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ABSTRACT

Linear discrepancy and weak discrepancy have been studied as
a measure of fairness in giving integer ranks to points of a poset.
In linear discrepancy, the points are totally ordered, while in weak
discrepancy, ties in rank are permitted. In this paper we study the
t-discrepancy of a poset, a hybrid between linear and weak discrep-
ancy, in which at most t points can receive the same rank. Inter-
estingly, t-discrepancy is not a comparability invariant while both
linear and weak discrepancy are. We show that computing the t-
discrepancy of a poset is NP-complete in general but give a polyno-
mial time algorithm for computing the t-discrepancy of a semiorder.
We also find the t-discrepancy for posets that are the sum of chains
and for the standard example of an n-dimensional poset.

1 Introduction

In this paper we consider only finite posets. We begin with some definitions and
notation. We denote the cardinality of set S by |S|. A poset P = (X,≺) consists
of a ground set X together with an order relation ≺. If there are several posets
under consideration, we write ≺P . When points x, y ∈ X are incomparable we
write x ‖P y or just x ‖ y. If there are no incomparabilities then P is a linear
order or chain. A linear extension L of a poset P is a linear order that respects
the relation of P , that is, x ≺L y whenever x ≺P y. The height of a point x in
a linear order L, denoted by hL(x), is the greatest cardinality of a chain whose
maximum point is x. The poset r + s consists of the disjoint union of a chain of
r points with a chain of s points, and more generally, the poset r1 +r2 + · · ·+rp

consists of the disjoint union of chains of cardinalities r1, r2 . . . , rp.
For all terminology and notation not defined here, we refer the reader to

[12].
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In this paper we explore assigning integer ranks to the points of a poset
so that two fairness conditions are satisfied and at most t points get the same
rank. The first fairness condition ensures that for a pair of comparable points,
the higher point gets a higher rank. The second ensures that the ranks assigned
to an incomparable pair of elements are not too far apart. Limiting the number
of points so that at most t have the same rank can allow us to model situations
where resources are limited. These ideas are made formal in the definitions
below.

Definition 1 Let P = (V,≺) be a poset and t be a positive integer. An integer-
valued function f : V → Z is called a (k, t)-labeling for P if it satisfies the
following three conditions for all x, y,∈ V :
(i) if x ≺ y then f(x) < f(y),
(ii) if x ‖ y then |f(x)− f(y)| ≤ k,
(iii) |f−1(i)| ≤ t for all i ∈ Z.

Definition 2 If k is the least integer for which poset P has a (k, t)-labeling,
then we write dt(P ) = k and say that P has t-discrepancy equal to k. A (k, t)-
labeling f for which k = dt(P ) is called a t-optimal labeling function (or just
an optimal labeling function).

Definitions 1 and 2 can be combined to define the t-discrepancy directly as

dt(P ) = min
f

max
x‖y

|f(x)− f(y)|

where f : V → Z satisfies (i) and (iii) above.

The above definitions are inspired by questions in which a ranking of points in
a poset is required and it is desirable to choose one that minimizes the difference
in rank between incomparable points. For example, a poset can represent a set
of projects on a professor’s desk, ordered by urgency (or perhaps importance).
Suppose the professor can work on at most t projects at a time (condition iii)
and wishes to rank them so that more urgent projects are done before less urgent
ones (condition i). In addition, if two projects are incomparable, the professor
would not want to complete them at widely different times (condition ii), for
this could be viewed as unfair by the person awaiting the completion of the
second project. Thus the professor seeks a t-optimal labeling function for this
poset.

The t-discrepancy represents a hybrid between linear discrepancy and weak
discrepancy as we next describe. When t = 1, condition (iii) of Definition 1
means that each rank can appear at most once in a (k, t)-labeling. In fact, as
we will see in Lemma 6 with m = 1, a 1-optimal labeling function can always be
viewed as a linear extension L of the poset in which the value f(x) corresponds
to the height of x in L. The resulting 1-discrepancy of P , introduced in [10],
is called linear discrepancy and denoted by ld(P ). Linear discrepancy has been
studied by other authors, for example, see [1], [2], [7], [9] and [8]. In the other
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extreme, if we allow t = ∞, condition (iii) is always satisfied. In this case, a
(k, t)-labeling of P is called a k-weak labeling of P and corresponds to a weak
extension of P . The resulting t-discrepancy is called the weak discrepancy of
P and is denoted by wd(P ). Weak discrepancy was introduced in [5] and [11]
and studied further in [10]. Additional examples of real world problems that
motivated the definitions of linear and weak discrepancy appear in [10] and
several of these have analogues for t-discrepancy.

The following remark follows from the definitions of linear discrepancy, t-
discrepancy and weak discrepancy.

Remark 3 For any poset P and any integer t ≥ 2 we have ld(P ) ≥ dt(P ) ≥
wd(P ).

Given a particular (k, t)-labeling, it will sometimes be useful to refer to the
maximum difference in the function values between pairs of incomparable points.

Definition 4 Let P be a poset and f a (k, t)-labeling function for P . The
t-discrepancy of P in f , denoted by dt(Pf ), is

dt(Pf ) = max
x‖y

|f(x)− f(y)|.

Thus dt(P ) = minf dt(Pf ) where the minimum is taken over all functions
f : V → Z satisfying (i) and (iii) of Definition 1. For example, the (2, 2)-labeling
f of P = S3 shown in Figure 2 is optimal and d2(Pf ) = d2(P ) = 2. However, if
we change the label 4 to a 5, the resulting labeling g has d2(Pg) = 3.

In Section 4 we will need the following result from [10] about weak discrep-
ancy.

Theorem 5 If P = r1 + r2 + · · · + rp is the disjoint sum of p chains and
r1 ≥ r2 ≥ · · · ≥ rp then wd(P ) =

⌈
r1+r2

2

⌉
− 1.

2 Elementary Results

It is often convenient to have a (k, t)-labeling of poset P that satisfies one or
both of the following properties.

(a) The minimum value of f is a specified integer m.

(b) There are no gaps in the set of integers that appear as function values.

We say that a (k, t)-labeling of P is gap-free if it satisfies property (b) and
prove in Lemma 6 that every (k, t)-labeling of P can be transformed into a
gap-free (k, t)-labeling of P with any specified minimum value.

Lemma 6 Let m be any integer. If poset P = (V,≺) has a (k, t)-labeling then
it has a gap-free (k, t)-labeling with minimum value m.
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Proof. Suppose f is a (k, t)-labeling of P . Adding a constant to every function
value yields another (k, t)-labeling of P . Thus we may assume the minimum
value of a (k, t)-labeling is m. Let M be the maximum value attained, and
suppose there exists a gap in the labeling, that is, an integer i with m < i < M
so that f(v) 6= i for all v ∈ V . Define a new function g : V → Z with g(v) = f(v)
for all v with f(v) < i and g(v) = f(v)− 1 for all v with f(v) > i.

Then |g(x) − g(y)| ≤ |f(x) − f(y)| for any pair of points x, y ∈ V and it is
easy to check that g is also (k, t)-labeling of P . Repeat this process if necessary
until no gaps remain. �

Any gap-free (k, t)-labeling of a poset P = (V,≺) with minimum value m = 1
has maximum value M ≤ |V |, and thus we have the following remark.

Remark 7 For any poset P = (V,≺) and any integer t ≥ 1 we have dt(P ) ≤
|V | − 1.

We collect several additional elementary results which we will need later.
The next remark follows because any (k, t)-labeling of a poset induces a (k, t)-
labeling on any subposet.

Remark 8 If P is an induced subposet of Q then dt(P ) ≤ dt(Q).

Lemma 9 If A is an antichain then dt(A) =
⌈
|A|
t

⌉
− 1.

Proof. The labeling function in which t points get label 1, t points get label
2, and so on is t-optimal. The largest label used is

⌈
|A|
t

⌉
, the smallest is 1, and

thus dt(A) =
⌈
|A|
t

⌉
− 1. �

3 Comparability Invariance

The comparability graph of a poset P = (V,≺) is the graph G = (V,E) where
xy ∈ E if and only if x and y are comparable in P . A parameter π defined for
posets is said to be a comparability invariant if for all posets P and Q, we have
π(P ) = π(Q) whenever the comparablity graphs of P and Q are isomorphic.
Some well-known poset parameters, such as dimension, are known to be compa-
rability invariants (see [12]). Weak discrepancy is shown to be a comparability
invariant in [5] and linear discrepancy is shown to be a comparability invariant
in [10]. The latter also follows from the main result in [3] that all posets P
satisfy

ld(P ) = bandwidth(G) (1)

where G is the incomparabilty graph of P , that is, the complement of the
comparablity graph of P .

Surprisingly, for all integers t > 1, t-discrepancy is not a comparability
invariant even though we think of t-discrepancy as lying between linear and
weak discrepancy. This is proven below in Theorem 10.
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Figure 1: Two posets with the same comparability graph but with different
t-discrepancy.

Theorem 10 For any integer t > 1 there exist posets P and Q that have the
same comparability graph, but for which dt(P ) 6= dt(Q). Thus t-discrepancy is
not a comparability invariant.

Proof. Fix an integer t > 1 and consider the posets P and Q shown in
Figure 1. It is easy to check that P and Q have the same set of comparabilities,
thus they have the same comparability graph. We next show dt(Q) = 1 and
dt(P ) = 2.

Since Q has an antichain of size t + 1, Remark 8 and Lemma 9 imply that
dt(Q) ≥ 1. The function f defined by f(xi) = 1 for 1 ≤ i ≤ t, f(y) = f(w) = 2,
f(z) = 3 is a (1, t)-labeling for Q, thus dt(Q) ≤ 1. Together these imply that
dt(Q) = 1.

Next we show dt(P ) > 1. Suppose, for a contradiction, that dt(P ) ≤ 1
and let f be a (1, t)-labeling for P . Without loss of generality, we may assume
f(y) = 0, and since w ‖ y we have f(w) ≤ 1 by (ii) of Definition 1.

If there exist 1 ≤ i, j ≤ t with f(xi) < f(xj) then since y ≺ xi and xj ≺ z,
using Definition 1 we have f(xi) ≥ 1, f(xj) ≥ 2 and f(z) ≥ 3. However, w ‖ z
and |f(z)−f(w)| ≥ f(z)−f(w) ≥ 3−1 = 2 which contradicts (ii) of Definition 1.
Otherwise, f(xi) = c for all 1 ≤ i ≤ t, where c ≥ 1 because y ≺ xi. Since
y ≺ xi ≺ z and f(y) = 0, we know f(z) ≥ 2 by (i) of Definition 1. If f(w) ≤ 0
then |f(z) − f(w)| ≥ f(z) − f(w) ≥ 2 − 0 = 2 violating (ii) of Definition 1. If
f(w) = 1 then c ≥ 2 and f(z) ≥ 3, so |f(z)− f(w)| ≥ f(z)− f(w) ≥ 3− 1 = 2
again violating (ii) of Definition 1. Thus dt(P ) > 1. Indeed, the function f
defined by f(y) = 0, f(xi) = 1 for 1 ≤ i ≤ t, f(w) = 2, and f(z) = 3 is a
(2, t)-labeling function, thus dt(P ) = 2. �

As a consequence of Theorem 10, we know there is no result analogous to
equation (1) that relates the t-discrepancy of a poset to a parameter of its
incomparability graph.
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Figure 2: The posets S3 and S4 together with 2-optimal labelings of them.

4 Special Classes of Posets

In this section we find dt(P ) for special classes of posets, in particular the
standard example of a poset of dimension n and the disjoint sum of chains.

Let n ≥ 3 be an integer. The poset Sn = (X,≺) is called the standard
example of a poset of dimension n. It has as its ground setX = {a1, a2, . . . , an}∪
{b1, b2, . . . , bn}, and the only comparabilities are ai ≺ bj for i 6= j. Figure 2
shows the posets S3 and S4 together with 2-optimal labelings of them. According
to Theorem 11, we have d2(S3) = 2 and d2(S4) = 2.

Theorem 11 Let Sn be the standard example of a poset of dimension n and let
t be an integer t ≥ 2, then dt(Sn) = dn/te.

Proof. Let Sn have ground set {a1, a2, . . . an, b1, b2, . . . bn} where the ai are
minimal, the bi are maximal, ai ‖ bi for each i and ai ≺ bj for each i 6= j.
Write n = qt + a where q is an integer and 0 < a ≤ t. Thus we seek to show
dt(Sn) = q + 1.

First we construct a (q + 1, t)-labeling f of Sn, showing dt(Sn) ≤ q + 1.
Label the minimal elements using the labels 1, 2, 3, . . . , q + 1. There will be
sufficient labels since n ≤ (q + 1)t. Let f(bi) = f(ai) + q + 1. This function f
is a (q + 1, t)-labeling of Sn, thus dt(Sn) ≤ q + 1 = dn/te.

For the reverse inequality, let f be a t-optimal labeling of Sn. By Lemma 9.
the antichain A of minimal elements has dt(A) = dn/te−1 = q. If dt(Af ) ≥ q+1
then dt(Sn) ≥ q + 1 and we are done. So instead we may assume dt(Af ) = q.
The antichain A of minimal elements requires at least q + 1 labels and they
must be consecutive to achieve dt(Af ) = q, so without loss of generality we may
assume f(a1) = 1 and f(an) = q+ 1. Since an ≺ b1 we must have f(b1) ≥ q+ 2
and then |f(b1)−f(a1)| ≥ q+1. Since f was assumed to be t-optimal, we know
dt(Sn) ≥ q + 1. �

Next we consider the t-discrepancy of the disjoint sum of chains. Figure 3
illustrates three examples. In each, we think of the points as fitting on a rect-
angular grid where the height (i.e., y-coordinate) of a point is the value of the
label assigned to it. The width of the grid is t since each label can occur at
most t times. The grid must be tall enough to accommodate both the biggest
chain in the poset and also the total number of points in the poset. Whichever
of these factors is more limiting determines the part of the formula for dt(P ) in
Theorem 12 that applies.
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Theorem 12 Let P = r1 + r2 + · · · + rp where r1 ≥ r2 ≥ · · · ≥ rp, let P ′ =
r2+r3+· · ·+rp and let t ≥ 2 be an integer. Furthermore, let s = r1+r2+· · ·+rp,

let s′ = r2 + · · ·+rp, let q = d s
t e, let q′ =

⌈
s′

t−1

⌉
and let M = max{r2, q′}. Then

dt(P ) =

 q − 1, if q > r1

d(r1 +M)/2e − 1, if q ≤ r1.

Before presenting the proof of Theorem 12, we illustrate the upper bound
by giving a (k, t)-labeling for three examples.

Example 13 For all three posets in this example, we use t = 3, and thus the
grids of points each have three columns.

For poset P1 = 4 + 4 + 3 + 3 + 3 we have s = 17, s′ = 13, q = 6, q′ = 7,
and M = 7, which falls in case 1 in the proof of Theorem 12. Here the height
of the grid is determined by q = 6 > 4 = r1. The labels assigned to r1 are
1, 2, 3, 4; to r2 are 5, 6, 1, 2; to r3 are 3, 4, 5; to r4 are 6, 1, 2; and to r5 are 3, 4, 5
as illustrated in Figure 3. Thus dt(P1) ≤ 5.

For poset P2 = 5 + 4 + 2 + 2 we have s = 13, s′ = 8, q = 5, q′ = 4, and
M = 4, which falls in case 2a in the proof of Theorem 12. The height of the
grid is determined by r1 = 5 ≥ 5 = q. The labels assigned to r1 are 1, 2, 3, 4, 5;
to r2 are 1, 2, 3, 4; to r3 are 5, 1; to r4 are 2, 3 as illustrated in Figure 3. Thus
dt(P2) ≤ 4.

For poset P3 = 5 + 2 + 2 + 2 we have s = 11, s′ = 6, q = 4, q′ = 3, and
M = 3, which falls in case 2b in the proof of Theorem 12. The height of the grid
is determined by r1 = 5 ≥ 4 = q. The labels assigned to r1 are 1, 2, 3, 4, 5; to r2

are 2, 3; to r3 are 4, 2; to r4 are 3, 4 as illustrated in Figure 3. Thus dt(P3) ≤ 3.

Proof of Theorem 12. We consider two cases depending on whether the
range of labels needed for P will be determined by the size of the largest chain
or by the total number of points in P .
Case 1: q > r1.

First we show the upper bound dt(P ) ≤ q − 1. Form a sequence of qt labels
consisting of the sequence 1, 2, 3, . . . , q repeated t times. Assign the first r1
numbers in the sequence to be labels for the points in r1, the next r2 numbers
in the sequence to be labels for the points in r2, etc. In assigning labels to the
points in ri follow rule (i) of Definition 1. This is illustrated in the labeling of
poset P1 in Figure 3 as detailed in Example 13. By the definition of q = ds/te,
there are sufficient labels. In this case, ri ≤ r1 < q for each i, so each chain
ri is assigned ri distinct labels, so the labeling is valid. The largest possible
difference in label is q − 1, so dt(P ) ≤ q − 1.

Next we show the lower bound dt(P ) ≥ q − 1. For a contradiction, assume
dt(P ) ≤ q − 2 and using Lemma 6, let f be a gap-free, t-optimal labeling of P
with minimum value m = 1. If f(x) ≤ q − 1 for all points x in P , then there
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Figure 3: Optimal labeling functions for posets P1, P2, P3 when t = 3. In each,
the height of a point is the value of its label.

are at most q − 1 labels, each appearing at most t times, for a total of at most
(q− 1)t < s labels available. Thus there are not enough labels for all the points
in P . Hence there must be a point of P with label at least q. For each label
` ≥ q that appears, we can only have one point labeled `− (q− 1), because two
such points would be incomparable to each other and hence one of them would
be incomparable to the point labeled `, contradicting dt(P ) ≤ q−2. So for each
point with label q or bigger we lose t− 1 ≥ 1 potential labels for points. Thus
there will not be sufficient labels to label the s points of P , a contradiction.
Case 2: q ≤ r1.

We begin by showing that
M ≤ r1. (2)

Since M = max{r2, q′} and we already know r2 ≤ r1, it suffices to show
q′ ≤ r1. We know r1 ≥ q = ds/te ≥ s/t and thus r1t ≥ s = s′ + r1. Subtracting
r1 from both sides yields r1(t− 1) ≥ s′ or equivalently r1 ≥ s′/(t− 1). Since r1
is an integer we have, r1 ≥ ds′/(t− 1)e = q′ as desired.

Next we establish the upper bound dt(P ) ≤ d(r1 + M)/2e − 1. We give a
labeling of P as follows. Label the chain r1 using labels 1, 2, 3, . . . , r1. For the
s′ elements in the other chains, make t− 1 copies of the sequence

d(r1 +M)/2e −M + 1, d(r1 +M)/2e −M + 2, . . . , d(r1 +M)/2e

for a total of M(t− 1) labels. Since s′ ≤ q′(t− 1) ≤M(t− 1) we have sufficient
labels. As before, assign the first r2 elements of this sequence to the chain
r2, the next r3 elements to be the labels for r3, etc. This is illustrated in the
labeling of posets P2 and P3 of Figure 3 as detailed in Example 13. For P2 we
have M = r2 = 4 and for P3 we have M = q′ = 3. Since ri ≤ r2 for each i ≥ 2,
each sequence ri is assigned ri distinct labels, so the labeling is valid. Any two
elements of r2 + r3 + · · · + rp have labels that differ by at most M − 1, and
using equation (2) we have M − 1 ≤ d(r1 + M)/2e − 1. The largest difference
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in label between a point in r1 and a point in r2 + r3 + · · · + rp will occur
between the highest label in one and the lowest in the other, thus will be either
d(r1 +M)/2e− 1 or r1− (d(r1 +M)/2e −M + 1) ≤ r1− (r1 +M)/2 +M − 1 ≤
d(r1 +M)/2e − 1. Hence dt(P ) ≤ d(r1 +M)/2e − 1 as desired.

For the lower bound dt(P ) ≥ d(r1 + M)/2e − 1, we consider two subcases
depending on whether M = r2 or M = q′.
Subcase 2a: q′ ≤ r2 = M .

In this instance we use Remark 3 and Theorem 5 to conclude

dt(P ) ≥ wd(P ) = d(r1 + r2)/2e − 1 = d(r1 +M)/2e − 1.

Subcase 2b: r2 < q′ = M .

We have already shown the upper bound dt(P ) ≤ d(r1 + M)/2e − 1. Com-
bining this with equation (2) yields

dt(P ) ≤ r1 − 1. (3)

Let the points of the chain r1 be b1 ≺ b2 ≺ · · · ≺ br1 . Let f be an t-optimal
labeling of P with f(b1) = 1 and h = f(br1) as small as possible.
Claim: h = r1.

We know h ≥ r1 to accomodate the r1 points of the chain, so for a contra-
diction, assume h ≥ r1 + 1. Since every point in P ′ is incomparable to both b1
and br1 , by equation (3), the labels 1 and h can not appear on points in P ′. We
will apply the following algorithm to point x with label f(x) = c. Initially, let
x = br1 , thus f(x) = c = h. Lower x’s label by 1, that is, set f(x) := c − 1.
Since we wish the resulting labeling to be t-optimal, three potential problems
could arise, (i) a comparability problem – there is a point w with w ≺ x and
f(w) = c − 1, (ii) an overcrowding problem – there are already t points with
label c− 1, and (iii) an incomparability problem – there is a point z with x ‖ z
and f(z) − c = dt(P ). We will show below that (iii) never occurs. In case (i),
there can only be one such w since P is the sum of chains, and we then apply
the algorithm to w. Since w’s label will be lowered by 1, this also resolves any
overcrowding problem at label c − 1 which may arise simultaneously. If there
is no comparability problem, but there is an overcrowding problem, we find
another point y in P ′ with f(y) = c − 1 and apply the algorithm to y. Note
that such a y will exist since t ≥ 2. When no problems occur, the algorithm
terminates.

Next we describe how the algorithm progresses and show it will terminate
with all labels between 1 and h−1. The algorithm will stop at or before reaching
a point with label 1, since we’ve already shown that there is exactly one point
(b1) with label 1 in P . By our assumption that f(b1) = 1 and f(br1) = h ≥ r1+1,
we know the labels of points in r1 are not consecutive and hence there are one or
more gaps. The algorithm starts at br1 and continues considering points down
r1 resolving comparability problems (i) until the first gap in labels is reached.
If there is no overcrowding problem, the algorithm terminates. If there is an
overcrowding problem, then from this point on, the algorithm is only applied
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to points in P ′, each of which has label at least 2. Either the algorithm stops
before reaching a point in P ′ with label 2 or if one is reached, its label can be
lowered to 1 without causing any problems since b1 is the only point with label
1 and no points have label 0.

Finally, we show that an incomparability problem never occurs. It can not
occur when considering x in r1 since such an x has f(x) ≥ 2 and has the
same incomparabilities as b1 with f(b1) = 1. Likewise, it will not occur when
considering x in P ′. Any x ∈ P ′ is incomparable to br1 , and so f(br1)− f(x) =
h − f(x) ≤ dt(P ). Initially, br1 is the only point in P with label h, and after
the first pass of the algorithm, all points in P have labels at most h− 1. Thus
for any point z with x ‖ z we have f(z)− f(x) ≤ h− 1− f(x) ≤ dt(P )− 1 and
so an incomparability problem never occurs for x ∈ P ′.

When the algorithm terminates, none of the potential problems (i), (ii),
(iii) occur and thus the resulting labeling is still t-optimal. However, we have
contradicted the minimality of h. This justifies our claim that h = r1.

Now we know there exists a t-optimal labeling of P in which the points in
the chain r1 are labeled 1, 2, 3, . . . , r1. Let m2 be the largest label that appears
in P ′ and m1 be the minimum such label. We know 1 ≤ m1 and m2 ≤ r1 by
equation (3). We also know q′− 1 ≤ m2−m1 in order to have enough labels to
accommodate the points in P ′. Thus dt(P ) = max{r1 −m1,m2 − 1}. If these
two quantities differ by 2 or more, we could add one to each label in P ′ (if the
first is larger) or subtract one from each label in P ′ (if the second is larger) to
get a smaller value of dt(P ). Thus |(r1 −m1)− (m2 − 1)| ≤ 1 and

dt(P ) = max{r1 −m1,m2 − 1} =
⌈

(r1 −m1) + (m2 − 1)
2

⌉
≥
⌈
r1 + q′ − 2

2

⌉
and so dt(P ) ≥

⌈
r1+q′

2

⌉
− 1 as desired. �

5 Computing dt(P ) is NP-Complete

In this section we show that the problem of deciding whether a poset P = (V,≺)
has a (k, t)-labeling is NP-complete. We accomplish this by constructing its t-
duplicated poset P ′ = (V ′,≺′) as follows. Let V ′ consist of t points v1, v2, . . . , vt

for each v ∈ V . For each x, y ∈ V and each i, j ∈ {1, 2, . . . , t} we have xi ≺′ yj

if and only if x ≺ y in P . Thus each point of P is replaced by an antichain
of t points in P ′. We call this antichain the cluster corresponding to the point
v ∈ V . Figure 4 shows a poset P and its 3-duplicated poset P ′.

Suppose g is a (k, t)-labeling function for the t-duplicated poset poset P ′. If
Cv is the cluster of points in P ′ corresponding to v ∈ V we define min(Cv) =
min{g(vi) : vi ∈ Cv} and max(Cv) = max{g(vi) : vi ∈ Cv}. A cluster Cv is
uniform if max(Cv) = min(Cv).

The next remark follows because two points in a cluster together have the
same comparabilities and incomparabilities.
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Figure 4: A poset P and its 3-duplicated poset P ′.

Remark 14 Let g be a (k, t)-labeling of the t-duplicated poset P ′ in which
points vi and vj are in the same cluster. If there are fewer than t points with
label g(vj) then setting the value of g(vi) to equal that of g(vj) also results in a
(k, t)-labeling of P ′.

Theorem 15 Let P = (V,≺) be a poset and t, k be positive integers. The
decision problem dt(P ) ≤ k is NP-complete.

Proof. Construct the t-duplicated poset P ′ from P . We will show that
dt(P ′) = ld(P ). The result in Theorem 15 then follows since the decision prob-
lem ld(P ) ≤ k is NP-complete [3] and constructing P ′ from P can be accom-
plished in polynomial time.

Recall from Definition 4 that dt(Pf ) measures the maximum difference in
function values between pairs of incomparable points for the (k, t)-labeling f .
In the case t = 1, t-discrepancy is linear discrepancy and we denote d1(Pf ) by
ld(Pf ).

First we show dt(P ′) ≤ ld(P ). Let k = ld(P ) and take an optimal 1-labeling
of P . We obtain a (k, t)-labeling g of P ′ by setting g(xi) = f(x) for each x ∈ V
and i = 1, 2, . . . , t.

Next we show the reverse inequality ld(P ) ≤ dt(P ′). If there exists a (k, t)-
labeling g of P ′ in which all clusters are uniform, we immediately obtain a 1-
labeling f of P , namely f(v) = g(v1) for each v ∈ V , with dt(P ′g) = ld(Pf ).
When g is t-optimal, we have ld(P ) ≤ ld(Pf ) = dt(P ′g) = dt(P ′) as desired.

Otherwise, let j be the maximum so that P ′ has an t-optimal labeling g in
which the points labeled i are in a cluster together for i = 1, 2, 3, . . . , j − 1. By
our assumption, j ≤ |V |. We will show that we can swap some labels to arrive
at a (k, t)-labeling g′ of P ′ so that points labeled i are in a cluster together for
i = 1, 2, 3, . . . , j, contradicting the maximality of j.

By Remark 14, we can make the clusters containing the points with labels
less than j into uniform clusters and still have a t-optimal labeling. Since all
points with labels less than j are in uniform clusters, these clusters include all
such points. Thus any point with label j is in a cluster with other points whose
labels are at least j. If, in fact, the points labeled j are now all in a cluster
together, we violate the maximality of j. Thus we may assume there are at least
two clusters containing points with label j. Among all such clusters choose one
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Cv for which max(Cv) is largest and another, Cw for which max(Cw) is smallest.
If there are r points in Cv with label j then at most t − r points in Cw have
label j, and thus at least r points in Cw have a label greater than j. For each
point in Cv with label j, switch its label with that of a point in Cw whose label
is greater than j. Note that this new labeling of P ′ is still t-optimal since all
points in a cluster have the same set of incomparabilities. Yet the new labeling
has one fewer cluster containing a point with label j. Continue this process until
all the points labeled j are in the same cluster. The resulting labeling function
is t-optimal, contradicting the maximality of j. �

6 Semiorders

There are several equivalent definitions of a semiorder. One involves forbidden
posets: P is a semiorder if and only if it does not contain a 2 + 2 or a 3 + 1
as a subposet. Alternatively, semiorders are also known as unit interval orders:
P = (V,≺) is a semiorder if we can assign a unit interval I(v) in the real line to
each v ∈ V so that x ≺ y in P precisely when I(x) is completely to the left of
I(y). Such unit interval representations can always be found so that the interval
endpoints are distinct (see, for example, [6]). In what follows, we will always
choose interval representations with distinct endpoints.

Since Theorem 15 shows that computing dt(P ) is NP-complete in general,
we seek special classes of posets for which dt(P ) can be computed in polynomial
time. A natural class to consider are the semiorders since both the linear dis-
crepancy and the weak discrepancy can be computed efficiently for semiorders
(see Tanenbaum, Trenk and Fishburn [10]).

Theorem 16 ([10]) Let P be a semiorder, Then
(a) ld(P ) = width(P )− 1 and
(b) wd(P ) ≤ 1.

In particular, wd(P ) = 1 if P contains a 2 + 1 and wd(P ) = 0 otherwise.

The following result gives bounds on the t-discrepancy of a semiorder P =
(V,≺). The upper and lower bounds differ by less than two, so Theorem 17
restricts the value of dt(P ) to at most two integers. Note that if t = 1, then
dt(P ) = ld(P ) and indeed Theorem 17 reduces to Theorem 16(a). Similarly,
if t ≥ |V |, then dt(P ) = wd(P ) and in this case Theorem 17 reduces to Theo-
rem 16(b).

Theorem 17 If P = (V,≺) is a semiorder and t is a positive integer, then⌈
width(P )

t
− 1
⌉
≤ dt(P ) ≤

⌊
width(P )

t
+ 1− 2

t

⌋
.

Proof. First we establish the lower bound. Let A be an antichain in P of
size width(P ), thus |A| = width(P ). Using Remark 8 and Lemma 9 we have
dt(P ) ≥ dt(A) =

⌈
|A|
t

⌉
− 1 =

⌈
|width(P )|

t

⌉
− 1 =

⌈
|width(P )|

t − 1
⌉
.
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Next we establish the upper bound. If P is a chain then width(P ) = 1
and dt(P ) = 0 so the result holds. Otherwise, P has at least one pair of
incomparable elements. We label the elements of V according to the following
greedy algorithm.
Greedy Algorithm for labeling semiorders:

Fix a unit interval representation of P in which endpoints are distinct. Con-
sider the elements of V = {x1, x2, . . . , xn} indexed by their left endpoint (and
therefore also by their right endpoint) in this representation. Initialize: Let
f(x1) = 0.
Iterate for i = 1, 2, . . . , n − 1: Assume that x1, x2, . . . , xi have been labeled
and let j = f(xi). If there are fewer than t elements labeled j and xi+1 is
incomparable to all of them, then let f(xi+1) = j. Otherwise, let f(xi+1) = j+1.

Example 18 shows the greedy algorithm applied to the representation of the
semiorder given in Figure 5.

Note that by construction, the function f satisfies (i) and (iii) of Definition 1.
Let k be the largest value for which there exists x, y ∈ V with x ‖ y and
|f(x)− f(y)| = k. Then by construction, the function f is a (k, t)-labeling of P
and hence dt(P ) ≤ k. Choose integers r, s with 1 ≤ r < s ≤ n so that xr ‖ xs

and f(xs)− f(xr) = k. Thus the intervals assigned to xr and xs intersect in an
interval we call I. Since our representation of P is a unit interval representation
with points indexed by left endpoints, the intervals assigned to xr, xr+1, . . . , xs

all intersect the interval I and thus the points xr, xr+1, . . . xs form an antichain
A.

By the definition of f , we know there are t points in A that received the
label f(xr) + i for i = 1, 2, . . . , k− 1 and two additional points, xr and xs in A.
Thus width(P ) ≥ |A| ≥ t(k−1)+2 ≥ t(dt(P )−1)+2. Isolating the term dt(P )
yields the inequality dt(P ) ≤ width(P )

t + 1− 2
t , and because dt(P ) is an integer,

we may take the floor of the right hand side to achieve the desired inequality.�

Example 18 Let t = 2 and consider the semiorder P and its representation
from Figure 5. The semiorder P has width(P ) = 6 and Theorem 17 gives the
inequalities 2 ≤ d2(P ) ≤ 3. The greedy algorithm assigns the labeling f(x1) = 0,
f(x2) = 0, f(x3) = 1, f(x4) = 1, f(x5) = 2, f(x6) = 2, f(x7) = 3. This is
a (3, 2)-labeling of P , so d2(P ) ≤ 3. The value k = 3 is attained uniquely at
x = xr = x2, y = xs = x7 and the antichain formed is A = {x2, x3, x4, x5, x6, x7}
with |A| = 6. We will see in Section 6.1 that d2(P ) = 2.

We next develop a polynomial-time algorithm for finding the t-discrepancy
of a semiorder. Given any poset P = (V,≺), a linear extension L = (x1 ≺
x2 ≺ · · · ≺ xn) of P and an integer-valued function f defined on V , we get a
sequence of integers s(L, f) : f(x1), f(x2), · · · , f(xn). If the sequence s(L, f) is
non-decreasing, we say f is nondecreasing on L. If not, we say s(L, f) first fails
at position r if there exists s > r so that f(xr) > f(xs) but whenever i < r, we
have i < j implies f(xi) ≤ f(xj). For example, the sequence 1, 1, 2, 3, 3, 4, 5, 2
first fails at position 4 with f(x4) = 3 > 2 = f(x8).
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Figure 5: A semiorder P and a representation of it as a unit interval order.

In Example 18 with L = (x1 ≺ x2 ≺ · · · ≺ x7), the sequence s(L, f) is
0, 0, 1, 1, 2, 2, 3 which is non-decreasing. More generally, any sequence s(L, f)
arising from the greedy algorithm for labeling semiorders will be non-decreasing
by construction. However, as we saw in Example 18, a labeling arising from the
greedy algorithm is not always optimal. The next lemma shows that for any
semiorder P and the linear extension L given by the left endpoint ordering of
any unit interval representation of P , there exists an optimal labeling function
f for which s(L, f) is non-decreasing. This lemma is crucial in proving the
correctness of our algorithm for computing the t-discrepancy of a semiorder.

Lemma 19 Let P = (V,≺) be a semiorder and fix a unit interval representation
of P with distinct endpoints. Let L be the linear extension of P given by the
left endpoint ordering of this representation. Then there exists a labeling f of
P that is t-optimal and is non-decreasing on L.

Proof. Let n = |V | and I(v) be the unit interval assigned to v in the
representation. Let L be the linear extension x1 ≺L x2 ≺L · · · ≺L xn of P given
by the left endpoint ordering in this representation. We wish to show a t-optimal
labeling function f of P exists that is non-decreasing on L. For a contradiction,
assume no such t-optimal labeling exists and let f be a t-optimal labeling that
first fails at position r where r is maximum. By assumption, r ≤ n−1. To reach
a contradiction, we will construct a labeling function g of P that is t-optimal
and first fails at position ` > r.

Let f(xr) = b, let a = min{f(xi) : i ≥ r + 1}, and let xs be any point
with f(xs) = a and s ≥ r + 1. Since s(L, f) first fails at position r, we know
f(xs) = a < b = f(xr). Create a new labeling function g by swapping the labels
of xr and xs, that is, g(xi) = f(xi) for i 6∈ {r, s} and g(xr) = a and g(xs) = b.
We next show that g is a t-optimal labeling function of P .

First note that g satisfies condition (iii) of Definition 1 because f is a (k, t)-
labeling for P and g simply swaps two of these labels. Similarly, for any points
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xi, xj 6∈ {xr, xs}, we know that (i) and (ii) are satisfied for g because they are
satisfied for f . Thus we need only show that conditions (i) and (ii) are satisfied
when one or both of xi, xj are in the set {xr, xs}.

Since f(xr) > f(xs), by condition (i) of Definition 1 we know that xr 6≺ xs.
In addition, xs 6≺ xr because xr ≺L xs and L is a linear extension of P . Thus

xr ‖ xs and |g(xr)− g(xs)| = |f(xs)− f(xr)| ≤ k. (4)

It remains to consider a point xi ∈ V − {xr, xs} and to check that the pairs
xi, xr and xi, xs satisfy (i) and (ii) of Definition 1 for the function g.

First consider xi with xi ≺ xr. By the definition of L, the left endpoint
of I(xr) comes before the left endpoint of I(xs), so xi ≺ xr implies xi ≺ xs.
Since f is a (k, t)-labeling for P , we know g(xi) = f(xi) < f(xs) = g(xr) and
g(xi) = f(xi) < f(xr) = g(xs) as desired.

Next consider xi with xr ≺ xi. In this case, b = f(xr) < f(xi) = g(xi)
and thus g(xr) = a < b < g(xi) so the pair xi, xr satisfies condition (i) of
Definition 1 for g. We next consider the pair xs, xi. If xs ≺ xi then g(xs) =
b < g(xi) as desired. If xi ≺ xs then transitivity yields xr ≺ xs, contradicting
xr ‖ xs from (4). Otherwise, xs ‖ xi and since f satisfies (ii) of Definition 1 we
have |f(xi)− a| ≤ k. Now |g(xi)− g(xs)| = |f(xi)− b| ≤ |f(xi)− a| ≤ k where
the inequality follows because a < b < f(xi).

Finally, consider xi with xr ‖ xi. If xs ≺ xi we show a contradiction
arises. Given that r < s and our representation is unit, we know the right
endpoint of I(xr) is smaller than the right endpoint of I(xs). Then xs ≺ xi

would imply xr ≺ xi, a contradiction. If xs ‖ xi then |g(xr)− g(xi)| = |f(xs)−
f(xi)| ≤ k and |g(xs) − g(xi)| = |f(xr) − f(xi)| ≤ k because f is a (k, t)-
labeling of P . Lastly consider xi ≺ xs. In this instance, f(xi) < f(xs) = a < b
so g(xi) = f(xi) < b = g(xs) and g satisfies (i) for the pair xi, xs. For the
pair xi, xr we show |g(xi)− g(xr)| ≤ k. Since this is a unit representation and
xi ≺ xs, xi ‖ xr and xr ‖ xs, we know the left endpoint of I(xi) comes before
the left endpoint of I(xr), thus i < r. By our assumption that f first fails at
position r, f(xi) ≤ f(xs) = a. Now |g(xi)− g(xr)| = |f(xi)− a| < |f(xi)− b| =
|f(xi)− f(xr)| ≤ k with the inequality following from f(xi) ≤ a < b. �

We next present an algorithm that determines whether a semiorder has a
(k, t)-labeling and in the affirmative case, constructs such a labeling. This al-
gorithm is a modification of the algorithm for determining whether a poset has
weak discrepancy at most k in [11]. As we will see in Corollary 24, this can be
used to calculate dt(P ). We discuss correctness and complexity afterwards.

Algorithm (k, t)-Labeling for Semiorders

Input: An ordered set P = (V,≺), integers k ≥ 0 and t ≥ 1.

Output: A (k, t)-labeling function f : V → Z of P , or the statement that no
such labeling exists.

The algorithm:
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Step 1: Construct a unit interval representation of P with distinct endpoints
in which xi ∈ V is assigned the unit interval I(xi). This can be accomplished
in linear time (see [4]).

Consider the elements of V = {x1, x2, . . . , xn} indexed by their left endpoint
in the representation.

Step 2: [Initialization Step] Let f(x1) = 0 and let U = {2, 3, . . . , n}.
Form a {0, 1}-matrix M whose rows and columns are indexed by U . Initial-

ize:

Mij =
{

1 if i = j,
0 otherwise.

Step 3: [Assign Initial Ranges] Assign the range for x1 asR(x1) = [`(x1), u(x1)] =
[0, 0] and the range R(xi) = [`(xi), u(xi)] for each i ∈ U as follows:

• If x1 ≺ xi set R(xi) = [1, n− 1].

• If x1 ‖ xi set R(xi) = [0, k].

Since we indexed the elements of V by left endpoints in the unit interval
representation of P , we can not have xi ≺ x1.

Step 4: [Narrowing the Ranges]
Narrowing Steps (NS): Pick two distinct indices 2 ≤ i < j ≤ n with Mij = 0.
Thus either xi ≺ xj or xi ‖ xj .

(a) If xi ≺ xj and `(xj) ≤ `(xi), increase `(xj) to `(xi) + 1.

(b) If xi ≺ xj and u(xi) ≥ u(xj), decrease u(xi) to u(xj)− 1.

(c) If xi ‖ xj and u(xj) ≥ u(xi) + k + 1, decrease u(xj) to u(xi) + k.

(d) If xi ‖ xj and u(xi) ≥ u(xj) + k + 1, decrease u(xi) to u(xj) + k.

(e) If xi ‖ xj and `(xj) ≤ `(xi)− k − 1, increase `(xj) to `(xi)− k.

(f) If xi ‖ xj and `(xi) ≤ `(xj)− k − 1, increase `(xi) to `(xj)− k.

If `(xi) > u(xi) or `(xj) > u(xj), STOP. There is no (k, t)-labeling of P .
If R(xi) was narrowed in this pass of the narrowing steps, set Mir = Mri = 0

for all r other than i and j. Likewise, if R(xj) was narrowed in this pass of the
narrowing steps, set Mjr = Mrj = 0 for all r other than i and j.

In any event, set Mij = Mji = 1.
If all entries of M are 1’s, continue to Step 5. Otherwise, begin Step 4 again.

Step 5: [Sweeping steps]
(a) Left to right sweep: For i = 1 to n− t,

• if `(xi+t) ≤ `(xi), increase `(xi+t) to `(xi) + 1.

• If `(xi+t) > u(xi+t), STOP. There is no (k, t)-labeling of P .
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i 1 2 3 4 5 6 7
Step 3 [0,0] [0,2] [0,2] [0,2] [0,2] [1,6] [1,6]
Step 4(c) x2 ‖ x6 [0,0] [0,2] [0,2] [0,2] [0,2] [1,4] [1,6]
Step 4(c) x2 ‖ x7 [0,0] [0,2] [0,2] [0,2] [0,2] [1,4] [1,4]
Step 5a [0,0] [0,2] [1,2] [1,2] [2,2] [2,4] [3,4]
Step 5b [0,0] [0,1] [1,1] [1,2] [2,2] [2,4] [3,4]
Step 4(c) x2 ‖ x6 [0,0] [0,1] [1,1] [1,2] [2,2] [2,3] [3,4]
Step 4(c) x2 ‖ x7 [0,0] [0,1] [1,1] [1,2] [2,2] [2,3] [3,3]
Step 4(f) x2 ‖ x7 [0,0] [1,1] [1,1] [1,2] [2,2] [2,3] [3,3]
Step 5(a) [0,0] [1,1] [1,1] [2,2] [2,2] [3,3] [3,3]

Table 1: The ranges R(xi) when k = 2, t = 2, n = 7, and the algorithm is
applied to the semiorder P with representation shown in Figure 5.

(b) Right to left sweep: For i = n down to t+ 1,

• if u(xi−t) ≥ u(xi), decrease u(xi−t) to u(xi)− 1.

• If u(xi−t) < `(xi−t), STOP. There is no (k, t)-labeling of P .

If no values were changed in Step 5, then continue to Step 6. Otherwise,
begin Step 4 again.

Step 6: Set f(xi) = `(x) for i = 2, 3, 4, . . . , n− 1.
(End of Algorithm (k, t)-Labeling for Semiorders)

6.1 Illustration of Algorithm (k, t)-Labeling for Semiorders

In Table 1 we illustrate how the ranges change when Algorithm (k, t)-Labeling
for Semiorders is applied to the semiorder P shown in Figure 5 in the instance
of t = 2 and k = 2. In this example, at the end, each range set consists of a
single integer, and we obtain the (2, 2)-labeling function f(x1) = 0, f(x2) = 1,
f(x3) = 1, f(x4) = 2, f(x5) = 2, f(x6) = 3, f(x7) = 3. Thus dt(P ) ≤ 2. We
observe that this function is an improvement over the one constructed using the
greedy algorithm in Example 18.

Next we consider this same semiorder P , the same unit interval representa-
tion, and continue to consider t = 2 but change the value of k.

When k = 1 the initial range values assigned in Step 3 are [0, 0] for x1, [0, 1]
for x2, x3, x4, x5 and [1, 6] for x6, x7. In Step 4, comparing x2 with x6 and x7

results in narrowing R(x6) and R(x7) to [1, 2] and these are the only changes
that occur. In the left to right sweep of Step 5, we get `(x5) = 2 and u(x5) = 1,
and the algorithm stops with the conclusion that d2(P ) > 1. Combining this
with dt(P ) ≤ 2 from above, we conclude dt(P ) = 2.

When k = 3 the initial range values assigned in Step 3 are [0, 0] for x1,
[0, 3] for x2, x3, x4, x5 and [1, 6] for x6, x7. No changes occur as a result of
applying Step 4. After both sweeping passes are made in Step 5, the ranges
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are R(x1) = [0, 0], R(x2) = [0, 2], R(x3) = [1, 2], R(x4) = [1, 3], R(x5) = [2, 3],
R(x6) = [2, 6], R(x7) = [3, 6]. No further modifications occur in the range
sets, and thus the resulting labeling is indeed a (3, 2)-labeling of P , but is not
2-optimal. Indeed, it is the same labeling found by the greedy algorithm in
Example 18.

6.2 Correctness and Complexity of Algorithm (k, t)-Labeling
for Semiorders

We establish the correctness of Algorithm (k, t)-labeling for Semiorders using
Lemma 19 and two propositions. After this we consider the complexity of the
algorithm.

Proposition 20 If Algorithm (k, t)-labeling for Semiorders terminates with all
ranges non-empty, then dt(P ) ≤ k and picking the smallest element in each
range set is a valid (k, t)-labeling.

Proof. Suppose that R(v) = [`(v), u(v)] is the range assigned to point v
when the algorithm terminates. Let f(v) = `(v) for each v ∈ V . It suffices to
show that f is a valid (k, t)-labeling for P . We consider any pair of distinct
points xi, xj in P and show that conditions (i), (ii) and (iii) of Definition 1
are satisfied. Without loss of generality, we may assume i < j and thus either
xi ≺ xj or xi ‖ xj . If xi ≺ xj then by Step 4(a) of the algorithm, `(xj) ≥ `(xi)+1
thus f(xi) < f(xj) as required by (i). If xi ‖ xj then by Steps 4(e) and 4(f)
of the algorithm, `(xi) − k ≤ `(xj) ≤ `(xi) + k thus |f(xi) − f(xj)| ≤ k as
required by (ii). As a result of the left to right sweep in Step 5, if `(xi) = r then
`(xi+t) ≥ r + 1, thus at most t points can receive the label f(x) = `(x) = r for
each r, establishing (iii). �

Proposition 21 If P is a semiorder with dt(P ) ≤ k then Algorithm (k, t)-
labeling for Semiorders terminates with each range set non-empty.

Proof. In Step 1 of the algorithm, a unit interval representation of P is
constructed in which all endpoints of intervals are distinct. As in the algorithm,
we consider the points of V = {x1, x2, . . . , xn} indexed by their left endpoint in
this representation. Let L be the linear extension x1 ≺L x2 ≺L · · · ≺L xn of
P . By Lemma 19, there exists a labeling function f that is t-optimal and non-
decreasing on L. Thus f is a (k, t)-labeling of P and f(xi) ≤ f(xj) whenever
i < j.

As in the proof of Lemma 6(a), we may add a constant to each function
value so that f(x1) = 0 and the resulting function is still non-decreasing on L.
Similarly, following the proof of Lemma 6, we may assume that f(xi) ≤ n−1 for
each i. Therefore, the initial ranges assigned in Step 3 of the algorithm satisfy
f(xi) ∈ R(xi) for i = 2, 3, 4, . . . , n.

Indeed, we will see that as we continue through the algorithm, we maintain
the invariant:

(∗) f(xi) ∈ R(xi), or equivalently, `(xi) ≤ f(xi) ≤ u(xi) for i = 2, 3, . . . , n.
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In Step 4 of the algorithm, we apply (i) of Definition 1 (in Steps 4(a) and
4(b)) or (ii) of Definition 1 (in Steps 4(c) – 4(f)) to the pair (xi, xj). For example,
if (∗) holds true at the start of Step 4(a), and if xi ≺ xj then f(xi) < f(xj)
hence `(xi) ≤ f(xi) < f(xj). Since f is an integer-valued function we know
f(xj) ≥ `(xi) + 1 and we can narrow the range of possible values for f(xj) to
[`(xi) + 1, u(xj)]. Thus (∗) holds true at the end of Step 4(a). Similarly, we
maintain the invariant (∗) when the other parts of Step 4 are applied.

The sweeping steps (step 5) of the algorithm proceed by applying Lemma 19
and (iii) of Definition 1. Since f is non-decreasing on L and there are at most t
occurrences of the function value f(xi), we know f(xi+t) > f(xi) ≥ `(xi) so we
can increase `(xi+t) to `(xi) + 1.

Thus the algorithm maintains the invariant (∗). Since the function f exists,
each range R(xi) must contain the value f(xi) and thus be non-empty when the
algorithm terminates. �

Theorem 22 Algorithm (k, t)-labeling for Semiorders correctly determines whether
a semiorder P has dt(P ) ≤ k and in the affirmative case, it produces a (k, t)-
labeling for P .

Proof. There are two ways in which the algorithm can terminate: either in
Step 4 when a range is narrowed to the empty set, or in Step 6 when all ranges
stabilize, are non-empty and can not be narrowed further. In the former case,
we conclude dt(P ) > k by the contrapositive of Proposition 21. In the latter
case, Proposition 20 implies that dt(P ) ≤ k and picking the smallest element in
each range set is a valid (k, t)-labeling for P . �

Theorem 23 With input P = (V,≺), and n = |V |, Algorithm (k, t)-labeling
for Semiorders runs in time O(n4).

Proof. Step 1 can be accomplished in time O(n) as shown by Gardi in [4].
Clearly Step 2 runs in time O(n2) and Steps 5 and 6 in time O(n), so we focus
on Step 4.

The initial ranges have length at most n−2, where the length of range R(xi)
is defined as u(xi) − `(xi). When a range is narrowed, its length decreases by
at least 1, hence each range is narrowed at most n− 1 times. Thus at most n2

narrowings occur during Step 4 over the course of the whole algorithm.
Furthermore, after all

(
n−1

2

)
< n2 pairs of points are considered, either a

narrowing occurs or the matrix M fills with 1’s and the algorithm proceeds to
Step 5. Thus the total amount of time spent in Step 4 is O(n4). �

Finally, Algorithm (k, t)-labeling for Semiorders can be applied repeatedly
with different values of k to determine dt(P ).

Corollary 24 Given P = (V,≺) with n = |V |, we can determine dt(P ) in time
O(n4 log n).

Proof. Use Algorithm (k, t)-labeling for Semiorders to determine if dt(P ) ≤
k for k = 0, 1, 2, . . . and stop as soon as a value of k is found for which an
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affirmative answer is reached. That value of k is dt(P ). By Remark 7 we know
dt(P ) ≤ n−1, so we would need to run the algorithm a maximum of n−1 times
giving a total running time of O(n5). The running time can be shortened to
O(n4 log n) if we instead use a binary search to choose the appropriate values
of k.

7 Conclusion

We conclude with an open question and acknowledgements. We show in Theo-
rems 15 that the decision problem dt(P ) ≤ k is NP-complete for general posets
P . However, the problem is polynomial for semiorders P as shown in Theo-
rems 22 and 23. A natural class to consider next is interval orders.

Question: Is there a polynomial-time algorithm for determining if dt(P ) ≤ k
when P is an interval order? Is the decision problem dt(P ) ≤ k NP-complete
when P is an interval order?

We are grateful to colleagues Alan Shuchat and Randy Shull at Wellesley
College and Mitch Keller, Noah Streib, Tom Trotter, and Stephen Young at
Georgia Institute of Technology for helpful discussions on this subject. We
acknowledge Randy Shull and Noah Streib, each of whom proved Theorem 15
independently.
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