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Abstract
In 1960, Sierpiński proved that there exist infinitely many odd positive rational
integers k such that k · 2n + 1 is composite in Z for all n ≥ 1. Any such integer
k is now known as a Sierpiński number, and the smallest value of k produced by
Sierpiński’s proof is k = 15511380746462593381. In 1962, John Selfridge showed
that k = 78557 is also a Sierpiński number, and he conjectured that this value of
k is the smallest Sierpiński number. This conjecture, however, is still unresolved
today.

In this article, we investigate the analogous problem in the ring of integers Od of
each imaginary field Q(

√
d) having class number one. More precisely, for each Od,

with d < 0, that has unique factorization, we determine all α ∈ Od, with minimal
odd norm larger than 1, such that α · 2n + 1 is composite in Od for all n ≥ 1. We
call these numbers Selfridge numbers in honor of John Selfridge.

1. Introduction

In 1960, using a covering of the integers (a concept originally due to Erdős [1]; see
Definition 17), Sierpiński [6] proved that there exist infinitely many odd positive
rational integers k such that k · 2n + 1 is composite for all n ≥ 1. Such values of
k are the classical Sierpiński numbers. The smallest value of k produced by the
covering argument in Sierpiński’s proof is k = 15511380746462593381. This value
of k, however, is not the smallest Sierpiński number. In 1962, John Selfridge used
a different covering to show that k = 78557 is also a Sierpiński number. It is still
unknown whether k = 78557 is the smallest Sierpiński number, although currently
only six smaller numbers remain as viable candidates for the smallest (see Section
6.2). There is an additional problem, known as the prime Sierpiński problem, of
trying to establish that 271129 is the smallest rational prime p such that p ·2n +1 is
composite in Z for all integers n ≥ 1. There are currently eleven candidates below
271129. The interested reader should visit www.seventeenorbust.com [2].
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In this article, we investigate the analogous problems of determining the “small-
est” Sierpiński number and Sierpiński prime in imaginary quadratic field extensions
of the rational numbers with class number one. To make this idea precise, we give
the following definitions. For a square-free integer d, we let Od denote the ring of
integers in the quadratic field Q(

√
d). It is well-known that Q(

√
d), d < 0, has class

number one precisely when d ∈ D = {−1,−2,−3,−7,−11,−19,−43,−67,−163},
and Od has unique factorization exactly for these negative values of d. Throughout
this article, we assume that d ∈ D. Recall that the norm of an element α ∈ Od is
N(α) = αα, where α is the algebraic conjugate of α in Od.

Definition 1. We call α ∈ Od a Sierpiński number if N(α) > 1 is odd, and α ·2n+1
is composite in Od for all n ≥ 1. A Sierpiński number σ ∈ Od is called a Selfridge
number if

N(σ) = min
�

N(α)
���� α is a Sierpiński number in Od

�
.

A Sierpiński number π ∈ Od is called a Selfridge prime if

N(π) = min
�

N(α)
���� α is a prime Sierpiński number in Od

�
.

Remarks 2. (i) The condition that N(α) be odd in Definition 1 is analogous to
the requirement that k be odd in Sierpiński’s original theorem. (ii) It is immediate
from Definition 1 that α is a Sierpiński number in Od if and only if α is a Sierpiński
number in Od.

We prove the following theorems in this article:

Theorem 3. For each d ∈ D, all Selfridge numbers σ ∈ Od are given in Table 7.

Theorem 4. For each d ∈ {−1,−2,−3,−7,−11,−19}, all Selfridge primes in Od

are given in Table 7.

Theorem 5. Let S be the set of all odd positive rational integers k such that, for
all n ≥ 1, the integers k · 2n + 1 are simultaneously composite in Od for all d ∈ D.
Then S properly contains the set of classical Sierpiński numbers.

We provide the reader with an overview of the approach used in this paper.
The proofs of Theorem 3 and Theorem 4 rely on Theorem 15, Corollary 16 and
quadratic reciprocity. Theorem 15 is well-known and gives a description of the
primes in the ring of integers of a quadratic field in which unique factorization
holds. Corollary 16, which follows from Theorem 15, gives criteria to determine
whether certain elements of Od are prime in Od. To find candidates α ∈ Od that
might be Sierpiński numbers, we first use a computer search to eliminate values of α
with small norm. Theorem 15 and Corollary 16 provide us with the necessary tools
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to decide if a candidate α ∈ Od is a Sierpiński number by calculating either the

norm N(α ·2n+1) or the Legendre symbol
�

d

α · 2n + 1

�
. Additionally, Theorem 15

and Corollary 16 allow us to determine if a Sierpiński number α is in fact a prime in
Od by checking the primality of the norm N(α) or computing the Legendre symbol�

d

α

�
. For the values of α not eliminated by the initial norm search, it is often useful

to use a covering system (see Definition 17) to verify that α is indeed a Sierpiński
number. All of these ideas are described in greater detail in Section 2. Computer
calculations were done using MAPLE

TM
and PARI/GP.

2. Preliminaries

In this section we provide the necessary background material needed to establish
Theorem 15 and Corollary 16, the main tools in the proofs of Theorem 3 and
Theorem 4. We begin by reminding the reader of some basic ideas concerning
quadratic reciprocity and quadratic field extensions of the rational numbers [5]. We
let

�
∗

∗

�
denote the Legendre symbol.

Theorem 6. Let p be an odd prime. Then
�
−1
p

�
= (−1)(p−1)/2 and

�
2
p

�
= (−1)(p

2−1)/8.

Theorem 7. (Quadratic Reciprocity) Let p and q be distinct odd primes. Then
�

p

q

��
q

p

�
= (−1)(p−1)(q−1)/4.

Corollary 8. Let p be an odd prime. Then
�

3
p

�
= 1 if and only if p ≡ 1 or 11

(mod 12).

Although all of the following ideas apply to positive values of d as well, our focus
here is on values of d < 0.

Proposition 9. The ring of integers in Q(
√

d) is given by

Od =






�
a + b

√
d

���� a, b ∈ Z
�

if d ≡ 2, 3 (mod 4)

�
a + b

√
d

2

���� a, b ∈ Z, a ≡ b (mod 2)

�
if d ≡ 1 (mod 4).
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Definition 10. The discriminant δd of Q(
√

d) is defined as

δd =
�

4d if d ≡ 2, 3 (mod 4)
d if d ≡ 1 (mod 4).

Definition 11. An element u ∈ Od is called a unit in Od if N(u) = ±1. Two
elements α and β in Od are called associates if α = uβ, for some unit u ∈ Od.

Proposition 12. Let U be the set of units in Q(
√

d). Then

U =






�
±1,±

√
−1

�
if d = −1�

±1,
±1±

√
−3

2

�
if d = −3

{±1} otherwise.

Proposition 13. Let α ∈ Od. If N(α) = ±p, where p is a rational prime, then α
is prime in Od.

Remark 14. Note that in our situation we have d < 0 so that N(α) ≥ 0 for all
α ∈ Od.

Theorem 15. Suppose that Q(
√

d) has class number one. Then

1. Any rational prime p is either a prime π in Od, or a product π1π2 of two
primes π1 and π2, not necessarily distinct, in Od.

2. The totality of primes π, π1, π2 obtained by applying Part 1. to all rational
primes, together with their associates, constitutes the set of all primes in Od.

3. The behavior of the rational prime 2 in Od is given below.

(a) If δd ≡ 1 (mod 2) and d ≡ 1 (mod 8), then 2 = π1π2, where π1 �= π2 are
primes in Od.

(b) If δd ≡ 1 (mod 2) and d ≡ 5 (mod 8), then 2 remains prime in Od.

(c) If δd ≡ 0 (mod 2), then 2 = uπ2, where π ∈ Od is prime, and u ∈ Od is
a unit.

4. The behavior of an odd rational prime p in Od is given below.

(a) If δd �≡ 0 (mod p) and
�

d

p

�
= 1, then p = π1π2, where π1 �= π2 are

primes in Od. Furthermore, π1 and π2 are not associates, but π1 and π2

are, and π2 and π1 are.

(b) If δd �≡ 0 (mod p) and
�

d

p

�
= −1, then p remains prime in Od.

(c) If δd ≡ 0 (mod p), then p = uπ2, where π ∈ Od is prime, and u ∈ Od is
a unit.
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A main tool used in the proofs of Theorem 3 and Theorem 4 is the following
partial converse of Proposition 13. Recall Remark 14.

Corollary 16. Let α ∈ Od. Suppose that α is not a rational integer and N(α) is
not prime in Z.

1. If d �∈ {−1,−3}, then α is not prime in Od.

2. If d = −1 or d = −3, then either (i) α is not prime in Od, or (ii) α = pu,

where p is a rational prime with
�

d

p

�
= −1, and u is a unit in Od.

Proof. Assume that α is prime in Od. By Theorem 15 (Part 2.), we have that there
exists a rational prime p such that either p = vαβ or p = vα, where v is a unit and
β ∈ Od is prime. If p = vαβ, then p2 = N(α) ·N(β). Since N(α) is not prime and
α is not a unit, we have that N(α) = p2. But then N(β) = 1, which contradicts
the fact that β is prime in Od. Therefore, p = vα or equivalently, α = pu, where
u = v−1 is a unit. Since α is not a rational integer, it must be that u is not a
rational integer as well. But this is impossible if d �∈ {−1,−3}, which proves Part

1. To finish the proof of Part 2., if
�

d

p

�
�= −1, then p = π1π2, where π1 and π2 are

(not necessarily distinct) primes in Od. But this contradicts the assumption that α
is prime in Od.

The following concept is originally due to Erdős [1].

Definition 17. A (finite) covering system, or simply a covering, of the rational
integers is a system of congruences n ≡ ri (mod mi), with 1 ≤ i ≤ t, such that
every integer n satisfies at least one of the congruences.

Using Definition 17, we can describe a covering (or a partial covering) C as a set
of ordered pairs (r,m), where the congruence n ≡ r (mod m) is a congruence in the
covering. In this article, however, we describe C as a set of ordered triples (r,m, p),
where the congruence n ≡ r (mod m) is a congruence in the covering, and p is a
rational prime “associated” to the particular congruence. This association typically
means that p is a prime divisor of 2m − 1, and this will be the case throughout the
paper, unless stated otherwise.

3. The Proof of Theorem 3

The general strategy here is to first use a computer to search for candidate Sierpiński
numbers α in Od. For any fixed positive rational integer M , there are only finitely
many elements α ∈ Od such that N(α) = M , and they are straightforward to
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calculate. So, we set upper limits for n and M , and find all α ∈ Od with N(α)
odd and 1 < N(α) ≤ M . Then we check that α · 2n + 1 is composite in Od using
Theorem 15 and Corollary 16. Once a nonempty set T of candidates is found,
then each α ∈ T is examined in detail, starting with elements of smallest norm, to
determine if α can be proven to be a Sierpiński number in Od, or whether a value
of n can be found such that α · 2n +1 is prime in Od. If no element of T is found to
be a Sierpiński number in Od, then a new computer search is conducted increasing
the limits of M in the search.

Since many of the proofs are similar, we give details only for certain values of
d. When proving that a particular σ ∈ Od from Table 7 is a Selfridge number, or
whether a particular π ∈ Od from Table 7 is a Selfridge prime, it will be convenient
to write sn for σ · 2n + 1 or π · 2n + 1, respectively.

3.1. d = −1

For the purpose of readability, we let i =
√
−1 in this section. In a personal

communication with E. Weisstein at MathWorld, Ed Pegg Jr. noted that 10 + 3i,
25 + 3i, and 40 + 3i are all Sierpiński numbers in Od [7]. This fact is easy to see.
For example, if α = 10 + 3i, we have that

N(α · 2n + 1) = 109 · 22n + 20 · 2n + 1 ≡
�

0 (mod 3) if n ≡ 1 (mod 2)
0 (mod 5) if n ≡ 0 (mod 2).

Since N(α · 2n + 1) > 25 for all n ≥ 1, it is clear that α · 2n + 1 �= pu, for some
rational prime p and some unit u. Thus, we can conclude from Corollary 16 that
α · 2n + 1 is composite in Od for all n ≥ 1. We show, however, that 10 + 3i is not
a Selfridge number in Od. With a computer we are able to eliminate as candidates
for Sierpiński numbers in Od all α with odd norm smaller than 25. We show that
σ = −4 + 3i is a Sierpiński number in Od, and hence a Selfridge number in Od,
since N(σ) = 25. There appears to be no simple pattern to the prime divisors of
N(sn) as in the case of N((10 + 3i) · 2n + 1), and so we use a different method to
establish that is a Sierpiński number. For even n, we have

sn = (−4 + 3i) · 2n + 1 ≡ −2n + 1 ≡ 0 (mod 3).

For odd n, we have

sn = (−4 + 3i) · 2n + 1
= −i · (1− 2i)2 ·

�
−i · (1 + i)2

�n + 1

=
�

(i · (1− 2i)(1 + i)n)2 + 1 if n ≡ 1 (mod 4)
((1− 2i)(1 + i)n)2 + 1 if n ≡ 3 (mod 4)

=
�
− ((1− 2i)(1 + i)n + 1) · ((1− 2i)(1 + i)n − 1) if n ≡ 1 (mod 4)
((1− 2i)(1 + i)n + i) · ((1− 2i)(1 + i)n − i) if n ≡ 3 (mod 4),
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so that sn factors nontrivially in Od.

3.2. d = −2 and d = −11

Since the approach is the same in each of these cases, we give details only for
d = −2. It is easy to check by computer that no element of Od with odd norm
smaller than 11 is a Sierpiński number in Od. Let σ = 3 +

√
−2. Then, since

N(sn) = 11 · 22n + 6 · 2n + 1 ≡ 0 (mod 3), it follows from Corollary 16 that σ is a
Selfridge number in Od. The proof is identical for the other values of σ in Table 7
when d = −2.

3.3. d = −3 and d = −7

Since the techniques used are similar for each value of d, we give details only for
d = −7. Let σ = 7. First note that sn is composite when n = 1. Then, if sn is
prime for some n ≥ 2, we have by Theorem 7 that

�
d

sn

�
=

�sn

7

�
=

�
1
7

�
= 1,

which establishes that σ is a Sierpiński number in Od by Theorem 15 (Part 4.). To
prove that σ is a Selfridge number, we examine the set T of all elements in Od other
than σ having odd norm N with 3 < N ≤ 49 = N(σ):

T = {−7, ±5, ±3,
√
−7, ±1+2

√
−7, ±3+2

√
−7, ±2+

√
−7, ±4+

√
−7, ±6+

√
−7}.

Fortunately, it is easy to show that no element of T is a Sierpiński number in Od.
For example, if α = 5, then

�
d

α · 23 + 1

�
=

�
−7
41

�
= −1,

and so α = 5 is not a Sierpiński number in Od by Theorem 15 (Part 4.). As another
example, let α = 1+2

√
−7. Then N(α · 23 +1) = 29 · 26 +24 +1 = 1873, and since

1873 is prime in Z, we have that α · 23 +1 is prime in Od by Proposition 13. Hence,
α = 1 + 2

√
−7 is not a Sierpiński number in Od.

3.4. d = −19

Let σ =
5 + 3

√
−19

2
. We use techniques similar to those used for d = −7 to verify

that there are no Sierpiński numbers in Od with odd norm smaller than N(σ) = 49.
Then we observe that

N(sn) = 49 · 22n + 5 · 2n + 1 ≡
�

0 (mod 3) if n ≡ 1 (mod 2)
0 (mod 5) if n ≡ 0 (mod 2),

which implies, by Corollary 16, that σ is a Selfridge number in Od. The result is
identical for the other value of σ in Table 7.
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3.5. d = −43, d = −67 and d = −163

The techniques for these cases are similar so we present the details only for d =
−43. To verify that there are no Sierpiński numbers in Od with odd norm smaller
than 169, we use PARI/GP to obtain certificates of primality in certain cases. For

example, let α =
11 + 3

√
−43

2
. Then N(α) = 127. To show that α is not a

Sierpiński number in Od, we examine N(α · 2n + 1) = 127 · 22n + 11 · 2n + 1, which
is easily seen to be composite for all n ≤ 39. We then use PARI/GP to prove that
N(α · 240 + 1) is prime, and conclude by Proposition 13 that α is not a Sierpiński

number in Od. Now, let σ =
17 + 3

√
−43

2
. Observe that if n ≡ 1 (mod 2), then

N(sn) = 169 · 22n + 17 · 2n + 1 ≡ 0 (mod 3).

For n ≡ 0 (mod 2), we can write

N(sn) = (13 · 2n + 1)2 − (3 · 2n/2)2

=
�
13 · 2n + 1− 3 · 2n/2

��
13 · 2n + 1 + 3 · 2n/2

�
.

Thus, by Corollary 16, σ is a Selfridge number in Od. The proof for the other value
of σ is identical.

4. The Proof of Theorem 4

The strategy here is the same as the strategy employed in the proof of Theorem 3
with an additional step. The additional step required here is that our Sierpiński
candidates α must be prime in Od. Primality of α in Od can be verified by simply

checking that N(α) is prime in Z when α �∈ Z (Proposition 13), or that
�

d

α

�
= −1

when α is a prime in Z (Theorem 15 (Part 4.)).
Since many of the proofs are similar for various values of d, we give details only

in selected cases. For convenience, we define sn := π · 2n + 1, where π is a Selfridge
prime from Table 7.

4.1. d = −1 and d = −2

Using the techniques used to prove Theorem 3, it is straightforward to establish
that the Selfridge primes for d = −2 are π = ±3±

√
−2, and that the only Selfridge

prime for d = −1 is π = 7.



INTEGERS: 12A (2012) 9

4.2. d = −7

Using a computer to check up to n = 400 and norm 2209, the only candidate for
a Selfridge prime is π = 47. To verify that π = 47 is indeed a Selfridge prime,
we must show that sn is composite in Od for all n ≥ 1. To accomplish this task,
we use the partial covering C = {(0, 2, 3), (1, 4, 5), (3, 12, 13), (11, 12, 7)}. It is then
straightforward to show that 47 ·2n +1 ≡ 0 (mod p), when n ≡ r (mod m) for each
(r,m, p) ∈ C. The only “hole” in our partial covering C is n ≡ 7 (mod 12). But for
these values of n we have that 47 · 2n + 1 ≡ 4 (mod 7). Hence, if p = 47 · 2n + 1 is

prime in Z, it follows that
�
−7
p

�
= 1, so that p is composite in Od. Therefore, we

have established that 47 is the Selfridge prime in Od by Theorem 15 (Part 4.).

4.3. d = −11

In this case, each Selfridge number
±3±

√
−11

2
has norm 5, and therefore each

Selfridge number is also a Selfridge prime by Proposition 13.

4.4. d = −19

Let π =
−25− 3

√
−19

2
. Note that

N (sn) = 199 · 22n
− 25 · 2n + 1 ≡

�
0 (mod 3) if n ≡ 1 (mod 2)
0 (mod 5) if n ≡ 0 (mod 2),

which proves, by Corollary 16, that π is a Sierpiński number in Od. Since N(π) =
199 is prime, we have by Proposition 13 that π is prime in Od. Using a computer,
it is straightforward to show that π is a Sierpiński number in Od with smallest odd

prime norm, which implies that π is a Selfridge prime. The proof that
−25 + 3

√
−19

2
is a Selfridge prime is identical.

5. Proof of Theorem 5

Recall that D = {−1,−2,−3,−7,−11,−19,−43,−67,−163} , and that S is the set
of all odd positive rational integers k such that, for all n ≥ 1, the integers k · 2n + 1
are simultaneously composite in Od for all d ∈ D. Clearly, all classical Sierpiński
numbers are contained in S. To see that this containment is proper, let z ≡ 111
(mod 130) be a positive integer, and let k = 3 · 7 · 11 · 19 · 43 · 67 · 163 · z. Then
k · 2 + 1 and k · 22 + 1 are both composite in Z since

k · 2 + 1 ≡ 0 (mod 5) and k · 22 + 1 ≡ 0 (mod 13).
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Let d ∈ D, assume that n ≥ 3, and suppose that p = k · 2n + 1 is prime in Z. Then,

p ≡ 1 (mod 8) and, by Theorem 6 and Theorem 7, we have that
�

d

p

�
= 1. Hence,

k ∈ S. The smallest value of k produced by this process is k = 228780719937, and
we note that this value of k is not a classical Sierpiński number since 228780719937·
23 + 1 = 1830245759497 is prime in Z.

6. Comments, Conjectures and Conclusions

6.1. Extending Theorem 4

While we were not able to find the Selfridge primes for d ∈ {−43,−67,−163}, we
give in Table 7 a list of conjectured Selfridge primes for d = −43 and d = −67, and
some justification below for these conjectured values.

6.1.1. d = −43

Since π =
289− 45

√
−43

2
has norm 42649, which is prime, we know by Proposition

13 that π is prime inOd. Now consider the covering C = {(0, 2, 3), (1, 4, 5), (3, 4, 17)}.
Note that here the prime 17 associated to the third congruence in C is not a prime
divisor of 24−1. However, 17 does divide N(sn) for values of n ≡ 3 (mod 4). Apply
C to the exponent n in N(sn) = N(π · 2n + 1) to get that

N (sn) = 42649 · 22n + 289 · 2n + 1 ≡






0 (mod 3) if n ≡ 0 (mod 2)
0 (mod 5) if n ≡ 1 (mod 4),
0 (mod 17) if n ≡ 3 (mod 4).

Hence, π is a Sierpiński number in Od. To prove that π is a Selfridge prime, we
must rule out all primes in Od with norm less than 42649. Unfortunately, there
are several candidates which we have been unable to eliminate. For example, for

the prime α =
−67 + 15

√
−43

2
, with norm 3541, the number cn = α · 2n + 1 is

composite for all n ≤ 50000. Because there appears to be no “nice” pattern to the
prime divisors of N(cn), we believe that there exists m > 50000 such that N(cm)
is prime. Thus, cm would be prime in Od, and α would not be a Selfridge prime.

6.1.2. d = −67

The covering C = {(0, 2, 3), (1, 4, 5), (3, 4, 17)} used in 6.1.1 can be used in this case
to verify that the prime π = −238 + 15

√
−67 in Od is a Sierpiński number. But we

are faced with the same difficulties as in the case of d = −43 in showing that π is
a Selfridge prime.
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6.1.3. d = −163

We tested, up to n = 5000, all elements α ∈ Od such that N(α) is prime and N(α)
is less than the 50000th prime, and we found no Selfridge prime candidates.

6.2. Comments on Theorem 5

Of course the classical Sierpiński number k = 78557 found by Selfridge is contained
in S, but is it the smallest element of S? It can be shown, with little effort, that
|d| is the smallest rational integer that is a Sierpiński number in Od for each d ∈
{−3,−7,−11,−19,−43,−67,−163}, although to rule out smaller rational integers
requires checking up to some large exponents. For example, to show that 47 is not
a Sierpiński number in the case of d = −67, we have to check up to n = 6115
since this is the smallest value of n for which 47 · 2n + 1 is prime in Od. It is
also straightforward to show that the smallest rational Sierpiński numbers in Od

for d = −1 and d = −2 are 7 and 5, respectively. For example, to show that 5 is
the smallest rational Sierpiński number in Od when d = −2, we first observe that
3 · 2 + 1 = 7 is prime in Od. This rules out 3 as a Sierpiński number in Od. Next,
we see that while 5 · 2n + 1 is prime in Z for n = 1 and n = 3, these primes (11
and 41) are both composite in Od. Also, 5 · 22 + 1 = 21 is obviously composite.
Then, for n ≥ 3, if p = 5 · 2n + 1 is prime in Z, we have that p ≡ 1 (mod 8) and so�
−2
p

�
= (−1)(p−1)/2(−1)(p

2−1)/8 = 1, which proves that 5 is a Sierpiński number

in Od, by Theorem 15 (Part 4.). “Piecing” together this information is what is
done in the proof of Theorem 5 to get a value of k that is a Sierpiński number in
Od for all d ∈ D. However, the smallest value of k produced by these methods is
much larger than the Sierpiński number k = 78557 found by Selfridge. Computer
calculations show that all of the values of k < 78557 for which a value of n is known
such that k · 2n + 1 is prime in the rational integers, also fail to be Sierpiński in
Od for at least one d ∈ D. The remaining six rational Sierpiński candidates [2] are
the elements of B = {10223, 21181, 22699, 24737, 55459, 67607}. If p = k · 2n + 1 is a

rational prime for any k ∈ B, then p ≡ 5 (mod 12) and thus
�
−3
p

�
= −1, so that

p remains prime for d = −3, by Theorem 15 (Part 4.). In other words, if k ∈ B is
not a rational Sierpiński number, then k �∈ S. Thus we have the following:

Theorem 18. The smallest element of S is either k = 78557 or the smallest
Sierpiński number in B.

6.3. Two Avenues for Future Investigation

For d ∈ {−1,−3,−7}, the rational prime 2 does not remain prime in Od. So one
could conduct an investigation similar to the topics in this paper to find α ∈ Od
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such that α ·πn +1 is composite in Od for all n ≥ 1, where π ∈ Od is a prime divisor
of 2.

A possible second area of investigation would be to focus on real quadratic fields.
This situation might be complicated by the fact that there could be infinitely many
solutions to the equation x2 − dy2 = N , for a nonzero integer N , and finding these
solutions can be somewhat involved [5, 3, 4]. In addition, another complicating
factor is that it is conjectured that there are infinitely many such fields with class
number one.

7. Tables

d σ N(σ)
−1 −4± 3

√
−1 25

−2 ±3±
√
−2 11

−3 3 9
−7 7 49

−11
±3±

√
−11

2
5

−19
5± 3

√
−19

2
49

−43
17± 3

√
−43

2
169

−67
29± 3

√
−67

2
361

−163
77± 3

√
−163

2
1849

Table 1: Selfridge Numbers σ in Od

d π N(π)
−1 7 49
−2 ±3±

√
−2 11

−3 −5 25
−7 47 2209

−11
±3±

√
−11

2
5

−19
−25± 3

√
−19

2
199

Table 2: Selfridge Primes π in Od
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d π N(π)

−43
289− 45

√
−43

2
42649

−67 −238 + 15
√
−67 71719

−163 ? ?

Table 3: Conjectured Selfridge Primes π in Od
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[7] E. Weisstein, Sierpiński Number of the Second Kind, from MathWorld — A Wolfram Web
Resource,
http://mathworld.wolfram.com/SierpinskiNumberoftheSecondKind.html.


