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Abstract
We consider a finite set of lattice points and their convex hull. The author previously

gave a geometric proof that the sumsets of these lattice points take over the central

regions of dilated convex hulls, thus revealing an interesting connection between

additive number theory and geometry. In this paper, we will see an algebraic proof

of this fact when the convex hull of points is a simplex, exploring the connection

between additive number theory and geometry further.

– Dedicated to Professor Mel Nathanson on the occasion of his 65th birthday

1. Background

Many interesting connections between number theory and geometry have been found

over the years and we continue to find them even nowadays. To name a few, Athreya

and Margulis [1] recently gave a random version of Minkowski’s classical result on

geometry of numbers. Nathanson [11, 12, 13] has found some interesting results in

this area as well. In this paper, we will focus on how the sumset of a finite set of

lattice points grows geometrically, which is our Theorem 7.

We use the following notation: For sets A,B of integers and for any integer t, we

define the sumset
A + B = {a + b : a ∈ A, b ∈ B},

the translation
A + t = {a + t : a ∈ A},
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and the difference set

A−B = {a− b : a ∈ A, b ∈ B}.

And for any nonnegative integer h, we define the h-fold sumset hA as follows:

hA = {a1 + a2 + · · · + ah : a1, a2, . . . , ah ∈ A}.

The dilation is

h ∗A = {ha : a ∈ A}.

The convex hull , conv(x1, x2, . . . , xl), of x1, x2, . . . , xl is

�
x ∈ Rn

: x = λ1x1 + λ2x2 + · · · + λlxl , λi ≥ 0 for all i,

and
�l

i=1 λi = 1
�

.

A polytope is the convex hull of a finite set of points in some Rn
, or equivalently,

a bounded set which is an intersection of finitely many closed halfspaces. In their

book [2, page 26], Beck and Robins point out that this equivalence is highly non-

trivial, both algorithmically and conceptually. You can find a proof of this in [14].

A d-simplex is the convex hull of any d + 1 affinely independent points in some Rn
.

Note that the distance from a point x ∈ Rn
to a hyperplane H where x /∈ H,

is given by the length of the perpendicular line segment from x to H. For, if not,

say y ∈ H is a point with d(x, y) < d(x, x
�
) where x

�
is the intersection of H and

the perpendicular line segment. Then the points x, x
�
, y form a right triangle whose

hypotenuse is given by x and y, and the hypotenuse’s length is shorter than that of

the side given by x and x
�
, which is impossible.

If two hyperplanes H1,H2 are parallel, their normal vectors are scalar multiples of

each other, so we can take a same normal vector u and write H1 = {x : (x, u) = α1}
and H2 = {x : (x, u) = α2} where (· , ·) indicates an inner product in Rn

. Take any

x ∈ H1 . Then d(x,H2) is given by the length of the perpendicular line segment to

H2. To calculate the distance, note that x+ tu where t ∈ R gives the perpendicular

ray from x to H2 . If the ray meets H2 when t = t2 , then t2 = (α2 − α1)/|u|2.
Thus, d(x,H2) = |t2u| = (α2 − α1)/|u| , which is independent of the choice of x.

Therefore, when H1 and H2 are parallel, d(H1,H2) is given by the length of any

perpendicular line segment joining them.

For a fixed non-zero vector u ∈ Rn
and a real number α, if the set H = {x :

(x, u) = α} is a hyperplane, then the half-spaces bounded by H are H
+

= {x :

(x, u) ≥ α} and H
−

= {x : (x, u) ≤ α}. H is called a supporting hyperplane of

a polytope ∆ if ∆ ∩ H �= ∅ and ∆ ⊆ H
−

or ∆ ⊆ H
+
. And if H is a supporting

hyperplane of ∆, then we call F = ∆∩H a face of ∆. By convention, ∅ and ∆ are

called improper faces of ∆.
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Let h be a positive integer and ∆ = conv(a1, a2, . . . , am) where ai ∈ Zn
. Then

the dilation of ∆ , h ∗∆ , is

h ∗∆ = {hx : x ∈ ∆}
= {

�
λiai : λi ≥ 0,

�
λi = h}

= conv(ha1, . . . , ham) .

We recall some elementary facts without proof. The details can be found in [3],

[5], and [14].

Proposition 1. We have the following:

1. Every polytope is a compact set.

2. Every polytope is the convex hull of its vertices.

3. If a polytope can be written as the convex hull of a finite point set S, then the
finite set S contains all the vertices of the polytope, i.e., all the vertices of the
polytope belong to S.

4. Let ∆ be a polytope and V be the set of all vertices of ∆ (called the vertex set).
Let F be a face of ∆. Then the face F is again a polytope, with its vertex set
F ∩ V .

5. Every intersection of faces is a face of the polytope.

Proposition 2. Let ∆ be a polytope in Rn of dimension n. Then the following are
equivalent for x ∈ ∆:

1. x is not contained in a proper face of ∆ .

2. x can be represented in the form x =
�n

i=0 λixi for n+1 affinely independent
points x0, x1, . . . , xn ∈ ∆ with each λi > 0 and

�n
i=0 λi = 1 .

If one of the conditions in Proposition 2 holds, then the point is called an interior
point of ∆ . It can be checked that this definition agrees with the usual definition

of interior points in topology. The boundary of ∆, written ∂(∆) , is the union of all

proper faces of ∆ .

Assume that ∆ ⊆ Rn
is an n-dimensional nonempty lattice polytope, and h is

a positive integer. Then Ehrhart [4] showed that there is a polynomial p(h), called

the Ehrhart polynomial, such that

|(h ∗∆) ∩ Zn| = p(h)

where

p(h) = Vol(∆)h
n

+
Vol(∂(∆))

2
h

n−1
+ · · · + 1 .
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Here, Vol(∂(∆)) is “the surface area of ∆ normalized with respect to the sublattice

on each face of ∆.” For details, see [2].

If ∆ = conv(A) where A is a finite set of integral points in some Rn
, then

|(h∗∆)∩Zn| ≥ |hA|. Now we can consider the growth of hA instead. Nathanson [9]

proved the following theorem.

Theorem 3. Let k ≥ 2 and let A = {a1, . . . , ak} be a finite set of integers such
that

0 = a1 < a2 < · · · < ak and gcd(a2, . . . , ak) = 1.

Then there exists integers c and d and sets C ⊆ [0, c − 2] and D ⊆ [0, d − 2] such
that

hA = C ∪ [ c, hak − d ] ∪ (hak −D)

for all sufficiently large h.

In particular, the growth of |hA| is a linear function when A is a normalized subset

of integers. When we have A1, A2, . . . , Ar and B as finite subsets of N0, normalized

similarly as above, then Han, Kirfel, and Nathanson [6] showed that |B+h1A1+· · ·+
hrAr| is a multilinear function of h1, . . . , hr eventually. If A1, A2, . . . , Ar and B are

finite subsets of an abelian semigroup which contains 0, then |B+h1A1+ · · ·+hrAr|
is a polynomial of h1, . . . , hr for all sufficiently large h1, . . . , hr . This was proven by

Khovanskĭı [7] when r = 1, and by Nathanson [10] for r ≥ 2. And if A,B are finite

subsets of an abelian group without elements of finite order, then Khovanskĭı [7]

computed the degree and the leading coefficient of the polynomial above.

In this paper, we will consider the growth of sumsets from geometric point of

view.

2. Khovanskĭı’s Work

Before we talk about our main theorem, let us see what Khovanskĭı did in his

paper [7]. Let A be a finite subset of Zn
, A = {a1, . . . , am} , with |A| = m and

∆ = conv(A) . Also assume that A generate Zn
as a group.

Lemma 4. There exists a constant C with the following property: for all linear
combination

�
λiai of ai ∈ A with real coefficients λi such that

�
λiai is an integral

point, there exists a linear combination
�

niai of ai with integer coefficients such
that

�
niai =

�
λiai , with

�
|ni − λi| < C .

Proof. Let X = {x : x ∈ Zn
, x =

�
λiai , with 0 ≤ λi ≤ 1} , which is a finite

set. Since A generate Zn
, each x ∈ X can be written as x =

�m
i=1 ni(x)ai ,

where ni(x) ∈ Z . So for each x ∈ X , we fix one representation
�m

i=1 ni(x)ai with

ni(x) ∈ Z . Let q = maxx∈X
�m

i=1 |ni(x)| and let C = m + q , a positive integer.



INTEGERS 11A (2011): Proceedings of Integers Conference 2009 5

Then for any z =
�

λiai ∈ Zn
, x = z −

�
[λi]ai ∈ X . So x =

�m
i=1 ni(x)ai with

ni(x) ∈ Z and z =
�m

i=1

�
ni(x) + [λi]

�
ai =

�m
i=1 λiai with

�
|ni(x) + [λi] − λi| <�m

i=1

�
|ni(x)| + 1

�
≤ q + m = C .

Let h be a positive integer and assume 0 ∈ A. Then

∆ =

��
λiai : λi ≥ 0,

�
λi ≤ 1

�

and

h ∗∆ =

��
λiai : λi ≥ 0,

�
λi ≤ h

�
.

Define

∆(h,C) =

��
λiai : λi ≥ C ,

�
λi ≤ h− C

�

with C as in Lemma 4.

Then, if x =
�

λiai ∈ ∆(h,C) , let λi = αi + C, αi ≥ 0 . So

∆(h,C) =

��
(αi + C)ai : αi ≥ 0 ,

�
αi ≤ h− C −mC

�

= C

�
ai +

��
αiai : αi ≥ 0 ,

�
αi ≤ h− C −mC

�

= C

�
ai + (h− C −mC) ∗∆ .

Note ∆(h,C) is an empty set when h < C + mC, a single point C
�

ai when h =

C +mC, and a dilation of ∆ translated by an integral point when h ≥ C +mC +1 .

If x ∈ h ∗∆ , then x = h(
�

λiai) where λi ≥ 0 ,
�

λi = 1 , so x =
�

λi(hai) ∈
conv(hA) . Now, if x ∈ conv(hA) , then

x =

�

i

λi(a
1
i + · · · + a

h
i ) , λi ≥ 0 ,

�

i

λi = 1

= h

�

i

λi

h
(a

1
i + · · · + a

h
i )

= h

�

j,k

µj,ka
k
j where µj,k ≥ 0,

�

j,k

µj,k =

�

i

λi

h
· h = 1

by collecting terms for each a
k
j . So, x ∈ h ∗ ∆ . Thus, h ∗ ∆ = conv(hA) . Also,

h ∗∆ = conv(ha1, . . . , ham) .

Let Zn
(A) be the group generated by the differences of the elements of A .

Lemma 5. Assume Zn
(A) = Zn, and 0 ∈ A . Then, every integral point in ∆(h,C)

belongs to the sumset hA .

Proof. Let z be an integral point in ∆(h,C) . Then

z =

�
λiai, λi ≥ C ,

�
λi ≤ h− C .
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By Lemma 4, z =
�

niai , ni ∈ Z ,
�

|ni − λi| < C . If ni < 0 for some i, then

|ni−λi| > C, so every ni must be nonnegative. And
�

ni =
�

|ni| =
�

|ni−λi +

λi| ≤
�

|ni−λi| +
�

|λi| < C +h−C = h . Thus z =
�

niai , ni ≥ 0 ,
�

ni < h .

Since 0 ∈ A ,

hA =

��
niai : ni ≥ 0,

�
ni ≤ h

�
,

and therefore z ∈ hA .

3. Main Theorem and Its Proof

Let K be the convex hull of {eo, e1, . . . , en} in Rn
where e0 = 0 , and ei for i ≥ 1 is

the ith standard basis in Rn
. Then

h ∗K =

� n�

i=0

λiei : λi ≥ 0,

n�

i=0

λi ≤ h

�

=

� n�

i=1

λiei : λi ≥ 0,

n�

i=1

λi ≤ h

�

and

K(h,C) =

� n�

i=0

λiei : λi ≥ C,

n�

i=0

λi ≤ h− C

�

=

� n�

i=1

λiei : λi ≥ C,

n�

i=1

λi ≤ h− 2C

�
.

Lemma 6. For any positive integer h , if a point in h ∗ K has the distance to
∂(h ∗K) bigger than 2C, then it belongs to K(h,C) .

Proof. Let z =
�n

i=1 λiei , λi ≥ 0,
�

λi ≤ h be such a point. Note we have

h ∗K = H
+
1 ∩ · · · ∩H

+
n ∩H

+
n+1 where hyperplanes Hi = {xi = 0} for i = 1, . . . , n

and the hyperplane Hn+1 = {x ∈ Rn
: (x, u) = h} where u is the vector in Rn

whose coordinates are all 1, (· , ·) indicates an inner product in Rn
, and H

+
i denotes

the closed half-space supported by the hyperplane Hi. So h ∗K has its boundaries

given by hyperplanes H1, . . . ,Hn,Hn+1 . Since d(z,Hi) > 2C, λi > 2C for all i =

1, . . . , n. Now, let H = {x : (x, u) = h−2C}, a hyperplane which is parallel to Hn+1 .

Let z1 ∈ H. Then, z1 + tu, t ∈ R is a ray starting from z1 that is perpendicular

to Hn+1 , and it will intersect Hn+1 at, say, t = t2 . Then z1 + t2u ∈ Hn+1 , so

(z1 + t2u, u) = h, giving t2 = 2C/n . Thus, d(H,Hn+1) = t2|u| = 2C/
√

n . Now

take any point x which lies between H and Hn+1. Then d(x,Hn+1) is given by the

length of the line segment from x to Hn+1 which is perpendicular to Hn+1 . If you

extend this line segment so that it joins H and Hn+1, the length of this extended line
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segment, which is perpendicular to both H and Hn+1 , gives d(H,Hn+1). Therefore,

d(x,Hn+1) < d(H,Hn+1) = 2C/
√

n for any point x which lies between H and

Hn+1. Therefore, any point in h ∗K whose distance to Hn+1 is bigger than 2C/
√

n

belongs to H
−

= {x : (x, u) ≤ h − 2C}. Therefore, z ∈ H
−

, i.e.,
�

λi ≤ h − 2C.

So z ∈ K(h,C).

Now we state our main theorem.

Theorem 7. Suppose Zn
(A) = Zn. Then, there exists a constant ρ with the follow-

ing property: for any positive integer h, every integral point of h∗∆ whose distance
to ∂(h ∗∆) is more than ρ belongs to the sumset hA.

In general, hA is a subset of (h ∗∆)∩Zn
. Theorem 7 states that hA takes all of

the central region in h ∗∆.

Without loss of generality, we may assume 0 ∈ A because: if not, by Propo-

sition 1, all vertices of ∆ belong to A. So take any a ∈ A which is also a ver-

tex of ∆, then take ∆̄ = ∆ − a so that 0 ∈ ∆̄. Then ∆̄ = conv(A − a) and

h∗∆̄ = h∗∆−ha = h∗conv(A−a) . And, for any positive integer h, if x ∈ (h∗∆)∩Zn

with d(x, ∂(h ∗ ∆)) > ρ , then x − ha ∈ h ∗ ∆̄, and d(x − ha, ∂(h ∗ ∆̄)) > ρ since

a translation does not change the distance. Thus x − ha ∈ h(A − a) = hA − ha

according to our theorem. So x ∈ hA, proving our claim. Therefore, we will assume

a1 = 0 from now on.

Using the ideas described in Section 2, Khovanskĭı stated Theorem 7 in his pa-

per [7], but his proof contained an error. However, we can modify his idea to obtain

the following theorem for the simplex.

Theorem 8. Suppose Zn
(A) = Zn , and A = {a1, a2, . . . , an+1} are n + 1 affinely

independent points. Then there exists a constant ρ with the following property: for
any positive integer h, every integral point of h ∗∆ whose distance to ∂(h ∗∆) is
more than ρ belongs to the sumset hA.

The affine hull aff(A) is an affine subspace, which is a translation of a linear

subspace L, i.e., aff(A) = x + L for some x ∈ Rn
. So A ⊆ x + L. Therefore, if

Zn
(A) = Zn

, then dim(aff(A)) = dim∆ = n.

Proof. Recall that we may assume a1 = 0. Consider a linear mapping π : Rn → Rn

where π(ei) = ai+1 , i.e., π(x) = Tx where T is the matrix whose ith column is given

by the coordinates of ai+1 for i = 1, . . . , n. Since a2−a1, . . . , an+1−a1 are linearly

independent, i.e., a2, . . . , an+1 are linearly independent, T is invertible so that π is

injective. Also, π(h ∗ K) = h ∗ ∆ and π(K(h,C)) = ∆(h,C). By Proposition 1,

every proper face of h ∗ K is the convex hull of up to n vertices, and so is every

proper face of h ∗∆.

Now, suppose x ∈ h ∗ ∆ belongs to a convex hull of up to n vertices. Recall

that every vertex belongs to the set {ha1, . . . , han+1} by Proposition 1. Thus,
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x belongs to the convex hull of a proper subset of {ha1, . . . , han+1}. Take, for

example, x =
�n

i=1 λi(hai) , λi ≥ 0,
�

λi = 1 (other cases are similar). Assume x

is an interior point. Then by Proposition 2, x can be written as

x =

n+1�

j=1

γjxj , where

�
γj = 1,

xj ∈ h ∗∆ = conv(ha1, . . . , han+1),

xj are affinely independent

and γj > 0.

Then xj =
�n+1

l=1 αlj(hal) with
�n+1

l=1 αlj = 1, αlj ≥ 0. So

n�

i=1

λi(hai) =

n+1�

j=1

n+1�

l=1

γjαlj(hal) (1)

where

n+1�

j=1

n+1�

l=1

γjαlj = 1.

Since hai are affinely independent, the affine combinations of them are unique,

so the coefficient of an+1 in the right hand side of (1) must be 0. Therefore,�n+1
j=1 γjα(n+1)j = 0, but αlj ≥ 0 and γj > 0. So α(n+1)j = 0 for all j = 1, . . . , n +

1. Thus x1, . . . , xn+1 ∈ aff(ha1, . . . , han), which means there are n + 1 affinely

independent vectors in the affine hull aff(ha1, . . . , han), whose dimension is n − 1,

giving us a contradiction. Therefore, x ∈ ∂(h ∗∆). Similarly, if x ∈ h ∗K belongs

to a convex hull of up to n vertices, x ∈ ∂(h ∗K). Thus we have just proved that

∂(h ∗∆) =
�
x ∈ h ∗∆ : x belongs to a convex hull of up to n vertices

�

and

∂(h ∗K) =
�
x ∈ h ∗K : x belongs to a convex hull of up to n vertices

�
.

Therefore, π maps ∂(h ∗K) onto ∂(h ∗∆).

Now, let x ∈ h ∗∆ be an integral point with d(x, ∂(h ∗∆)) > 2C||π|| where ||π||
is the norm of π. Since π is injective, we have a unique point π

−1
(x). Then, for

any ȳ ∈ ∂(h ∗K), π(ȳ) = y ∈ ∂(h ∗∆) and

|π−1
(x)− ȳ| ≥ |x− y|

||π|| >
2C||π||
||π|| = 2C.

Then, by Lemma 6, π
−1

(x) ∈ K(h,C). Therefore, x ∈ ∆(h,C). Thus, by Lemma 5,

x ∈ hA.
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Notice this proof is algebraic in nature. To prove Theorem 7 in its full strength,

we had to use geometric arguments. For details, see [8]. In Section 1, we mentioned

two equivalent definitions of a polytope (one is algebraic and the other is geometric).

Each is used, in different ways, in our proofs for the geometric growth of sumsets.

Acknowledgment. The author thanks the referee for his/her helpful advice for

improving this paper.
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