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ABSTRACT

In this paper we introduce the notion of the total linear dis-
crepancy of a poset as a way of measuring the fairness of linear
extensions. If L is a linear extension of a poset P , and x, y is an
incomparable pair in P , the height difference between x and y in
L is |L(x) − L(y)|. The total linear discrepancy of P in L is the
sum over all incomparable pairs of these height differences. The to-
tal linear discrepancy of P is the minimum of this sum taken over
all linear extensions L of P . While the problem of computing the
(ordinary) linear discrepancy of a poset is NP-complete, the total
linear discrepancy can be computed in polynomial time. Indeed, in
this paper, we characterize those linear extensions that are optimal
for total linear discrepancy. The characterization provides an easy
way to count the number of optimal linear extensions.

1 Introduction

In this paper we consider only finite posets. We begin with some definitions and
notation. We denote the cardinality of set S by |S|. A poset P = (X,≺) consists
of a ground set X together with an order relation ≺. If there are several posets
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under consideration, we write ≺P . When points x, y ∈ X are incomparable we
write x ‖P y or just x ‖ y. If there are no incomparabilities then P is a linear
order or chain. A linear extension L of a poset P is a linear order that respects
the relation of P , that is, x ≺L y whenever x ≺P y. The height of a point x in
a linear order L, denoted by L(x), is the greatest cardinality of a chain whose
maximum point is x. The downset of x ∈ X, denoted D(x), is {v ∈ X : v ≺ x}.
Similarly, the upset of x ∈ X, denoted U(x), is {w ∈ X : x ≺ w}.

The linear discrepancy of a poset, written ld(P ), was introduced by Tanen-
baum, Trenk and Fishburn [?] as a measure of how far a poset is from being a
linear order. It was studied further in [?], [?], [?], [?] and [?]. Formally,

ld(P ) = min
L

max
x‖y

|L(x)− L(y)|

where the minimum is taken over all linear extensions L of P .
The concept of linear discrepancy arises in many real world problems where

a linear extension of a poset is required and in the interest of fairness it is
desirable to choose one that minimizes the difference in height of incomparable
points. Examples appear in [?].

In this paper we consider a different measure of fairness. Rather than seeking
to minimize the maximum difference in height between incomparable elements,
we now seek to minimize the average such difference. Equivalently, we seek to
minimize the sum of such differences.

2 Total Linear Discrepancy

Definition 1 The total linear discrepancy of a poset P , written tl(P ), is

min
L

∑
x‖y

|L(x)− L(y)|

where the minimum is taken over all linear extensions L of P . A linear extension
for which this minimum value is achieved is called optimal.

It will sometimes be useful to refer to the sum in Definition ?? for a particular
linear extension.

Definition 2 Let P be a poset and L be a linear extension of P . The total
discrepancy of P in L, written tL(P ), is∑

x‖y

|L(x)− L(y)|.

For example, the linear extension L : a ≺ b ≺ c ≺ d ≺ f ≺ e of the fish
poset F from Figure ?? has tL(F ) = 6. This linear extension is optimal since
F contains five incomparable pairs, and point c participates in three of them.
The linear extension L′ : a ≺ c ≺ b ≺ d ≺ f ≺ e has tL′(F ) = 9 and thus is not
optimal.
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Figure 1: Poset F labeled with net heights.

There are no known efficient algorithms for computing the linear discrepancy
of a poset. Indeed, the decision problem of determining whether ld(P ) ≤ k is
NP-complete [?]. Surprisingly, the situation is quite different for total linear
discrepancy. Not only can the total linear discrepancy of a poset be computed
in polynomial time, but Theorem ?? characterizes those linear extensions that
are optimal.

Intuitively, a point with large downset should appear higher in an optimal
linear extension and one with large upset should appear lower. This motivates
the following definitions which play a key role in characterizing optimal linear
extensions.

Definition 3 Let P = (X,≺) be a poset. The net height of x ∈ X, written
ĥ(x), is |D(x)| − |U(x)|.

Definition 4 A linear extension L of poset P is height ordered if L(x) < L(y)
whenever ĥ(x) < ĥ(y).

Figure ?? shows the net height ĥ(x) listed next to each point x of the poset
F . Observe that two points with equal net heights are incomparable and that
comparable pairs of points have net heights that differ by at least two. We
record this in the following remark.

Remark 5 If x ≺ y in P then ĥ(x) + 2 ≤ ĥ(y).

Proof. Given that x ≺ y, transitivity implies that D(x) ⊂ D(y) and
U(y) ⊂ U(x). Indeed, |D(x)| + 1 ≤ |D(y)| and |U(y)| + 1 ≤ |U(x)| because
x ∈ D(x)\D(y) and y ∈ U(x)\U(y). The result follows from the definition of
net height. �

The next lemma calculates the effect on total discrepancy of swapping two
consecutive points in a linear extension. We have seen an example of this lemma
in the linear extensions L and L′ of the fish poset F . In that instance (with
x = b and y = c) we have tL′(F ) = 9 = 6 + 0− (−3) = tL(F ) + ĥ(c)− ĥ(b).

Lemma 6 Let L be a linear extension of poset P and let x, y be incomparable
elements in P with L(y) = L(x) + 1. If L′ is the linear extension of P formed
by swapping x and y, then

tL′(P ) = tL(P ) + ĥ(y)− ĥ(x).
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Proof. Define ∆ to be tL′(P ) − tL(P ). For incomparable pairs u, v with
u, v 6∈ {x, y}, the terms |L(u)−L(v)| and |L′(u)−L′(v)| are identical. Similarly,
they are identical for the incomparable pair x, y. Thus in computing ∆ we need
only consider the contribution arising from incomparable pairs in which one
point is in the set {x, y} and the other point t is not. Furthermore, if t is
incomparable to both x and y then the sum |L(t)−L(x)|+ |L(t)−L(y)| is equal
to the sum |L′(t)−L′(y)|+ |L′(t)−L′(x)|. Thus we need only consider the pairs
in which t is incomparable to one of x, y and comparable to the other. There
are four such cases to consider in computing ∆.

(i) w : L(w) < L(x), w ‖ x, and w ≺ y.

(ii) z : L(z) > L(y), x ≺ z, and z ‖ y.

(iii) w′ : L(w′) < L(x), w′ ≺ x, and w′ ‖ y.

(iv) z′ : L(z′) > L(y), z′ ‖ x, and y ≺ z′

Each point w in (i) and z in (ii) contributes +1 to ∆, and each point w′

in (ii) and z′ in (iv) contributes −1 to ∆. The number of points w in (i) is
|D(y)| − |D(x) ∩ D(y)| since each w with L(w) < L(x) will have either w ≺ x
or w ‖ x. Similarly, the number of points z in (ii) is |U(x)| − |U(x)∩U(y)|, the
number of points w′ in (iii) is |D(x)| − |D(x)∩D(y)| and the number of points
z′ in (iv) is |U(y)|−|U(x)∩U(y)|. Thus ∆ = |D(y)|+ |U(x)|−|D(x)|−|U(y)| =
ĥ(y)− ĥ(x) as desired. �

We are now ready to characterize the linear extensions of P that are optimal
with respect to total linear discrepancy.

Theorem 7 A linear extension L is optimal with respect to total linear discrep-
ancy if and only if L is height ordered.

Proof. First we prove the forward direction. Assume, for a contradiction, that
L is an optimal linear extension of P but that it is not height ordered. Let x, y be
a pair of points so that L(x) < L(y) and ĥ(x) > ĥ(y) and for which L(y)−L(x)
is as small as possible. Suppose there exists a point z with L(x) < L(z) <

L(y). If ĥ(x) > ĥ(z), then the pair x, z violates the minimality of L(y)− L(x),
and otherwise, ĥ(z) ≥ ĥ(x) > ĥ(y), in which case the pair z, y violates this
minimality condition. Thus no such z exists and in fact L(y)− L(x) = 1.

Because ĥ(x) > ĥ(y), Remark ?? implies that x 6≺ y. Furthermore, since L
is a linear extension of P and L(x) < L(y), we know y 6≺ x. Thus x ‖ y. Swap
x and y to obtain another linear extension L′ of P . By Lemma ?? we have,
tP (L′) = tP (L) + ĥ(y)− ĥ(x) < tP (L). This contradicts the optimality of L.

Next we prove the converse. Let L̂ be a linear extension of P that is height
ordered and let L be a linear extension of P that is optimal with respect to
total linear discrepancy. By the first half of this proof, L is also height ordered.
Therefore, L̂ and L differ only in the order of points with the same net height
and we can transform L̂ to L by a sequence of swaps of consecutive points with
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equal net height. By the contrapositive of Remark ??, each such swap involves
an incomparable pair x, y with ĥ(x) = ĥ(y). By Lemma ??, each swap leaves
the total discrepancy unchanged thus tL̂(P ) = tL(P ) and L̂ is also an optimal
linear extension. �

Example 8 It follows from Theorem ?? that the poset F in Figure ?? has
exactly two optimal linear extensions, where points c and d may appear in
either order: a ≺ b ≺ {c, d} ≺ f ≺ e.

In general, Theorem ?? allows us to find an optimal linear extension effi-
ciently and from there to calculate the total linear discrepancy. It also allows
us to calculate the number of optimal linear extensions. We record these as
corollaries.

Corollary 9 Let P be a poset and a1, a2, . . . , ar be the set of distinct net heights
that occur among points of P . If bi is the number of points of P that have net
height equal to ai, then the number of linear extensions of P that are optimal is
b1! b2! · · · br!.

Corollary 10 A linear extension of a poset P that is optimal with respect to
total linear discrepancy can be constructed in polynomial time.

3 Special Classes of Posets

In this section, we consider applying our results to several special classes of
posets – antichains, the standard examples Sn of posets of dimension n, and the
sum of chains.

While Theorem ?? allows us to determine precisely which linear extensions
of a poset are optimal, it does not provide a closed form expression for the
value of the total linear discrepancy. We do have formulas for the total linear
discrepancy in two special cases.

Lemma 11 If An is an antichain on n points then tl(An) =
(
n+1

3

)
.

Proof. We proceed by induction. For A2 the result is clearly true. We
assume tl(Ak−1) =

(
k
3

)
and show tl(Ak) =

(
k+1
3

)
. Any linear extension L :

x1 ≺ x2 ≺ · · · ≺ xk of Ak will be optimal, so we need only calculate tL(Ak) =∑
1≤i<j≤k |L(xi)− L(xj)|. Separating out the terms involving xk yields

tL(Ak) = (1 + 2 + 3 + · · ·+ k − 1) + tl(Ak−1) =
(

k

2

)
+

(
k

3

)
=

(
k + 1

3

)
. �

The poset Sn = (X,≺) is called the standard example of a poset of dimension
n. It has as its ground set X = {x1, x2, . . . , xn} ∪ {y1, y2, . . . , yn}, and the only
comparabilities are xi ≺ yj for i 6= j.
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Proposition 12 If Sn is the standard example poset on n points then
tl(Sn) = 2

(
n+1

3

)
+ n2.

Proof. Each minimal element xi has net height ĥ(xi) = −(n − 1) and each
maximal element yi has net height ĥ(yi) = (n− 1). By Theorem ??, any linear
extension in which all the x’s appear below all of the y’s is optimal, so we will
use the linear extension L : x1 ≺ x2 · · · ≺ xn ≺ y1 ≺ y2 · · · ≺ yn. The minimal
points form an antichain as do the maximal points. For each incomparable pair
of the form xi ‖ yi, we have |L(xi) − L(yi)| = n. Thus, using Lemma ??, we
have

tl(Sn) = tL(Sn) = 2 tl(An) + n2 = 2
(

n + 1
3

)
+ n2. �

Theorem ?? was obtained almost simultaneously in [?] where the authors
use the term average relational distance.
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