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Abstract
It is shown that statistics on the wreath product groups, Ck �Sn, can be interpreted
in terms of natural statistics on lecture hall partitions. Lecture hall theory is applied
to prove distribution results for statistics on Ck � Sn. Finally, some new statistics
on Ck � Sn are introduced, inspired by lecture hall theory, and their distributions
are derived.

1. Introduction

The purpose of this note is to show that statistics on the wreath product Ck �Sn of
a cyclic group Ck, of order k, and the symmetric group Sn, can be interpreted in
terms of natural statistics on lecture hall partitions. We demonstrate that lecture
hall theory can be used to prove results about the distribution of statistics on Ck �Sn.
We introduce some new statistics on Ck � Sn, inspired by lecture hall partitions,
including a quadratic version of “flag-major index”, and prove distribution results
for these statistics.

The paper is organized as follows. In Section 2, we define the s-lecture hall
partitions and state a few useful results. Section 3 is devoted to statistics of interest
on the wreath product groups and a very brief discussion of what is known. Section
4 introduces s-inversion sequences, which will be used to relate statistics on Ck �Sn

to statistics on lecture hall partitions.
Section 5 describes a bijection between (k, 2k, . . . , nk)-inversion sequences and
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Ck � Sn that allows statistics to be translated from one domain to another.
Section 6 reviews recent work of Savage-Schuster [13] relating inversion sequences

to lecture hall partitions. This work was developed with the intention of extending
work on permutation statistics to a more general setting.

Section 7 is the heart of the paper. We prove there a theorem which allows us
to apply the tools of Section 6 to Ck � Sn. This contains our main results relating
statistics such as descent, flag-major index and flag-inversion number to statistics
on lecture hall partitions, also proving an Euler-Mahonian distribution result.

In Section 8 we define a new statistic “lhall ” on Ck �Sn and derive its surprisingly
nice distribution.

In Section 9, we are led to define a distorted version of the descent statistic on
Ck � Sn, that reveals an even closer connection to lecture hall partitions.

A few words about notation: Z is the set of integers, R the set of real numbers,
Sn the set of permutations of n elements; [ j ] = {1, 2, . . . , j}, where [ 0 ] = ∅; [n ]q =
(1− q

n)/(1− q); and for x = (x1, x2, . . . , xn), |x| = x1 + x2 + · · · + xn.

2. Lecture Hall Partitions

For a sequence s = {si}i≥1 of positive integers, the s-lecture hall partitions are the
elements of the set

L(s)
n =

�
λ ∈ Zn

��� 0 ≤ λ1

s1
≤ λ2

s2
≤ · · · ≤ λn

sn

�
.

For example, (0, 1, 3, 4) ∈ L(1,2,3,4)
n , but (0, 1, 3, 4) �∈ L(1,3,5,7)

n , since 3/5 > 4/7.
The original lecture hall partitions Ln = L(1,2,...,n)

n were introduced by Bousquet-
Mélou and Eriksson in [3], where they showed that

�

λ∈Ln

y
|λ| =

n�

i=1

1
1− y2i−1

. (1)

In [4] they proved the following refinement, which will be useful in the present work.

Theorem 1. The Refined Lecture Hall Theorem [4]: For any nonnegative integer
n,

�

λ∈Ln

q
|�λ�|

y
|λ| =

n�

i=1

1 + qy
i

1− q2yn+i
, (2)

where �λ� = (�λ1/1� , �λ2/2� , . . . , �λn/n�).

If the largest part in a lecture hall partition in Ln is constrained, we have the
following.
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Theorem 2. [8, 13] For integers n ≥ 1 and t ≥ 0,
�

λ∈Ln; λn≤tn

q
|�λ�| = [ t + 1 ]nq . (3)

For example, when n = 3 and t = 1, the set {λ ∈ L3 | λ3 ≤ 3} has the eight
elements:

{(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)}

and �

λ∈L3; λ3≤3

q
�λ1/1�+�λ2/2�+�λ3/3� = 1 + 3q + 3q2 + q

3 = [2 ]3q .

3. Statistics on Ck � Sn

An element π ∈ Sn is a bijection π : [n ] → [n ] and we write π = (π1, . . . ,πn),
to mean that π(i) = πi. A descent in π ∈ Sn is a position i ∈ [n− 1 ] such that
πi > πi+1. The set of all descents of π is Desπ and desπ = |Desπ|. The inversion
number of π is

inv π = |{(i, j) | 1 ≤ i < j ≤ n and πi > πj}|.

For example, if π = (5, 4, 1, 3, 2), then Desπ = {1, 2, 4}, desπ = 3 and inv π = 8.
For positive integers k and n, we view Ck � Sn combinatorially as a set of pairs

(π,σ):
Ck � Sn = {(π,σ) | π ∈ Sn, σ ∈ {0, 1, . . . , k − 1}n}.

We use the notation π
σ to denote (π,σ) and write

π
σ = (πσ1

1 ,π
σ2
2 , . . . ,π

σn
n ) = ((π1, . . . ,πn), (σ1, . . . ,σn)) = (π,σ).

Statistics on Ck �Sn (or k-colored permutations or k-indexed permutations) have
been studied by many, starting with Reiner’s work on signed permutations [12],
followed by independent work of Brenti [5] and Steingŕımsson [14] on the more
general wreath products. Pairs of “(descent, major index)” statistics have been
found, satisfying relations like Carlitz’s q-Eulerian polynomials, starting with work
of Adin, Brenti, and Roichman [1]. There have very recently been many new and
exciting discoveries, including [7, 10, 9, 2]. It is remarkable the many variations in
the definitions of the statistics, even when they give the same distribution.

We start with a fairly standard definition of descent. The descent set of π
σ ∈

Ck � Sn is

Desπ
σ = {i ∈ {0, 1, . . . , n− 1} | σi < σi+1, or σi = σi+1 and πi > πi+1}, (4)
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with the convention that π0 = σ0 = 0.
We will consider the following statistics defined on Ck � Sn.

desπ
σ = |Desπ

σ|

comajπσ =
�

i∈Des πσ

(n− i)

fmajπσ = k comajπσ −
n�

i=1

σi

finv π
σ = inv π +

n�

i=1

iσi.

As an example, for π
σ = (51

, 41
, 10

, 30
, 22) ∈ C3 � S5, we have Desπ

σ = {0, 1, 4};
desπ

σ = 3; comajπσ = 10; fmajπσ = 26; and finv π
σ = 21. Note that this

definition of fmaj differs a bit from those appearing elsewhere, even among those
who define the descent set as in (4) ([1, 7]).

Using lecture hall theory, we will show, among other things:
�

πσ∈Ck�Sn

q
fmaj πσ

=
�

πσ∈Ck�Sn

q
finv πσ

, (5)

�

t≥0

[kt + 1 ]nq x
t =

�
πσ∈Ck�Sn

q
fmaj πσ

x
des πσ

�n
i=0(1− xqki)

, (6)

�

λ∈Ln

q
|�λ�|

x
�λn/(kn)� =

�
πσ∈Ck�Sn

q
fmaj πσ

x
des πσ

�n
i=1(1− xqki)

. (7)

Relations of the form (6), for general k, have been found only recently, starting with
Chow and Mansour [7] and Hyatt [10], sometimes with slightly different definitions
of Des or fmaj . Our intention here is to highlight our methods, which are quite
novel, and which allow us to prove new results like (7).

4. Statistics on s-Inversion Sequences

The connection between statistics on Ck �Sn and statistics on lecture hall partitions
will be made via statistics on inversion sequences.

Given a sequence s = {si}i≥1 of positive integers, and positive integer n, the set
I(s)
n of s-inversion sequences is defined by

I(s)
n = {(e1, . . . , en) ∈ Zn | 0 ≤ ei < si for 1 ≤ i ≤ n} .

The familiar “inversion sequences” associated with permutations are the elements
of I(s)

n for s = (1, 2, . . . , n).
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The ascent set of an inversion sequence e ∈ I(s)
n is the set

Asc e =
�

i ∈ {0, 1, . . . , n− 1}
���

ei

si
<

ei+1

si+1

�
,

with the convention that e0 = 0. For example, as an element of I(3,6,9,12,15)
5 , the

inversion sequence e = (1, 3, 2, 2, 13) has the ascent set Asc e = {0, 1, 4}.
The following statistics on I(s)

n were defined in [13]:

asc e =
��Asc e

��,

amaj e =
�

i∈Asc e

(n− i),

|e| =
n�

i=1

ei,

lhp e = −|e| +
�

i∈Asc e

(si+1 + ... + sn) .

For e = (1, 3, 2, 2, 13) ∈ I(3,6,9,12,15)
5 , we have asc e = 3; amaj e = 10; |e| = 21; and

lhp e = 81.
In this paper, our focus is the sequence s = (k, 2k, . . . , nk), where k is a positive

integer. Let In,k = I(k,2k,...,nk)
n . We will require two new statistics on In,k:

N(e) =
n�

j=1

�
ej

j

�
;

Ifmaj e = k amaj e−N(e).

For e = (1, 3, 2, 2, 13) ∈ I(3,6,9,12,15)
5 , N(e) = 4 and Ifmaj e = 26.

5. From Statistics on Ck � Sn to Statistics on In,k

We will make use of the following bijection between Sn and In,1 which was proved
in [13] to have the required properties.

Lemma 1. For positive integer n, the mapping φ : Sn → In,1 defined by φ(π) =
t = (t1, t2, . . . , tn), where

ti = |{j ∈ [i− 1] | πj > πi}|

is a bijection satisfying both Desπ = Asc t and inv π = |t|.
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For example, if π = (5, 4, 1, 3, 2) then t = φ(π) = (0, 1, 2, 2, 3) ∈ I5,1. Checking
the statistics, Desπ = {1, 2, 4} = Asc t and inv π = 8 = |t|.

Noting that, as sets, In,k and Ck � Sn have the same cardinality, we set up a
bijection which translates statistics from one domain to the other in a useful way.

Theorem 3. For each pair of integers (n, k) with n ≥ 1, k ≥ 1, there is a bijection

Θ : Ck � Sn −→ In,k

with the following properties. If Θ(πσ) = e = (e1, . . . , en) then

Asc e = Desπ
σ (8)

N(e) =
n�

i=1

σi (9)

Ifmaj e = fmajπσ (10)
en = n(σn + 1)− πn (11)

|e| = inv π +
n�

i=1

iσi = finv π
σ
. (12)

Proof. Define Θ by

e = Θ(πσ1
1 ,π

σ2
2 , . . . ,π

σn
n ) = (σ1 + t1, 2σ2 + t2, . . . , nσn + tn),

where (t1, t2, . . . , tn) = φ(π), as in Lemma 1.
For example, for π

σ = (51
, 41

, 10
, 30

, 22) ∈ C3�S5, t = φ(5, 4, 1, 3, 2) = (0, 1, 2, 2, 3),
so we get e = Θ(πσ) = (1, 3, 2, 2, 13). Note that properties (8) through (12) hold
for this example:

Asc e = {0, 1, 4} = Desπ
σ

N(e) = 4 = 1 + 1 + 0 + 0 + 4 = |σ|
Ifmaj e = 26 = fmajπσ

e5 = 13 = 5(σ5 + 1)− π5

|e| = 21 = finv π
σ
.

Clearly, Θ(πσ) ∈ In,k. Since Ck �Sn and In,k have the same cardinality, to show that
Θ is a bijection, it suffices to show that Θ is onto. Let e = (e1, . . . , en) ∈ In,k. Define
σ = (σ1, . . .σn) by σi = �ei/i�. Then σ ∈ {0, 1, . . . , k − 1}n. Define t = (t1, . . . tn)
by ti = ei − iσi. Then t ∈ In,1. Finally, let π = φ

−1(t) ∈ Sn. Then π
σ ∈ Ck � Sn

and Θ−1(e) = π
σ.

To prove properties (8) through (12), observe first that tn = n− πn, so property
(11) holds. It is clear from the definition of Θ that (12) is true. Also, note that
�ei/i� = σi since 0 ≤ ti < i and property (9) holds. So property (10) will follow



INTEGERS: 12B (2012/13) 7

once we prove (8). By Lemma 1, since t = φ(π), we know that Asc t = Desπ, so it
remains to show Asc e = Desπ

σ.
Note first that e1 = σ1 + t1 = σ1, since t1 = 0. So,

0 ∈ Desπ
σ ⇐⇒ σ1 > 0 ⇐⇒ e1 > 0 ⇐⇒ 0 ∈ Asc e.

For 1 ≤ i ≤ n, i ∈ Asc e if and only if

0 <
ei+1

k(i + 1)
− ei

ki
=

(i + 1)σi+1 + ti+1

k(i + 1)
− iσi + ti

ki

=
i(i + 1)(σi+1 − σi) + iti+1 − (i + 1)ti

ki(i + 1)

=
∆i

ki(i + 1)
,

where
∆i = i(i + 1)(σi+1 − σi) + iti+1 − (i + 1)ti.

So, i ∈ Asc e if and only if ∆i > 0.
If σi = σi+1 then

∆i > 0 ⇐⇒ iti+1−(i+1)ti > 0 ⇐⇒ i ∈ Asc t ⇐⇒ i ∈ Desπ ⇐⇒ i ∈ Desπ
σ
.

For the remaining cases, note that since 0 ≤ ti+1 ≤ i and 0 ≤ ti ≤ i− 1,

i(i + 1)(σi+1 − σi)− i
2 + 1 ≤ ∆i ≤ i(i + 1)(σi+1 − σi) + i

2
.

If σi �= σi+1, then i ∈ Desπ
σ if and only if σi < σi+1. But if σi < σi+1, then

∆i ≥ i(i + 1)− i
2 + 1 = i + 1 > 0,

so i ∈ Asc e. And if σi > σi+1 then

∆i ≤ −i(i + 1) + i
2 = −i ≤ 0

and i �∈ Asc e. This completes the proof.

6. Lecture Hall Polytopes and s-Inversion Sequences

The s-lecture hall polytope was introduced in [13], for an arbitrary sequence s =
{si}i≥1 of positive integers, as

P(s)
n =

�
λ ∈ Rn

��� 0 ≤ λ1

s1
≤ λ2

s2
≤ · · · ≤ λn

sn
≤ 1

�
.
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P(s)
n is a convex, simplicial polytope with the n + 1 vertices:

(0, 0, . . . , 0), (s1, s2, . . . , sn), (0, s2, . . . , sn), (0, 0, s3, . . . , sn), . . . , (0, 0, . . . , 0, sn),

all with integer coordinates. The t-th dilation of P(s)
n is the polytope

tP(s)
n =

�
λ ∈ Rn

��� 0 ≤ λ1

s1
≤ λ2

s2
≤ · · · ≤ λn

sn
≤ t

�
.

A multivariate function, f (s)
n (t; q, y, z), was used in [13] to enumerate lattice points

in tP(s)
n according to statistics significant in the theory of lecture hall partitions:

f (s)
n (t; q, y, z) =

�

λ∈tP(s)
n ∩Zn

q
|�λ�s|y|λ|

z
| �+(λ) |

,

where

�λ�s =
��

λ1

s1

�
,

�
λ2

s2

�
, . . . ,

�
λn

sn

��
, (13)

�
+(λ) =

�
s1

�
λ1

s1

�
− λ1, s2

�
λ2

s2

�
− λ2, . . . , sn

�
λn

sn

�
− λn

�
. (14)

The following theorems show the connection between statistics on s-inversion se-
quences and statistics on s-lecture hall partitions.

Theorem 4. ([13]) For any sequence s of positive integers, and any positive integer
n,

�

t≥0

f (s)
n (t; q, y, z)x

t =

�
e∈I(s)n

x
asc e

q
amaj e

y
lhp e

z
| e |

�n
i=0(1− xqn−iysi+1+···+sn)

. (15)

Theorem 5. ([13]) For any sequence s of positive integers, and any positive integer
n,

�

λ∈L(s)
n

q
|�λ�|sy|λ|

z
| �+(λ) |

x
�λn/sn� =

�
e∈I(s)n

x
asc e

q
amaj e

y
lhp e

z
| e |

�n−1
i=0 (1− xqn−iysi+1+···+sn)

. (16)

7. Lecture Hall Partitions and the Inversion Sequences In,k

In order to apply the results of the previous section to the problem of interest, we
need an analog of Ifmaj on In,k for lecture hall partitions.
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First observe that the following sets of lecture hall partitions are all the same:

Ln = L(1,2,...,n)
n = L(2,4,...,2n)

n = L(3,6,...,3n)
n = . . . .

However, the lecture hall polytopes Pn,k defined by

Pn,k =
�

λ ∈ Rn
��� 0 ≤ λ1

k
≤ λ2

2k
≤ · · · ≤ λn

nk
≤ 1

�

are different for different k. On the other hand, the following dilations are the same

tPn,k = ktPn,1, (17)

a fact we will exploit. Furthermore,

ktPn,1 ∩ Zn = {λ ∈ Ln | λn ≤ ktn}.

Since the definitions (13) and (14) depend on the sequence s = (k, 2k, . . . , nk),
we will make the dependence explicit in the notation. For λ ∈ Ln and k ≥ 1, let:

�λ�k =
��

λ1

k

�
,

�
λ2

2k

�
, . . . ,

�
λn

nk

��
; (18)

�
+
k (λ) =

�
k

�
λ1

k

�
− λ1, 2k

�
λ2

2k

�
− λ2, . . . , nk

�
λn

nk

�
− λn

�
; (19)

ηk(λ) = k �λ�k − �λ� . (20)

Note: for λ ∈ Ln,
�λ�1 = �λ� ,

where �λ� was defined in Theorem 1.
We now show that the new statistic ηk on Ln corresponds to the statistic N on

In,k.

Theorem 6. For positive integers n, k, let

fn,k(t; q, y, z, w) =
�

λ∈tPn,k ∩Zn

q
|�λ�k|

y
|λ|

z
| �+k (λ)|

w
| ηk(λ) |

. (21)

Then

�

t≥0

fn,k(t; q, y, z, w)x
t =

�
e∈In,k

x
asc e

q
amaj e

y
lhp e

z
| e |

w
N(e)

�n
i=0(1− xqn−iyk(n(n+1)−i(i+1))/2)

. (22)

Proof. If w = 1, this is just the case s = (k, 2k, . . . , nk) of Theorem 4. To include
w, we appeal to the combinatorial proof of (15) in Theorem 4 that was presented
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in [13]. In that proof, λ ∈ (tPn,k ∩ Zn) is associated with the inversion sequence
�
+
k (λ), which, by definition, is in In,k. It suffices to check that |ηk(λ)| = N(�+k (λ)):

N(�+k (λ)) =
n�

i=1

�
ik �λi/(ik)� − λi

i

�

=
n�

i=1

�k �λi/(ik)� − λi/i�

=
n�

i=1

(k �λi/(ik)� − �λi/i�)

= |k �λ�k − �λ�1 | = |ηk(λ)|.

The Ifmaj statistic is obtained by setting q = q
k and w = q

−1 in Theorem 6.

Corollary 1. For positive integers n, k,

�

t≥0

�

λ∈ktPn,1 ∩Zn

q
|�λ�|

y
|λ|

z
| �+k (λ)|

x
t =

�
e∈In,k

x
asc e

q
Ifmaj e

y
lhp e

z
| e |

�n
i=0(1− xqk(n−i)yk(n(n+1)−i(i+1))/2)

.(23)

Proof. With q = q
k and w = q

−1, the numerator in the right-hand side of (22)
becomes

x
asc e

q
k amaj e−N(e)

y
lhp e

z
| e | = x

asc e
q
Ifmaj e

y
lhp e

z
| e |

.

From (21), the left-hand side summand of (22) becomes

fn,k(t; qk
, y, z, q

−1) =
�

λ∈tPn,k ∩Zn

q
k|�λ�k|−| ηk(λ) |

y
|λ|

z
| �+k (λ)|

=
�

λ∈ktPn,1 ∩Zn

q
|�λ�|

y
|λ|

z
| �+k (λ)|

by (18)-(20) and by (17).

Corollary 2. For positive integers n, k,

�

λ∈Ln

q
|�λ�|

y
|λ|

z
| �+k (λ)|

x
�λn/(nk)� =

�
e∈In,k

x
asc e

q
Ifmaj e

y
lhp e

z
| e |

�n−1
i=0 (1− xqk(n−i)yk(n(n+1)−i(i+1))/2)

. (24)
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Proof. For t > 0, let H(t) =
�

λ∈ktPn,1 ∩Zn q
|�λ�1|

y
|λ|

z
| �+k (λ)| from (23), with

H(0) = 1. Then for t > 0, since
�

λ ∈ Ln;
�

λn

nk

�
= t

�
=

�
λ ∈ Ln;

�
λn

nk

�
≤ t

�
−

�
λ ∈ Ln;

�
λn

nk

�
≤ t− 1

�

= (ktPn,1 ∩ Zn) − (k(t− 1)Pn,1 ∩ Zn) ,

we have
�

λ∈Ln

q
|�λ�|

y
|λ|

z
| �+k (λ)|

x
�λn/(nk)� =

�

t≥0

x
t

�

λ∈Ln;�λn
nk �=t

q
|�λ�|

y
|λ|

z
| �+k (λ)|

= 1 +
�

t≥1

(H(t)−H(t− 1))xt

= 1 +
�

t≥1

H(t)xt −
�

t≥1

H(t− 1)xt

=
�

t≥0

H(t)xt − x

�

t≥0

H(t)xt

= (1− x)
�

t≥0

H(t)xt
.

But
�

t≥0 H(t)xt is the left-hand side of (23), so we simply multiply the right-hand
side of (23) by (1− x) to complete the proof.

We can now apply these results to the wreath product groups. First, we have
the expected result that the pair (des , fmaj ) is Euler-Mahonian.

Theorem 7. For positive integers n, k,

�

t≥0

[kt + 1 ]nq x
t =

�
πσ∈Ck�Sn

q
fmaj πσ

x
des πσ

�n
i=0(1− xqki)

.

Proof. Set y = z = 1 in (23). On the left-hand side, in the summand, we get
�

λ∈ktPn,1 ∩Zn

q
|�λ�|

.

Since ktPn,1 ∩ Zn = {λ ∈ Ln | λn ≤ ktn}, by Theorem 2,
�

λ∈ktPn,1 ∩Zn

q
|�λ�| = [kt + 1 ]nq .

For the right-hand side, we get
�

e∈In,k
x

asc e
q
Ifmaj e

�n
i=0(1− xqk(n−i))

.
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Reindex the product in the denominator and for the numerator, use the fact that by
Theorem 3, the distribution of (des , fmaj ) on Ck �Sn is the same as the distribution
of (asc , Ifmaj ) on In,k.

Now, to interpret the distribution (des , fmaj ,finv ) on Ck �Sn in terms of lecture
hall partitions, set y = 1 in (24) and use Theorem 3.

Theorem 8. For positive integers n, k,

�

λ∈Ln

q
|�λ�|

z
| �+k (λ)|

x
�λn/(nk)� =

�
πσ∈Ck�Sn

q
fmaj πσ

x
des πσ

z
finv πσ

�n
i=1(1− xqki)

.

The implication of Theorem 8 for z = 1 is quite interesting. We have

�

λ∈Ln

q
|�λ�|

x
�λn/(nk)� =

�
πσ∈Ck�Sn

q
fmaj πσ

x
des πσ

�n
i=1(1− xqki)

. (25)

In the left-hand side of (25), the only dependence on k is in the exponent of x, in
a statistic involving only the last part of λ. We take this further in Section 9.

8. A Lecture Hall Statistic on Ck � Sn

From the point of view of partition theory, the most important statistic for a lecture
hall partition λ is the number |λ| = λ1 + · · · + λn being partitioned. So, what does
|λ| correspond to on Ck � Sn?

In [6], a quadratic version of the major index was defined on Sn by binπ =�
i∈Des π

�i+1
2

�
. In that spirit, we define “cobin ” on Ck � Sn by

cobinπ
σ =

�

i∈Des πσ

��
n + 1

2

�
−

�
i + 1

2

��
.

Now define the statistic “lhall ” on Ck � Sn by

lhallπσ = k cobinπ
σ − finv π

σ
.

Observe that under the bijection Θ of Theorem 3, if e = Θ(πσ) then lhallπσ = lhp e.
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This can be seen as follows, since |e| = finv π
σ and Asc e = Des e:

lhp e = −|e| +
�

i∈Asc e

(k(i + 1) + · · · + kn)

= −|e| + k

�

i∈Asc e

��
n + 1

2

�
−

�
i + 1

2

��

= −finv π
σ + k

�

i∈Des e

��
n + 1

2

�
−

�
i + 1

2

��

= −finv π
σ + kcobinπ

σ

= lhallπσ
.

The joint distribution of (lhall , fmaj ) on Ck � Sn has the following form.

Theorem 9. For positive integers n, k,

�

πσ∈Ck�Sn

y
lhall πσ

q
fmaj πσ

=
n�

i=1

(1 + qy
i)(1− q

k(n+1−i)
y

k(i+···+n)

1− q2yn+i

=
�n/2��

i=1

[k(2i− 1) ]qyn+1−i

�n/2��

i=1

([ 2 ]qyi [ki ]q2y2(n−i)+1)

Proof. Under the bijection Θ of Theorem 3, if e = Θ(πσ) then lhallπσ = lhp e and
fmajπσ = Ifmaj e. So,

�

πσ∈Ck�Sn

y
lhall πσ

q
fmaj πσ

=
�

e∈In,k

y
lhp e

q
Ifmaj e

.

So, by Corollary 2 with x = z = 1,
�

πσ∈Ck�Sn
y
lhall πσ

q
fmaj πσ

�n−1
i=0 (1− qk(n−i)yk(n(n+1)−i(i+1))/2)

=

�
e∈In,k

y
lhp e

q
Ifmaj e

�n−1
i=0 (1− qk(n−i)yk(n(n+1)−i(i+1))/2)

=
�

λ∈Ln

y
|λ|

q
|�λ�|

.

Now apply Theorem 1 to get
�

πσ∈Ck�Sn
y
lhall πσ

q
fmaj πσ

�n−1
i=0 (1− qk(n−i)yk(n(n+1)−i(i+1))/2)

=
n�

i=1

1 + qy
i

1− q2yn+i
.

So,

�

πσ∈Ck�Sn

y
lhall πσ

q
fmaj πσ

=
n�

i=1

(1− q
k(n−i+1)

y
k(n(n+1)−i(i+1))/2)

n�

i=1

1 + qy
i

1− q2yn+i
,

which, after simplification, gives the theorem.
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Setting y = 1 in Theorem 9 and simplifying, we get

�

πσ∈Ck�Sn

q
fmaj πσ

=
n�

i=1

[ki ]q ,

the same distribution as finv , Ifmaj , and |e|, as expected. But the statistic lhall
itself also has a surprisingly simple distribution:

Theorem 10. For positive integers n, k,

�

πσ∈Ck�Sn

q
lhall πσ

=
n�

i=1

[ki ]q2(n−i)+1 .

Proof. Set q = 1 and y = q in the proof of the Theorem 9, but apply (1) instead of
(2) to get:

�

e∈I(1,2,...,n)
n

q
lhp e =

n�

i=1

1− q
k(i+···+n)

1− q2i−1

=
�n/2��

i=1

1− q
k(2i−1)(n−i+1)

1− q2i−1

�n/2��

i=1

1− q
ki(2(n−i)+1)

1− q2(n−i)+1

=
n�

i=1

[ki ]q2(n−i)+1 .

9. Inflated Eulerian Polynomials for Ck � Sn

We showed in [11] how to obtain more refined information about the s-lecture hall
partitions by considering the rational lecture hall polytope R(s)

n :

R(s)
n =

�
λ ∈ Rn

��� 0 ≤ λ1

s1
≤ λ2

s2
≤ · · · ≤ λn

sn
and λn ≤ 1

�
.

R(s)
n is a convex simplicial polytope, whose vertices are

(0, 0, . . . , 0) ,

�
s1

sn
,
s2

sn
, . . . ,

sn

sn

�
,

�
0,

s2

sn
, . . . ,

sn

sn

�
,

�
0, 0,

s3

sn
, . . . ,

sn

sn

�
, . . . ,

�
0, 0, . . . , 0,

sn

sn

�
,

with rational (but not necessarily integer) coordinates. Let

g(s)
n (t; q, y, z) =

�

λ∈tR(s)
n ∩Zn

q
|�λ�|ky

|λ|
z

| �+k (λ) |
. (26)

The following theorems were proved in [11]. These are analogs of Theorems 4 and
5.
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Theorem 11. ([11]) For any sequence s of positive integers, and positive integer
n,

�

t≥0

g(s)
n (t; q, y, z)xt =

�
e∈I(s)n

q
amaj e

y
lhp e

z
| e |

x
snasc e−en

(1− x)
�n−1

i=0 (1− xsnqn−iysi+1+···+sn)
.

Theorem 12. ([11]) For any sequence s of positive integers, and positive integer
n,

�

λ∈L(s)
n

q
|�λ�|ky

|λ|
z

| �+k (λ) |
x

λn =

�
e∈I(s)n

q
amaj e

y
lhp e

z
| e |

x
snasc e−en

�n−1
i=0 (1− xsnqn−iysi+1+···+sn)

.

We can specialize Theorems 11 and 12 to s = (k, 2k, . . . , nk) and modify to track
Ifmaj as in Theorem 6 and its corollaries. We should expect something interesting
because

R(1,2,...,n)
n = R(2,4,...,2n)

n = R(3,6,...,3n)
n . . . .

We get the following theorem, which is an analog of Theorem 6. The proof, which
is analogous to that of Theorem 6, is omitted.

Theorem 13. For positive integers n, k, let

gn,k(t; q, y, z, w) =
�

λ∈tRn ∩Zn

q
|�λ�k|

y
|λ|

z
| �+k (λ)|

w
| ηk(λ) |

. (27)

Then

�

t≥0

gn,k(t; q, y, z, w)x
t =

�
e∈In,k

x
knasc e−en q

amaj e
y
lhp e

z
| e |

w
N(e)

(1− x)
�n−1

i=0 (1− xknqn−iyk(n(n+1)−i(i+1))/2)
.(28)

The following corollaries of Theorem 13 are analogs of Corollaries 1 and 2 with
y = z = 1. Note that in the right-hand sides of the equations there is no dependence
on k.

Corollary 3. For positive integers n, k,

�

t≥0

�

λ∈tRn ∩Zn

q
|�λ�|

x
t =

�
e∈In,k

x
knasc e−en q

Ifmaj e

(1− x)
�n−1

i=0 (1− xknqk(n−i))
.

Corollary 4. For positive integers n, k,

�

λ∈Ln

q
|�λ�|

x
λn =

�
e∈In,k

x
knasc e−en q

Ifmaj e

�n−1
i=0 (1− xknqk(n−i))

.
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Making use of Theorem 3 giving the correspondence between statistics on In,k

and on Ck �Sn, we have the following analogs of Theorems 7 and 8. First, We need
a result from [8]:

Lemma 2. ([8]) For integers t ≥ 0 and n > 0, let j and i be the unique integers
satisfying t = jn + i where j ≥ 0 and 0 ≤ i < n. Then

�

λ∈tRn∩Zn

q
|�λ�| = [ j + 1 ]n−i

q [ j + 2 ]iq .

Theorem 14. For positive integers n, k,

�

j≥0

n−1�

i=0

[ j + 1 ]n−i
q [ j + 2 ]iq x

nj+i =
�

πσ∈Ck�Sn
q
fmaj πσ

x
n(k des πσ−1−σn)+πn

(1− x)
�n

i=1(1− xknqki)
.

Proof. By Lemma 2,

�

j≥0

n−1�

i=0

[ j + 1 ]n−i
q [ j + 2 ]iq x

nj+i =
�

j≥0

n−1�

i=0

�

λ∈(jn+i)Rn ∩Zn

q
|�λ�|

x
jn+i

.

Since every t ≥ 0 can be written uniquely as t = jn + i for nonnegative integers j

and i with i < n, the last expression can be rewritten as
�

t≥0

�

λ∈tRn ∩Zn

q
|�λ�|

x
t
,

which, by Corollary 3, is equal to
�

e∈In,k
x

knasc e−en q
Ifmaj e

�n
i=0(1− xknqk(n−i))

.

Under the bijection Θ of Theorem 3, if e = Θ(πσ) then Ifmaj e = fmajπσ, asc e =
desπ

σ, and en = n(σn + 1)− πn. The result follows then, since

kn asc e− en = kndesπ
σ − n(σn + 1) + πn.

Theorem 15. For any positive integers n, k,

�

λ∈Ln

q
|�λ�|

x
λn =

�
πσ∈Ck�Sn

q
fmaj πσ

x
n(k des πσ−1−σn)+πn

�n
i=1(1− xknqki)

.

Proof. Start from Corollary 4 and apply Theorem 3.
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(Note: There is no dependence on k in the left-hand side).
Let Qn,k(x) be the q = 1 specialization:

Qn,k(x) =
�

πσ∈Ck�Sn

x
n(k des πσ−1−σn)+πn .

The Qn,k(x) are referred to as inflated Eulerian polynomials in [11]. To contrast
the usual, Eulerian polynomials for Ck � Sn are

En,k(x) =
�

πσ∈Ck�Sn

x
des πσ

.

It is interesting that Qn,k(x) is self-reciprocal, but in general En,k(x) is not when
k > 2.

10. Concluding Remarks

It is interesting from the results in Sections 7 - 9 that for fixed n, statistics on Ck �Sn

such as descent, flag-major index, and flag-inversion number appear naturally in the
geometry of the same simplicial cone, Rn, independent of k.

It would be interesting to see to what extent other statistics on Ck � Sn can be
interpreted in terms of lecture hall partitions. Different orderings on Ck � Sn and
different bijections Ck � Sn → In,k would give different results.

Lecture hall partitions were discovered in the setting of affine Coxeter groups, and
Theorem 1 was inspired by Bott’s formula. It should be possible to trace through
backwards to discover the algebraic significance of the statistic lhall , at least in the
Coxeter groups An = C1 � Sn or Bn = C2 � Sn but we have not seen how to do this.
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