 + b)−N(2p + c) = (n− 1)(N(2p + b)−N(c)).

4.3. The size of blocking hypergraphs. For σ ∈ Ψr we denote by σ the sequence obtained by replacing
each ∧ by a ∨ and vice versa. We also define α = ω and ω = α. Clearly, i(σ) > i(τ) if and only if i(σ) < i(τ),
and hence we have:

(2) i(σ) = 2r − i(σ)

By De Morgan’s law, we have:

Lemma 4.6. B(Fr(σ)) = Fr(σ).

Lemma 4.7. If i ≤ j then N(j + i)−N(j) ≥ (n− 1)N(i).

Proof. By induction on i + j. Assume that the lemma is true for all i′, j′ whose sum is less than i + j, and
let s < j. By the induction hypothesis:

(3) N(s+ i) ≥ max(N(i) + (n− 1)N(s), N(s) + (n− 1)N(i)) ≥ N(i) +N(s)

Let j = 2p + s, where s < 2p. Assume first that j + i ≤ 2p+1, and write j + i = 2p + t, where t ≤ 2p. By
part 4 of Lemma 4.4 (the part saying that N -distances beyond 2p are (n − 1)-magnified N -distances below
2p) we have N(j + i) − N(j) = (n − 1)(N(t) − N(s)). By (3), N(t) − N(s) ≥ N(t − s) = N(i), and thus
N(j + i)−N(j) ≥ (n− 1)N(i).

Assume next that j + i > 2p+1 and write j + i = 2p+1 + w. Then i = 2p + w − s.

By the induction hypothesis we have N(2p + w) −N(s) ≥ N(i). By Lemma 4.5 N(2p+1) −N(2p + s) =
(n − 1)(N(2p) − N(s)) and N(2p+1 + w) − N(2p+1) = (n − 1)(N(2p + w) − N(2p)). Adding the last two
equalities gives N(j + i) −N(j) = (n − 1)(N(2p + w) −N(s)), and since by (3) N(2p + w) −N(s) ≥ N(i),
we are done.

�



A converse inequality is also true, namely for every k > 1 it is true that:

(4) N(k) = max{N(j) + (n− 1)N(i) | j + i = k, i ≤ j}

Proof. Let p be maximal such that 2p < k, and let k = 2p+ j. By Lemma 4.1 (4) N(k) = N(i)+(n−1)N(j).
Combining this with Lemma 4.7 proves the desired equality. �

In [13] (4) was used as a defining recursion rule for the sequence N(i) (which appeared there in a different
context.)

For a number t ≤ nr denote by N∗(t) the number q such that N(q−1) < t ≤ N(q). This is an approximate
inverse of N .

Theorem 4.8. b(t) = N(2r −N∗(t)) for every t ≤ nr.

Proof. Let F = Fr(σ(N∗(t)). Then |F | ≥ t, and since B(F ) = Fr(σ̄), we have |B(F )| = N(2r−N∗(t)). This
proves that b(t) ≥ N(2r −N∗(t)). To complete the proof we have to show that for every F ⊆ [n]r of size t
we have |B(F )| ≤ N(2r −N∗(t)). Write q = N∗(t). We wish to show that |B(F )| ≤ N(2r − q). We do this
by induction on r. The case r = 1 is easy, so assume that we know the result for r − 1 and we wish to prove
it for r.

Let F+ = {e \ Vr | vr ∈ e ∈ F} and F− = {e \ Vr | e ∈ F, vr 6∈ e}.

By Lemma 2.2 we may assume that F is r-partitely shifted, which in particular entails F− ⊆ F+. Let
B+ = Br−1(F+) and B− = Br−1(F−), and let f+ = |F+|, f− = |F−|, b+ = |B+|, b− = |B−|. Then
b− ≤ b+. Clearly:

B(F ) = (B− × {vr}) ∪ (B+ × (Vr \ {vr}))
and hence

(5) |B(F )| = b− + (n− 1)b+

Let i = N∗(f−) and j = N∗(f+). Also let i′ = N∗(b+), j′ = N∗(b−). By Lemma 4.7 we have:

|F | ≤ f+ + (n− 1)f− ≤ N(i+ j)

and hence i + j ≥ q. By the inductive hypothesis j′ ≤ 2r−1 − i, and i′ ≤ 2r−1 − j, and hence i′ + j′ ≤
2r − (i+ j) ≤ 2r − q. By (5) and Lemma 4.7 , |B(F )| ≤ N(i′ + j′) ≤ N(2r − q), as desired.

�

Since nr−1 = N(2r−1) = 2r − 2r−1, the case k = 2 of Conjecture 1.9 directly follows:

Corollary 4.9. A pair F1, F2 of subsets of [n]r satisfying |F1| > nr−1 and |F2| ≥ nr−1 has a rainbow
matching.

Alon [1] used spectral methods to prove, alongside Theorem 1.1, also an analogous result in the r-partite
case, strengthening Theorem 1.11:

Theorem 4.10. If F1, F2 ⊆ [n]r and |F1||F2| > n2(r−1) then the pair (F1, F2) has a rainbow matching.

This follows also by the methods of the present paper.

Lemma 4.11. N(a)N(b) ≤ N(ab).

Proof. By induction on a+ b. The case a+ b is trivial. By (4) N(a) = N(c) + (n−1)N(d) for some c ≤ d < a
such that c+ d = a, and N(b) = N(e) + (n− 1)N(f) for some e ≤ f < b such that e+ f = b. Then

N(a)N(b) = N(c)N(e) + (n− 1)[N(d)N(e) +N(c)N(f)] + (n− 1)2N(d)N(f)

Using the induction hypothesis, we get:

N(a)N(b) ≤ N(ce) + (n− 1)[N(d)N(e) +N(c)N(f)] + (n− 1)2N(df)



Using Lemma 4.7 twice we get:

N(a)N(b) ≤ N(ce+ cf) + (n− 1)N(de+ df) ≤ N(ce+ cf + de+ df) = N(ab).

�

The lemma implies that N(2r−1 − q)N(2r−1 + q) ≤ N(22(r−1)) for every q ≤ 2r−1, meaning that tb(t) ≤
n2(r−1) for every t ≤ nr−1, which is another way of formulating Theorem 4.10.

5. A Hall-type size condition for rainbow matchings in bipartite graphs

In this section we prove a result on the existence of rainbow matchings in bipartite graphs, that will be
later used for the proof of the case r = 3 of Conjecture 1.9. This condition is not formulated in terms of sizes
of individual hypergraphs, but as in Hall’s theorem, in terms of sets of hypergraphs.

Theorem 5.1. Let Fi, i ≤ k be subsets of E(Kn,n). If for every I ⊆ [k] it is true that
∑
i∈I |Ei| > n|I|(|I|−1)

then the sets Fi have a rainbow matching.

Remark 5.2. The analogous result for r = 1 can be proved directly, or using Hall’s theorem. For r ≥ 3 the
analogous result, namely that if

∑
i∈I |Ei| > n2|I|(|I| − 1) for all I then F has a rainbow matching, is false.

To see this, take the pair F1, F2 in which F1 consists of a single edge and F2 = B(F1).

5.1. An algorithm. The proof of Theorem 5.1 is constructive, providing an algorithm for choosing a rainbow
matching. For its description we shall use the following terminology. An edge e = (m,w) in an ordered
bipartite graph is said to be left-starting if at least one of its endpoints is first in its side. If this is the case,
we choose one vertex from e that is first on its side, and denote it by tail(e), and the other vertex in e is
denoted by head(e). The set of predecessors of head(e) in its side, including head(e) itself, is denoted by
SKIP (e). We write `(e) = |SKIP (e)| and call it the length of e.

Enumerate the two sides of the bipartite graph as M = (m1,m2, . . . ,mn) and W = (w1, w2, . . . , wn). By
Lemma 2.2, we may assume that all Fi are bipartitely shifted with respect to these orders.

Order the sets Fi by their sizes,

(6) |F1| ≤ |F2| ≤ . . . ≤ |Fk|

We now choose edges ei ∈ Fi, taking at each step the longest edge available. The choice (apart from
the first step, i = 1) is done in two stages - first a “temporary” choice e′i, that may violate the disjointness
condition, and then the “real” choice ei.

Let e1 = (mc1 , wd1) be the longest (i.e. having maximal ` value) left-starting edge in F1. Assuming that
ei = (mci , wdi) ∈ Fi have been chosen for i < t, let a(t) be the first index a such that ma 6∈ {mci | i < t} and
let b(t) be the first index b for which wb 6∈ {wdj | j < t}.

If one of (ma(t), wn) or (wb(t),mn) is an edge, choose one of them as e′t. Otherwise, Let e′t = (mct , wdt) be

a longest left starting edge in F̃t. Let tail(e′t) = ma(j) if a(j) ∈ e′t and tail(e′t) = wb(j) otherwise.

Write Rt = {mi : i < a(t)} ∪ {wj : j < b(t)}, and let F̃t = Ft −Rt. Since Ft is shifted, every edge in F̃t is
of the form (mi, wj) for a(t) ≤ i ≤ a(t) + `t, b(t) ≤ j ≤ b(t) + `(e′t), and hence:

(7) |F̃t| ≤ `(e′t)2

It is possible that head(e′t) belongs to some ei, i < t, so we choose et to be the longest edge e in F ′t having
tail(e′t) as a vertex, which is disjoint from all ei, i < t. Let SKIPt be the set of vertices in Ht “skipped”
by e′t, namely if tail(e′t) = ma(t) then SKIPt = {wb(t), wb(t)+1, . . . , wdt}, with a symmetrical definition if
head(e′t) = ma(t).

Write Ht for the side of the graph containing head(e′t) and Tt for the side containing tail(e′t) = tail(et).

Assume for contradiction that the process halts at some stage p ≤ k, meaning that:



(8) F̃p = ∅

Let a = a(p) and b = b(p). The negation assumption (8), together with the shifting property, mean that
(ma, wb) 6∈ Fp.

5.2. Short edges. An edge in the constructed matching having one vertex outside Rp will be called “long”,
and an edge contained in Rp will be called “short”. If (u, v) is a long edge representing Fi, and (say) u ∈ Rp,
then we have no information on degFi(u), apart from the obvious degFi(u) ≤ n. If, on the other hand, (u, v)
is short, then (7) yields a bound on degFi(u) and degFi(v), which we shall use to get an upper bound on∑
i≤p |Fi|, towards the desired contradiction. Let Q = {q1 < q2 < . . . < qm−1} be the list of indices q of

short edges, namely satisfying eq < (ma, wb). Write q0 = 0 and qm = p.

Clearly:

(9) |Rp| = p− 1 + |Q| = p− 2 +m

If Q = ∅ then by (9) we have |Rp| = p − 1. Since by (8) the set Rp is a cover for Fp, it follows that
|Fp| ≤ (p− 1)n, implying that

∑
i≤p |Fi| ≤ p(p− 1)n, contradicting the assumption of the theorem.

5.3. A toy case - |Q| = 1. To demonstrate the type of arguments involved in the general proof, let us consider
separately the next simple case, |Q| = 1, in which there is only one index i for which ei = (mci , wdi) < (a, b).
Recall that either ci = a(i) or di = b(i), and without loss of generality assume the first, namely ci = min{j |
mj 6∈ Ri}.

Write ` for `(ei). The edge ei “skips” ` vertices in Rp, each being matched by some edge ej , i < j < p,
and hence ` ≤ p− i.

By (9) |Rp| = p, and since Rp is a cover for Fp it follows that |Fp| ≤ pn. But in this calculation each of
the ` edges (mci , wj) for j = b(i), b(i) + 1, . . . , b(i) + `− 1, being contained in Rp, is counted twice, from the
direction of mci and from the direction of wj . Thus we know that:

|Fp| ≤ pn− `

Since no edge eq, q < i, satisfies eq < ei, we have |Ri| = i − 1, and the number of edges in Fi incident
with Ri is thus at most (i− 1)n. By (7) we have: |Fi| ≤ (i− 1)n+ `2. By (6), it follows that:

∑
q≤p

|Fq| ≤ i|Fi|+ (p− i)|Fp| ≤ i((i− 1)n+ `2) + (p− i)(pn− `).

Hence

p(p− 1)n−
∑
q≤p

|Fq| ≥ p(p− 1)n− [i((i− 1)n+ `2) + (p− i)(pn− `)] = (i− 1)(p− i)n+ (p− i)`− i`2

= [(i− 1)(p− i)n− (i− 1)`2] + [(p− i)`− `2]

Since ` ≤ p− i and ` ≤ n both bracketed terms are non-negative, so p(p− 1)n−
∑
q≤p |Fq| ≥ 0, reaching

the desired contradiction.

5.4. Using the short edges as landmarks. Let us now turn to the proof of the general case. For 1 ≤ j ≤
m− 1 write sj = qj − qj−1 and let Sj = {qj−1 + 1, qj−1 + 2, . . . , qj}, so that |Sj | = sj .

By (6) we have:

(10)
∑
i≤p

|Fi| ≤
∑
j≤m

sj |Fqj |



We shall reach a contradiction by showing that this sum is not larger than p(p− 1)n. For this purpose we
shall use the fact that the edges eqj are short, yielding upper bounds on |Fqj |.

5.5. Three possible types of relationship between short edges. Two short edges eqi , eqj (i < j), may
relate to each other in three different ways.

(1) The simplest case is in which eqi ⊆ Rqj . In this case, of course, eqi < eqj , since all edges e contained
in Rqj satisfy eqi < eqj .

(2) tail(eqi) ∈ Tqj and head(e′qi) ∈ SKIPqj . In this case, again, eqi < eqj . We call eqi a “back edge” for
eqj .

(3) The edges eqi and eqj may cross, meaning that tail(eqi) ∈ Rqj ∩Hqj and head(eqi) ∈ Tqj .

Figure 1. Relationship between short edges: Types 1 and 2

Figure 2. Relationship between short edges: Type 3

For j ≤ m let r(j) be the smallest index r larger than j such that eqj ⊆ Rqr . Thus, for i < j the edges eqi
and eqj bear a relationship of types 2 or 3 if j < r(i).

Let PROCj be the set of indices i < j satisfying 2 or 3. Namely:

PROCj = {i < m | i < j < r(i)}

The letters PROC stand for “procrastination”, since PROCj consists of those indices i that in spite of
being smaller than j, only one of the endpoints of eqi is in Rqj . Let BACKj be the set of indices i < j
satisfying only 2, namely:

BACKj = {i < m | i < j < r(i) and eqi < eqj}.

Denote the set of back edges for qj by EBACKj , so:

EBACKj = {eqi : i ∈ BACKj}.

Define also:

αj = |BACKj |



and

λj = min(`2qj , `qj (n− αj))

Since |Rqj ∩ Tqj | ≥ αj , we have |Rqj \ Tqj | ≤ n− αj , implying |F̃qj | ≤ `qj (n− αj). Together with (7) this
means:

(11) |F̃qj | ≤ λj

Similarly to (9), we have:

(12) |Rqj | = qj − 1 + j − 1 = qj + j − 2− |PROCj |

The subtraction of |PROCj | is due to the fact that for i ∈ PROCj the head of eqi does not belong to Rqj .
Writing qj =

∑
i≤j si we can summarize:

(13) |Fqj | ≤ (qj + j − 2− |PROCj |)n+ λj

But we shall do the bookkeeping a bit differently, distributing the |PROCj |n term between different stages.

5.6. An overestimate and correction. For i ≤ m write

Yi = si(qi + i− 2)

and:

(14) Y =
∑
i≤m

Yi =
∑
i≤m

si(qi + i− 2)

As a first (over-) estimate to the sum
∑
j≤m sj |Fqj | we take the number Y n +

∑
j≤m sjλj , in which we

assume that |Rqi | = qi + i− 2 = (
∑
j≤i sj) + i− 2 for each i. We shall refine this estimate in two ways:

(1) Take into account the “procrastinating” edges.
(2) Deduct the number of edges doubly counted, namely counted from both sides, in the expression Y n.

Let us denote the accumulating amount in the two types of corrections by Ω. In order to get the desired
contradiction we have to show that

(15) Y n+
∑
j≤m

sjλj − Ω ≤ p(p− 1)n

Let p =
∑
i≤m si. Writing Y = s1(s1 − 1) + s2(s1 + 1 + s2 − 1) + s3(s1 + 1 + s2 + 1 + s3 − 1) . . . +

sm(
∑
i≤m si +m− 2), some algebraic manipulation yields:

(16) p(p− 1)− Y =
∑

1≤i<j≤m

(sisj − sj)

So, our aim is to show that

(17)
∑

1≤j≤m

(sj − 1)(
∑

j<i≤m

si)n−
∑
j≤m

sjλj + Ω ≥ 0

Which can be written as:



(18)
∑

1≤j≤m

(sj − 1)(n
∑

j<i≤m

si − λj)−
∑
j≤m

λj + Ω ≥ 0

Instead we shall prove the stronger:

(19)
∑

1≤j≤m

(sj − 1)(n
∑

j<i≤r(j)

si − λj)−
∑
j≤m

λj + Ω ≥ 0

(The difference is in the range of the second summation.)

We shall write Ω as a sum Ω =
∑
j≤m ωj , where each ωj (which is yet to be specified) is associated with

a particular value of j, and prove the inequality separately for each j, namely:

(20) (sj − 1)(n
∑

j<i≤r(j)

si − λj)− λj + ωj ≥ 0

5.7. Keeping track of the regains. We focus on a particular index j < m, and collect regains associated
with it. Let r = r(j).

Let
⋃qr−1

i=qj
Si

The vertices of SKIPj are divided into three types:

(1) A := {v ∈ SKIPj | v ∈ ek for some qj < k ≤ qr−1}.
(2) B :=

⋃
EBACKj ∩Hqj , namely the set of vertices in Hqj belonging to the edges in EBACKj . Note

that A ∩B = ∅.
(3) Vertices that are equal to tail(ek) for some k ∈ Sr.

With each type we shall associate a regain. In fact, some regains are not associated directly with these
vertices: in the third type we shall consider all indices k ∈ Sr, not only those for which tail(ek) ∈ SKIPj .

(1) (regain on A, from procrastination):
The first type of regain associated with j is taken from the terms Yi, j ∈ PROCi.
In each term Yi = si(qi+i−2) in the sum Y (see (14)) we regard each of the si indices k, (qi−1+1 ≤

k ≤ qi) as contributing (qi + i − 2) to Yi. In this calculation, each edge ek contributes 2n to Yi, for
the two vertices of eqj , while in fact only one, that of tail(eqj ), is warranted. The contribution of
head(e′qj ) is not justified, because j ∈ PROCi.

Thus for each index k belonging to some Si, j < i < r, such that ek meets SKIPqj , there is a
regain of n. This regain we split: at the current stage we count `qj as a regain, and we keep n− `qj ,
which we may (or may not, see below for specification) use in the i-th stage.

Note that |A| ≥ (`qj − 1)−αj − (sr − 1) (`qj − 1 because A does not include head(e′qj ), and sr − 1

because Sr includes qr, while eqr does not have a point in SKIPj). Hence we regain this way at least

βj := (`qj − αj − sr)`qj .

(2) (regain on B, from procrastination+double counting):
For pairs (i, t), where i ∈ BACKj and t ∈ Sj \ {qj} we shall consider regains of two types -

procrastination and double counting. Treating them together will simplify the calculations. Let
Ki = SKIPqi ∩Rqj .

(a) Double counting: Each edge in {tail(eqj )} ×Ki was counted twice in the calculation of Yin,
and therefore we are entitled to a regain of |Ki|. Summing over all t ∈ Sj \ {qj}, we have a regain of
(sj − 1)|Ki|.

(b) Procrastination: For each t ∈ Sj \ {qj} there was an unwarranted contribution of n in the
term qj + j − 2 appearing in Y n. Recall that for each such t we may have already used as a regain



`i (which happened if tail(et) ∈ SKIPi). So we are now regaining at least n− `i for each such t.

(For the element qj of Sj we haven’t used `i, which is the reason that we consider it separately
from the other elements of Sj .)

Combining (a) and (b), we get a regain of n− `qj + |Ki| for each t ∈ Sj \ {qj}.

Since head(e′qi) ∈ SKIPqj we have `qi ≤ |Ki|+ `qj , meaning that n− `qj + |Ki| ≥ n− `qi .

Figure 3. Illustration of second type of regain

The αj indices i and sj − 1 indices t thus contribute a (sj − 1)αj(n− `j) regain. To this we add
the regain from the index qj , which is αjn, to get a regain of:

γj := (sj − 1)αj(n− `qj ) + nαj

(3) (Sr, double counting):
In the calculation of Yr = sr(qr + r − 2) all points of SKIPqj were considered to be of degree

n, and so was also the point tail(eqj ), which resulted in double counting in Y all `qj edges between
tail(eqj ) and SKIPqj . Since |Fqr | is multiplied in Yr by sr, we get a regain of

δj := `qjsr

Remark 5.3. In both (2) and (3) an edge doubly counted in a term Yu is of the form (x, y), where x = tail(eqv )
and y ∈ SKIPqv ∩ Rqu . In (2) eqv ⊆ Ru , and in (3) eqv 6⊆ Ru. For this reason, we are not taking into
account any double count more than once.

5.8. Collecting all regains. To finish the proof of the theorem note that
∑
t<i≤r(t) si ≥ `qj − αj , since

SKIPqj consists of the α vertices of Hqj ∩
⋃
EBACKj together with vertices from edges ei, t < i ≤ r(t).

Hence

(sj − 1)(n
∑

t<i≤r(t)

si − λj)− λj + ωj ≥ (sj − 1)(n(`qj − αj)− λj)− λj + βj + γj + δj

= (sj − 1)(n(`qj − αj)− λj)− λj + (`qj − α− sr)`qj + (sj − 1)αj(n− `qj ) + nαj + `qjsr

= (sj − 1)((n− αj)`qj − λj)− λj + (`qj − αj)`qj + nαj

The first term is nonnegative since λ ≤ `qj (n − αj), and the sum of the other terms is nonnegative since

λ ≤ `2qj and `qj ≤ n. This finishes the proof of the theorem.



6. Proof of Theorem 1.12

Let F be a collection of hypergraphs satisfying the condition of the theorem. Order the vertices of the
first side V1 as v1, . . . , vn. By Lemma 2.2 we may assume that all Fi are shifted with respect to this order.
Let i1 be such that Fi1 has maximal degree at v1 among all Fi’s. Then we choose i2 6= i1 for which Fi2 has
maximal degree at v2 among all Fi, i 6= i1, and so forth. To save indices, reorder the Fi’s so that ij = j
for all j. Let Hj be the set of 2-edges incident with vj in Fj . It clearly suffices to show that the collection
H = (Hj : j ≤ k) of subgraphs of Kn,n has a rainbow matching, so it suffices to show that H satisfies the
conditions of Theorem 5.1. Assuming it does not,

∑
k−t<j≤k |Hj | =

∑
k−t<j≤k degFj (vj) ≤ t(t−1)n for some

t < k. We shall reach a contradiction to the assumption that |Fk| > (k − 1)n2.

Write m for |Hk|. Clearly ∑
j≤k−t

degFk
(vj) ≤ (k − t)n2

and by the order by which Fj were chosen∑
k−t<j≤k

degFk
(vj) ≤

∑
k−t<j≤k

degFj (vj) ≤ t(t− 1)n

Since
∑
k−t<j≤k degFk

(vj) ≥ mt, this implies that m ≤ n(t− 1).

By the shifting property, ∑
k<j≤n

degFk
(vj) ≤ m(n− k) ≤ n(t− 1)(n− k)

And so: ∑
j>k−t

degFk
(vj) ≤ t(t− 1)n+ (t− 1)n(n− k) = n(t− 1)(t+ n− k) ≤ (t− 1)n2

Hence

|Fk| =
∑
j≤k

degFk
(vj) ≤ (k − t)n2 + (t− 1)n2 = (k − 1)n2

Which is the desired contradiction.

7. Conjecture 1.9 for large n

Theorem 7.1. For every r and k there exists n0 = n0(r, k) such that Conjecture 1.9 is true for all n > n0.

Proof. By Lemma 2.2 we may assume that all Fi’s are shifted. Let Ai consist of the first k − 1 vertices in
Vi (i ≤ r), and let A =

⋃
i≤r Ai. Since the number of edges meeting A in two points or more is O(nr−2),

for large enough n for each i there exist at least k − 1 points x in A such that e ∩ A = {x} for some e ∈ Fi.
Hence we can choose edges ei ∈ Fi and distinct points xi ∈ A (i ≤ k − 1) such that ei ∩ A = {xi}. Since
the number of edges going through x1, . . . , xk−1 is no larger than (k − 1)nr−1, there exists an edge ek in Fk
missing x1, . . . , xk−1. Using the shifting property, we can replace inductively each edge ei , i ≤ k − 1, by
an edge e′i ∈ Fi contained in A, missing ek and missing all e′j , j < i. This yields a rainbow matching for
F1, . . . , Fk. �

8. Further conjectures

Theorem 1.10 may be true also under the more general condition of degrees bounded by n.

Conjecture 8.1. Let d > 1, and let F1, . . . , Fk be bipartite graphs on the same ground set, satisfying
∆(Fi) ≤ d and |Fi| > (k − 1)d. Then the system F1, . . . , Fk has a rainbow matching.

For d = 1 this is false, since for every k > 1 there are matchings F1, . . . , Fk of size k not having a rainbow
matching.

Theorem 5.1 has a simpler counterpart, which we believe to be true:



Conjecture 8.2. If Fi, i ≤ k are subgraphs of Kn,n satisfying |Fi| ≥ in for all i ≤ k, then they have a
rainbow matching.

We can prove this for n ≥
(
k
2

)
.

To formulate yet another conjecture we shall use the following notation:

Notation 8.3. (1) For a sequence a = (ai, 1 ≤ i ≤ k) of real numbers we denote by −→a the sequence
rearranged in non-decreasing order.

(2) Given two sequences a and b of the same length k, we write a ≤ b (respectively a < b) if −→a i ≤
−→
b i

(respectively −→a i <
−→
b i) for all i ≤ k.

Given subgraphs Fi, i ≤ k of Kn,n, define a k × n matrix A = (aij) as follows. Order one side of the
bipartite graph as v1, v2, . . . , vn, and let aij = degFi

(vj). The i-th row sum ri(A) of A is then |Fi|. Thus,
Theorem 5.1 can be formulated as follows:

Theorem 8.4. If
∑
i≤j
−→r i > j(j − 1)n for every j ≤ k then there exists a permutation π : [k] → [k] such

that aiπ(i) ≥ (1, 2, . . . , k).

We believe that the following stronger conjecture is true:

Conjecture 8.5. If
∑
i≤j
−→r i > j(j − 1)n for every j ≤ k then there exists a permutation π : [k]→ [k] such

that
∑
i≤j
−→a iπ(i) > j(j − 1) for every j.
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