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Define the following parabolic operator in divergence form

Lu ≡
∂u

∂t
−

∂

∂xj

(
aij(x, t)

∂u

∂xi

)

for (x, t) ∈ ΩT = Ω× (0, T ], where Ω is a bounded simply connected subset of Rm for m ≥ 2 and T > 0 is
a fixed but arbitrary positive number. We also assume that the aij are bounded and measurable in Ω̄T and
satisfy the uniform parabolicity condition:

1/ν |z|2 ≤
m∑

i,j=1

aij(x, t)zizj ≤ ν |z|2 (1)

for some ν > 0, almost everywhere in ΩT and all z ∈ R
m. Let Γ = (∂Ω× [0, T ])∩(Ω× {t = 0}). We consider

the following problem

Lu = ∇ · F − f, (x, t) ∈ ΩT

u = φ(x, t), onΓ

}
(2)

Our goal here is to furnish a proof of the following maximum principle whose statement can be found in [1]

Theorem 1 (Maximum Principle). Let u be a smooth solution of (2) in Ω̄T where f ∈ Ls([0, T ];Lr(Ω))
for m/2r + 1/s < 1 and F = (f1, . . . , fm) with fi ∈ Lq([0, T ];Lp(Ω)) for m/2p+ 1/q < 1/2. There exists a

constant K > 0 which depends only on m, p, q, r, s, ν and |Ω| such that

|u| ≤ sup
Γ

φ+KM (3)

in Ω̄T , where M =

[
‖f‖2r,s +

m∑

i=1

‖fi‖
2
p,q

]1/2

The idea for the proof is old and I think was first used by S.N. Bernstein at least in the elliptic case. The
proof idea was outlined in the quoted article by Aronson and we fill in the details here:

Proof. Let k ≥ k0 := max
Γ

φ and define the sets Ak(t) = {x ∈ Ω|(u(x, t)−k) > 0}. Let v(x, t) = max(u(x, t)−

k, 0). That is

v(x, t) =

{
0, u ≤ k

u− k, otherwise,

and

Dv(x, t) =

{
0, u ≤ k

Du, otherwise

1



2

It follows that support of v≡ Ak(t). We will use v as a test function in the weak formulation of the PDE.
We multiply (2) by v and integrating over the domain Ω to obtain:

∫

Ω

v
∂u

∂t
dx−

∫

Ω

v
∂

∂xj

(
aij

∂u

∂xi

)
dx =

∫

Ω

v∇ · F dx−

∫

Ω

fv dx. (4)

We handle each term separately and for convenience we drop the differential dx from the integrand. For the
first term we note that

d

dt

∫

Ω

v2 =
d

dt

∫

Ω

(u− k)
2
+ = 2

∫

Ω

(u− k)+
∂u

∂t
,

which then implies that for the first term we have
∫

Ω

v
∂u

∂t
=

1

2

d

dt

∫

Ω

v2 ≡
1

2

d

dt

∫

Ak(t)

v2.

For the second term we integrate by parts

−

∫

Ω

v
∂

∂xj

(
aij

∂u

∂xi

)
= −



∫

∂Ω

v (aijDju · n̂) dσ −

∫

Ω

aijDjvDiu


 =

∫

Ω

aijDjvDiu.

Here we have uses the fact that k ≥ max
Γ

φ so that v vanishes on Γ and note that Dj ≡
∂

∂xj
. By the uniform

parabolicity (1) and the fact that Div = Diu on the set Ak(t), we can write

1

2

d

dt

∫

Ak(t)

v2 +
1

ν

∫

Ak(t)

|Dv|
2
≤

∫

Ω

v∇ · F −

∫

Ω

fv. (5)

We now estimate the RHS term by tern from above. Using Cauchy’s inequality with ǫ and Hölder’s inequality
we have

−

∫

Ω

fv ≤
1

2ǫ

∫

Ak(t)

f2 +
ǫ

2

∫

Ak(t)

v2

≤
ǫ

2

∫

Ak

v2 +
1

2ǫ






∫

Ak

(f2)r/2




2/r

∫

Ak

1




1−2/r



≤
1

2ǫ
|Ak|

1−
2
r ‖f‖2r +

ǫ

2

∫

Ak(t)

v2,

which holds for arbitrary ǫ > 0. We use the notation |Ak| to denote the Lebesgue measure of the set
Ak. Similarly for the other term we have, using the divergence theorem, Cauchy’s inequality and Hölder’s
inequality: ∫

Ω

v∇ · F ≤
1

2θ
|Ak|

1−
2
p
∑

i

‖fi‖
2
p +

θ

2

∫

Ak(t)

|Dv|
2
.

Combining the computations we have

1

2

d

dt

∫

Ak(t)

v2 +
1

ν

∫

Ak(t)

|Dv|
2
≤

1

2θ
|Ak|

1−
2
p
∑

i

‖fi‖
2
p +

θ

2

∫

Ak(t)

|Dv|
2
+

1

2ǫ
|Ak|

1−
2
r ‖f‖2r +

ǫ

2

∫

Ak(t)

v2. (6)
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We can simplify the inequality (6) by combining terms. Since we haveDv on both sides we begin by choosing

θ =
1

ν
to obtain

1

2

d

dt

∫

Ak(t)

v2 +
1

2ν

∫

Ak(t)

|Dv|
2
≤

ν

2
|Ak|

1−
2
p
∑

i

‖fi‖
2
p +

1

2ǫ
|Ak|

1−
2
r ‖f‖2r +

ǫ

2

∫

Ak(t)

v2. (7)

Now we try to get rid of the Dv integral. To do this we write, assuming m ≥ 3, and using Hölder’s inequality
(again)

∫

Ak(t)

v2 ≤



∫

Ak(t)

(v2)
m

m−2




m−2
m


∫

Ak(t)

1




2
m

= |Ak(t)|
2
m ‖v‖22m

m−2

.

But v vanishes on the boundary so that by the Gagliardo-Sobolev-Nirenberg inequality we have

‖v‖22m
m−2

≤ C‖Dv‖22,

for which the two preceding inequalities then imply

|Ak|
−

2
m

C
‖v‖22 ≤ ‖Dv‖22,

where C is the optimal Sobolev constant. Thus by choosing ǫ =
|Ak|

2νC

−
2
m
, (7) becomes

1

2

d

dt

∫

Ak(t)

v2 +
|Ak|

4νC

−
2
m
∫

Ak(t)

v2 ≤
ν

2
|Ak|

1−
2
p
∑

i

‖fi‖
2
p + Cν |Ak|

2
m |Ak|

1−
2
r ‖f‖2r.

We now let
1

r∗
=

1

r
−

1

m
and define Ik(t) =

∫

Ak(t)

v2 so that the above equation becomes the differential

inequality

I ′k(t) + C1 |Ak|
−

2
m Ik(t) ≤ C2

[
|Ak|

1−
2
p
∑

i

‖fi‖
2
p + |Ak|

1−
2
r∗ ‖f‖2r

]
(8)

The differential inequality holds for t which Ak(t) 6= 0. By Gronwall’s Lemma we have

Ik(t) ≤ C2

t∫

0

exp


−C1

t∫

η

|Ak(τ)|
−

2
m dτ



[
|Ak(η)|

1−
2
p
∑

i

‖fi‖
2
p(η) + |Ak(η)|

1−
2
r∗ ‖f‖2r(η)

]
dη

≤ C2[I
a
k (t) + Ibk(t)] (9)



Let L := sup
t∈[0,T ]

|Ak(t)| and note that 0 ≤ L ≤ |Ω|. Using Hölder’s inequality (again?) we get

Iak (t) ≤




t∫

0

(
∑

i

‖fi‖
2
p(η)

) q
2

dη




2
q



t∫

0


exp


−C1

t∫

η

|Ak(τ)|
−

2
m dτ


 |Ak(η)|

1−
2
p




q
q−2

dη




q−2
q

≤ m
q−2
q L

1−
2
p

(
∑

i

‖fi‖
q
p,q

)2
q



t∫

0

exp

[
− q

q−2C1L
−

2
m (t− η)

]
dη




q−2
q

≤ m
q−2
q

(
∑

i

‖fi‖
2
p,q

)
L
1−

2
p+

2
m

(

1−
2
q

) (
q−2
C1q

) q−2
q

.

Similarly we obtain that

Ibk(t) ≤ ‖f‖2r,sL
1−

2
r∗ +

2
m

(

1−
2
s

) (
s−2
C1s

) s−2
s

,

which in turn implies that
Ik(t) ≤ K̃M̃Lα, (10)

where K̃ = K̃(ν, |Ω| ,m, p, q, r, s) and

α = min

(
1−

2

p
+

2

m

(
1−

2

q

)
, 1−

2

r∗
+

2

m

(
1−

2

s

))
> 1. (11)

To finish up the proof, we use an idea (probably not originally) from [2]. Define g(k) :=

∫

Ak(t)

(u− k) dx and

note that by Hölder’s inequality and (10) we have

g(k) ≤



∫

Ak(t)

(u − k)2 dx




1/2

∫

Ak(t)

dx




1/2

≤
√
K̃M̃ |Ak(t)|

α+1

2 .

It’s not hard to see that g′(k) = − |Ak(t)|. It now follows that:

(
K̃M̃

)− 1
α+1

≤ −(g(k))
−

2
α+1 g′(k).

Now we integrate with respect to k from k0 to h > k0 to obtain:

(
K̃M̃

)− 1
α+1

(h− k0) ≤ (g(k0))
α−1
α+1 − (g(h))

α−1
α+1 . (12)

We are almost done. We only need to let h = max
ΩT

|u| and we can then simplify the above estimate to get:

max
ΩT

|u| −max
Γ

|u| ≤
√
K̃M̃ |Ω|

α−1
2 := KM,

which proves the theorem.
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