ALGEBRAIC PROOF FOR THE GEOMETRIC STRUCTURE OF SUMSETS

Jaewoo Lee ${ }^{1}$
Department of Mathematics, Borough of Manhattan Community College, The City University of New York, New York, NY
jlee@bmcc.cuny.edu

Received: 1/26/10, Revised: 10/25/10, Accepted: 2/3/11, Published: 3/9/11

Abstract

We consider a finite set of lattice points and their convex hull. The author previously gave a geometric proof that the sumsets of these lattice points take over the central regions of dilated convex hulls, thus revealing an interesting connection between additive number theory and geometry. In this paper, we will see an algebraic proof of this fact when the convex hull of points is a simplex, exploring the connection between additive number theory and geometry further.

- Dedicated to Professor Mel Nathanson on the occasion of his 65th birthday

1. Background

Many interesting connections between number theory and geometry have been found over the years and we continue to find them even nowadays. To name a few, Athreya and Margulis [1] recently gave a random version of Minkowski's classical result on geometry of numbers. Nathanson $[11,12,13]$ has found some interesting results in this area as well. In this paper, we will focus on how the sumset of a finite set of lattice points grows geometrically, which is our Theorem 7.

We use the following notation: For sets A, B of integers and for any integer t, we define the sumset

$$
A+B=\{a+b: a \in A, b \in B\}
$$

the translation

$$
A+t=\{a+t: a \in A\}
$$

[^0]and the difference set
$$
A-B=\{a-b: a \in A, b \in B\} .
$$

And for any nonnegative integer h, we define the h-fold sumset $h A$ as follows:

$$
h A=\left\{a_{1}+a_{2}+\cdots+a_{h}: a_{1}, a_{2}, \ldots, a_{h} \in A\right\} .
$$

The dilation is

$$
h * A=\{h a: a \in A\} .
$$

The convex hull, $\operatorname{conv}\left(x_{1}, x_{2}, \ldots, x_{l}\right)$, of $x_{1}, x_{2}, \ldots, x_{l}$ is

$$
\begin{gathered}
\left\{x \in \mathbb{R}^{n}: \quad x=\lambda_{1} x_{1}+\lambda_{2} x_{2}+\cdots+\lambda_{l} x_{l}, \quad \lambda_{i} \geq 0 \text { for all } i,\right. \\
\text { and } \left.\sum_{i=1}^{l} \lambda_{i}=1\right\} .
\end{gathered}
$$

A polytope is the convex hull of a finite set of points in some \mathbb{R}^{n}, or equivalently, a bounded set which is an intersection of finitely many closed halfspaces. In their book [2, page 26], Beck and Robins point out that this equivalence is highly nontrivial, both algorithmically and conceptually. You can find a proof of this in [14]. A d-simplex is the convex hull of any $d+1$ affinely independent points in some \mathbb{R}^{n}.

Note that the distance from a point $x \in \mathbb{R}^{n}$ to a hyperplane H where $x \notin H$, is given by the length of the perpendicular line segment from x to H. For, if not, say $y \in H$ is a point with $d(x, y)<d\left(x, x^{\prime}\right)$ where x^{\prime} is the intersection of H and the perpendicular line segment. Then the points x, x^{\prime}, y form a right triangle whose hypotenuse is given by x and y, and the hypotenuse's length is shorter than that of the side given by x and x^{\prime}, which is impossible.

If two hyperplanes H_{1}, H_{2} are parallel, their normal vectors are scalar multiples of each other, so we can take a same normal vector u and write $H_{1}=\left\{x:(x, u)=\alpha_{1}\right\}$ and $H_{2}=\left\{x:(x, u)=\alpha_{2}\right\}$ where (\cdot, \cdot) indicates an inner product in \mathbb{R}^{n}. Take any $x \in H_{1}$. Then $d\left(x, H_{2}\right)$ is given by the length of the perpendicular line segment to H_{2}. To calculate the distance, note that $x+t u$ where $t \in \mathbb{R}$ gives the perpendicular ray from x to H_{2}. If the ray meets H_{2} when $t=t_{2}$, then $t_{2}=\left(\alpha_{2}-\alpha_{1}\right) /|u|^{2}$. Thus, $d\left(x, H_{2}\right)=\left|t_{2} u\right|=\left(\alpha_{2}-\alpha_{1}\right) /|u|$, which is independent of the choice of x. Therefore, when H_{1} and H_{2} are parallel, $d\left(H_{1}, H_{2}\right)$ is given by the length of any perpendicular line segment joining them.

For a fixed non-zero vector $u \in \mathbb{R}^{n}$ and a real number α, if the set $H=\{x$: $(x, u)=\alpha\}$ is a hyperplane, then the half-spaces bounded by H are $H^{+}=\{x$: $(x, u) \geq \alpha\}$ and $H^{-}=\{x:(x, u) \leq \alpha\}$. H is called a supporting hyperplane of a polytope Δ if $\Delta \cap H \neq \emptyset$ and $\Delta \subseteq H^{-}$or $\Delta \subseteq H^{+}$. And if H is a supporting hyperplane of Δ, then we call $F=\Delta \cap H$ a face of Δ. By convention, \emptyset and Δ are called improper faces of Δ.

Let h be a positive integer and $\Delta=\operatorname{conv}\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ where $a_{i} \in \mathbb{Z}^{n}$. Then the dilation of $\Delta, h * \Delta$, is

$$
\begin{aligned}
h * \Delta & =\{h x: x \in \Delta\} \\
& =\left\{\sum \lambda_{i} a_{i}: \lambda_{i} \geq 0, \sum \lambda_{i}=h\right\} \\
& =\operatorname{conv}\left(h a_{1}, \ldots, h a_{m}\right)
\end{aligned}
$$

We recall some elementary facts without proof. The details can be found in [3], [5], and [14].

Proposition 1. We have the following:

1. Every polytope is a compact set.
2. Every polytope is the convex hull of its vertices.
3. If a polytope can be written as the convex hull of a finite point set S, then the finite set S contains all the vertices of the polytope, i.e., all the vertices of the polytope belong to S.
4. Let Δ be a polytope and V be the set of all vertices of Δ (called the vertex set). Let F be a face of Δ. Then the face F is again a polytope, with its vertex set $F \cap V$.
5. Every intersection of faces is a face of the polytope.

Proposition 2. Let Δ be a polytope in \mathbb{R}^{n} of dimension n. Then the following are equivalent for $x \in \Delta$:

1. x is not contained in a proper face of Δ.
2. x can be represented in the form $x=\sum_{i=0}^{n} \lambda_{i} x_{i}$ for $n+1$ affinely independent points $x_{0}, x_{1}, \ldots, x_{n} \in \Delta$ with each $\lambda_{i}>0$ and $\sum_{i=0}^{n} \lambda_{i}=1$.

If one of the conditions in Proposition 2 holds, then the point is called an interior point of Δ. It can be checked that this definition agrees with the usual definition of interior points in topology. The boundary of Δ, written $\partial(\Delta)$, is the union of all proper faces of Δ.

Assume that $\Delta \subseteq \mathbb{R}^{n}$ is an n-dimensional nonempty lattice polytope, and h is a positive integer. Then Ehrhart [4] showed that there is a polynomial $p(h)$, called the Ehrhart polynomial, such that

$$
\left|(h * \Delta) \cap \mathbb{Z}^{n}\right|=p(h)
$$

where

$$
p(h)=\operatorname{Vol}(\Delta) h^{n}+\frac{\operatorname{Vol}(\partial(\Delta))}{2} h^{n-1}+\cdots+1
$$

Here, $\operatorname{Vol}(\partial(\Delta))$ is "the surface area of Δ normalized with respect to the sublattice on each face of Δ." For details, see [2].

If $\Delta=\operatorname{conv}(A)$ where A is a finite set of integral points in some \mathbb{R}^{n}, then $\left|(h * \Delta) \cap \mathbb{Z}^{n}\right| \geq|h A|$. Now we can consider the growth of $h A$ instead. Nathanson [9] proved the following theorem.

Theorem 3. Let $k \geq 2$ and let $A=\left\{a_{1}, \ldots, a_{k}\right\}$ be a finite set of integers such that

$$
0=a_{1}<a_{2}<\cdots<a_{k} \text { and } \operatorname{gcd}\left(a_{2}, \ldots, a_{k}\right)=1
$$

Then there exists integers c and d and sets $C \subseteq[0, c-2]$ and $D \subseteq[0, d-2]$ such that

$$
h A=C \cup\left[c, h a_{k}-d\right] \cup\left(h a_{k}-D\right)
$$

for all sufficiently large h.
In particular, the growth of $|h A|$ is a linear function when A is a normalized subset of integers. When we have $A_{1}, A_{2}, \ldots, A_{r}$ and B as finite subsets of \mathbb{N}_{0}, normalized similarly as above, then Han, Kirfel, and Nathanson [6] showed that $\mid B+h_{1} A_{1}+\cdots+$ $h_{r} A_{r} \mid$ is a multilinear function of h_{1}, \ldots, h_{r} eventually. If $A_{1}, A_{2}, \ldots, A_{r}$ and B are finite subsets of an abelian semigroup which contains 0 , then $\left|B+h_{1} A_{1}+\cdots+h_{r} A_{r}\right|$ is a polynomial of h_{1}, \ldots, h_{r} for all sufficiently large h_{1}, \ldots, h_{r}. This was proven by Khovanskiĭ [7] when $r=1$, and by Nathanson [10] for $r \geq 2$. And if A, B are finite subsets of an abelian group without elements of finite order, then Khovanskiř [7] computed the degree and the leading coefficient of the polynomial above.

In this paper, we will consider the growth of sumsets from geometric point of view.

2. Khovanskiî's Work

Before we talk about our main theorem, let us see what Khovanskiĭ did in his paper [7]. Let A be a finite subset of $\mathbb{Z}^{n}, A=\left\{a_{1}, \ldots, a_{m}\right\}$, with $|A|=m$ and $\Delta=\operatorname{conv}(A)$. Also assume that A generate \mathbb{Z}^{n} as a group.

Lemma 4. There exists a constant C with the following property: for all linear combination $\sum \lambda_{i} a_{i}$ of $a_{i} \in A$ with real coefficients λ_{i} such that $\sum \lambda_{i} a_{i}$ is an integral point, there exists a linear combination $\sum n_{i} a_{i}$ of a_{i} with integer coefficients such that $\sum n_{i} a_{i}=\sum \lambda_{i} a_{i}$, with $\sum\left|n_{i}-\lambda_{i}\right|<C$.

Proof. Let $X=\left\{x: x \in \mathbb{Z}^{n}, x=\sum \lambda_{i} a_{i}\right.$, with $\left.0 \leq \lambda_{i} \leq 1\right\}$, which is a finite set. Since A generate \mathbb{Z}^{n}, each $x \in X$ can be written as $x=\sum_{i=1}^{m} n_{i}(x) a_{i}$, where $n_{i}(x) \in \mathbb{Z}$. So for each $x \in X$, we fix one representation $\sum_{i=1}^{m} n_{i}(x) a_{i}$ with $n_{i}(x) \in \mathbb{Z}$. Let $q=\max _{x \in X} \sum_{i=1}^{m}\left|n_{i}(x)\right|$ and let $C=m+q$, a positive integer.

Then for any $z=\sum \lambda_{i} a_{i} \in \mathbb{Z}^{n}, x=z-\sum\left[\lambda_{i}\right] a_{i} \in X$. So $x=\sum_{i=1}^{m} n_{i}(x) a_{i}$ with $n_{i}(x) \in \mathbb{Z}$ and $z=\sum_{i=1}^{m}\left(n_{i}(x)+\left[\lambda_{i}\right]\right) a_{i}=\sum_{i=1}^{m} \lambda_{i} a_{i}$ with $\sum\left|n_{i}(x)+\left[\lambda_{i}\right]-\lambda_{i}\right|<$ $\sum_{i=1}^{m}\left(\left|n_{i}(x)\right|+1\right) \leq q+m=C$.

Let h be a positive integer and assume $0 \in A$. Then

$$
\Delta=\left\{\sum \lambda_{i} a_{i}: \lambda_{i} \geq 0, \sum \lambda_{i} \leq 1\right\}
$$

and

$$
h * \Delta=\left\{\sum \lambda_{i} a_{i}: \lambda_{i} \geq 0, \sum \lambda_{i} \leq h\right\} .
$$

Define

$$
\Delta(h, C)=\left\{\sum \lambda_{i} a_{i}: \lambda_{i} \geq C, \sum \lambda_{i} \leq h-C\right\}
$$

with C as in Lemma 4.
Then, if $x=\sum \lambda_{i} a_{i} \in \Delta(h, C)$, let $\lambda_{i}=\alpha_{i}+C, \alpha_{i} \geq 0$. So

$$
\begin{aligned}
\Delta(h, C) & =\left\{\sum\left(\alpha_{i}+C\right) a_{i}: \alpha_{i} \geq 0, \sum \alpha_{i} \leq h-C-m C\right\} \\
& =C \sum a_{i}+\left\{\sum \alpha_{i} a_{i}: \alpha_{i} \geq 0, \sum \alpha_{i} \leq h-C-m C\right\} \\
& =C \sum a_{i}+(h-C-m C) * \Delta
\end{aligned}
$$

Note $\Delta(h, C)$ is an empty set when $h<C+m C$, a single point $C \sum a_{i}$ when $h=$ $C+m C$, and a dilation of Δ translated by an integral point when $h \geq C+m C+1$.

If $x \in h * \Delta$, then $x=h\left(\sum \lambda_{i} a_{i}\right)$ where $\lambda_{i} \geq 0, \sum \lambda_{i}=1$, so $x=\sum \lambda_{i}\left(h a_{i}\right) \in$ $\operatorname{conv}(h A)$. Now, if $x \in \operatorname{conv}(h A)$, then

$$
\begin{aligned}
x & =\sum_{i} \lambda_{i}\left(a_{i}^{1}+\cdots+a_{i}^{h}\right), \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1 \\
& =h \sum_{i} \frac{\lambda_{i}}{h}\left(a_{i}^{1}+\cdots+a_{i}^{h}\right) \\
& =h \sum_{j, k} \mu_{j, k} a_{j}^{k} \quad \text { where } \mu_{j, k} \geq 0, \quad \sum_{j, k} \mu_{j, k}=\sum_{i} \frac{\lambda_{i}}{h} \cdot h=1
\end{aligned}
$$

by collecting terms for each a_{j}^{k}. So, $x \in h * \Delta$. Thus, $h * \Delta=\operatorname{conv}(h A)$. Also, $h * \Delta=\operatorname{conv}\left(h a_{1}, \ldots, h a_{m}\right)$.

Let $\mathbb{Z}^{n}(A)$ be the group generated by the differences of the elements of A.
Lemma 5. Assume $\mathbb{Z}^{n}(A)=\mathbb{Z}^{n}$, and $0 \in A$. Then, every integral point in $\Delta(h, C)$ belongs to the sumset $h A$.

Proof. Let z be an integral point in $\Delta(h, C)$. Then

$$
z=\sum \lambda_{i} a_{i}, \quad \lambda_{i} \geq C, \sum \lambda_{i} \leq h-C
$$

By Lemma 4, $z=\sum n_{i} a_{i}, n_{i} \in \mathbb{Z}, \sum\left|n_{i}-\lambda_{i}\right|<C$. If $n_{i}<0$ for some i, then $\left|n_{i}-\lambda_{i}\right|>C$, so every n_{i} must be nonnegative. And $\sum n_{i}=\sum\left|n_{i}\right|=\sum \mid n_{i}-\lambda_{i}+$ $\lambda_{i}\left|\leq \sum\right| n_{i}-\lambda_{i}\left|+\sum\right| \lambda_{i} \mid<C+h-C=h$. Thus $z=\sum n_{i} a_{i}, n_{i} \geq 0, \sum n_{i}<h$. Since $0 \in A$,

$$
h A=\left\{\sum n_{i} a_{i}: n_{i} \geq 0, \sum n_{i} \leq h\right\}
$$

and therefore $z \in h A$.

3. Main Theorem and Its Proof

Let K be the convex hull of $\left\{e_{o}, e_{1}, \ldots, e_{n}\right\}$ in \mathbb{R}^{n} where $e_{0}=0$, and e_{i} for $i \geq 1$ is the i th standard basis in \mathbb{R}^{n}. Then

$$
\begin{aligned}
h * K & =\left\{\sum_{i=0}^{n} \lambda_{i} e_{i}: \lambda_{i} \geq 0, \sum_{i=0}^{n} \lambda_{i} \leq h\right\} \\
& =\left\{\sum_{i=1}^{n} \lambda_{i} e_{i}: \lambda_{i} \geq 0, \sum_{i=1}^{n} \lambda_{i} \leq h\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
K(h, C) & =\left\{\sum_{i=0}^{n} \lambda_{i} e_{i}: \lambda_{i} \geq C, \sum_{i=0}^{n} \lambda_{i} \leq h-C\right\} \\
& =\left\{\sum_{i=1}^{n} \lambda_{i} e_{i}: \lambda_{i} \geq C, \sum_{i=1}^{n} \lambda_{i} \leq h-2 C\right\}
\end{aligned}
$$

Lemma 6. For any positive integer h, if a point in $h * K$ has the distance to $\partial(h * K)$ bigger than $2 C$, then it belongs to $K(h, C)$.

Proof. Let $z=\sum_{i=1}^{n} \lambda_{i} e_{i}, \lambda_{i} \geq 0, \sum \lambda_{i} \leq h$ be such a point. Note we have $h * K=H_{1}^{+} \cap \cdots \cap H_{n}^{+} \cap H_{n+1}^{+}$where hyperplanes $H_{i}=\left\{x_{i}=0\right\}$ for $i=1, \ldots, n$ and the hyperplane $H_{n+1}=\left\{x \in \mathbb{R}^{n}:(x, \mathfrak{u})=h\right\}$ where \mathfrak{u} is the vector in \mathbb{R}^{n} whose coordinates are all $1,(\cdot, \cdot)$ indicates an inner product in \mathbb{R}^{n}, and H_{i}^{+}denotes the closed half-space supported by the hyperplane H_{i}. So $h * K$ has its boundaries given by hyperplanes $H_{1}, \ldots, H_{n}, H_{n+1}$. Since $d\left(z, H_{i}\right)>2 C, \lambda_{i}>2 C$ for all $i=$ $1, \ldots, n$. Now, let $H=\{x:(x, \mathfrak{u})=h-2 C\}$, a hyperplane which is parallel to H_{n+1}. Let $z_{1} \in H$. Then, $z_{1}+t \mathfrak{u}, t \in \mathbb{R}$ is a ray starting from z_{1} that is perpendicular to H_{n+1}, and it will intersect H_{n+1} at, say, $t=t_{2}$. Then $z_{1}+t_{2} \mathfrak{u} \in H_{n+1}$, so $\left(z_{1}+t_{2} \mathfrak{u}, \mathfrak{u}\right)=h$, giving $t_{2}=2 C / n$. Thus, $d\left(H, H_{n+1}\right)=t_{2}|\mathfrak{u}|=2 C / \sqrt{n}$. Now take any point x which lies between H and H_{n+1}. Then $d\left(x, H_{n+1}\right)$ is given by the length of the line segment from x to H_{n+1} which is perpendicular to H_{n+1}. If you extend this line segment so that it joins H and H_{n+1}, the length of this extended line
segment, which is perpendicular to both H and H_{n+1}, gives $d\left(H, H_{n+1}\right)$. Therefore, $d\left(x, H_{n+1}\right)<d\left(H, H_{n+1}\right)=2 C / \sqrt{n}$ for any point x which lies between H and H_{n+1}. Therefore, any point in $h * K$ whose distance to H_{n+1} is bigger than $2 C / \sqrt{n}$ belongs to $H^{-}=\{x:(x, \mathfrak{u}) \leq h-2 C\}$. Therefore, $z \in H^{-}$, i.e., $\sum \lambda_{i} \leq h-2 C$. So $z \in K(h, C)$.

Now we state our main theorem.
Theorem 7. Suppose $\mathbb{Z}^{n}(A)=\mathbb{Z}^{n}$. Then, there exists a constant ρ with the following property: for any positive integer h, every integral point of $h * \Delta$ whose distance to $\partial(h * \Delta)$ is more than ρ belongs to the sumset $h A$.

In general, $h A$ is a subset of $(h * \Delta) \cap \mathbb{Z}^{n}$. Theorem 7 states that $h A$ takes all of the central region in $h * \Delta$.

Without loss of generality, we may assume $0 \in A$ because: if not, by Proposition 1 , all vertices of Δ belong to A. So take any $a \in A$ which is also a vertex of Δ, then take $\bar{\Delta}=\Delta-a$ so that $0 \in \bar{\Delta}$. Then $\bar{\Delta}=\operatorname{conv}(A-a)$ and $h * \bar{\Delta}=h * \Delta-h a=h * \operatorname{conv}(A-a)$. And, for any positive integer h, if $x \in(h * \Delta) \cap \mathbb{Z}^{n}$ with $d(x, \partial(h * \Delta))>\rho$, then $x-h a \in h * \bar{\Delta}$, and $d(x-h a, \partial(h * \bar{\Delta}))>\rho$ since a translation does not change the distance. Thus $x-h a \in h(A-a)=h A-h a$ according to our theorem. So $x \in h A$, proving our claim. Therefore, we will assume $a_{1}=0$ from now on.

Using the ideas described in Section 2, Khovanskiŭ stated Theorem 7 in his paper [7], but his proof contained an error. However, we can modify his idea to obtain the following theorem for the simplex.

Theorem 8. Suppose $\mathbb{Z}^{n}(A)=\mathbb{Z}^{n}$, and $A=\left\{a_{1}, a_{2}, \ldots, a_{n+1}\right\}$ are $n+1$ affinely independent points. Then there exists a constant ρ with the following property: for any positive integer h, every integral point of $h * \Delta$ whose distance to $\partial(h * \Delta)$ is more than ρ belongs to the sumset $h A$.

The affine hull $\operatorname{aff}(A)$ is an affine subspace, which is a translation of a linear subspace L, i.e., aff $(A)=x+L$ for some $x \in \mathbb{R}^{n}$. So $A \subseteq x+L$. Therefore, if $\mathbb{Z}^{n}(A)=\mathbb{Z}^{n}$, then $\operatorname{dim}(\operatorname{aff}(A))=\operatorname{dim} \Delta=n$.

Proof. Recall that we may assume $a_{1}=0$. Consider a linear mapping $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ where $\pi\left(e_{i}\right)=a_{i+1}$, i.e., $\pi(x)=T x$ where T is the matrix whose i th column is given by the coordinates of a_{i+1} for $i=1, \ldots, n$. Since $a_{2}-a_{1}, \ldots, a_{n+1}-a_{1}$ are linearly independent, i.e., a_{2}, \ldots, a_{n+1} are linearly independent, T is invertible so that π is injective. Also, $\pi(h * K)=h * \Delta$ and $\pi(K(h, C))=\Delta(h, C)$. By Proposition 1, every proper face of $h * K$ is the convex hull of up to n vertices, and so is every proper face of $h * \Delta$.

Now, suppose $x \in h * \Delta$ belongs to a convex hull of up to n vertices. Recall that every vertex belongs to the set $\left\{h a_{1}, \ldots, h a_{n+1}\right\}$ by Proposition 1. Thus,
x belongs to the convex hull of a proper subset of $\left\{h a_{1}, \ldots, h a_{n+1}\right\}$. Take, for example, $x=\sum_{i=1}^{n} \lambda_{i}\left(h a_{i}\right), \lambda_{i} \geq 0, \sum \lambda_{i}=1$ (other cases are similar). Assume x is an interior point. Then by Proposition $2, x$ can be written as

$$
\begin{aligned}
x=\sum_{j=1}^{n+1} \gamma_{j} x_{j}, \quad & \text { where } \sum \gamma_{j}=1, \\
& x_{j} \in h * \Delta=\operatorname{conv}\left(h a_{1}, \ldots, h a_{n+1}\right), \\
& x_{j} \text { are affinely independent } \\
& \text { and } \gamma_{j}>0 .
\end{aligned}
$$

Then $x_{j}=\sum_{l=1}^{n+1} \alpha_{l j}\left(h a_{l}\right)$ with $\sum_{l=1}^{n+1} \alpha_{l j}=1, \alpha_{l j} \geq 0$. So

$$
\begin{align*}
\sum_{i=1}^{n} \lambda_{i}\left(h a_{i}\right)= & \sum_{j=1}^{n+1} \sum_{l=1}^{n+1} \gamma_{j} \alpha_{l j}\left(h a_{l}\right) \tag{1}\\
& \text { where } \sum_{j=1}^{n+1} \sum_{l=1}^{n+1} \gamma_{j} \alpha_{l j}=1
\end{align*}
$$

Since $h a_{i}$ are affinely independent, the affine combinations of them are unique, so the coefficient of a_{n+1} in the right hand side of (1) must be 0 . Therefore, $\sum_{j=1}^{n+1} \gamma_{j} \alpha_{(n+1) j}=0$, but $\alpha_{l j} \geq 0$ and $\gamma_{j}>0$. So $\alpha_{(n+1) j}=0$ for all $j=1, \ldots, n+$ 1. Thus $x_{1}, \ldots, x_{n+1} \in \operatorname{aff}\left(h a_{1}, \ldots, h a_{n}\right)$, which means there are $n+1$ affinely independent vectors in the affine hull $\operatorname{aff}\left(h a_{1}, \ldots, h a_{n}\right)$, whose dimension is $n-1$, giving us a contradiction. Therefore, $x \in \partial(h * \Delta)$. Similarly, if $x \in h * K$ belongs to a convex hull of up to n vertices, $x \in \partial(h * K)$. Thus we have just proved that

$$
\partial(h * \Delta)=\{x \in h * \Delta: x \text { belongs to a convex hull of up to } n \text { vertices }\}
$$

and

$$
\partial(h * K)=\{x \in h * K: x \text { belongs to a convex hull of up to } n \text { vertices }\}
$$

Therefore, π maps $\partial(h * K)$ onto $\partial(h * \Delta)$.
Now, let $x \in h * \Delta$ be an integral point with $d(x, \partial(h * \Delta))>2 C\|\pi\|$ where $\|\pi\|$ is the norm of π. Since π is injective, we have a unique point $\pi^{-1}(x)$. Then, for any $\bar{y} \in \partial(h * K), \pi(\bar{y})=y \in \partial(h * \Delta)$ and

$$
\left|\pi^{-1}(x)-\bar{y}\right| \geq \frac{|x-y|}{\|\pi\|}>\frac{2 C\|\pi\|}{\|\pi\|}=2 C .
$$

Then, by Lemma $6, \pi^{-1}(x) \in K(h, C)$. Therefore, $x \in \Delta(h, C)$. Thus, by Lemma 5 , $x \in h A$.

Notice this proof is algebraic in nature. To prove Theorem 7 in its full strength, we had to use geometric arguments. For details, see [8]. In Section 1, we mentioned two equivalent definitions of a polytope (one is algebraic and the other is geometric). Each is used, in different ways, in our proofs for the geometric growth of sumsets.

Acknowledgment. The author thanks the referee for his/her helpful advice for improving this paper.

References

[1] J. Athreya and G. Margulis, Logarithm laws for unipotent flows, I, J. Mod. Dyn. 3 (2009), 359-378.
[2] M. Beck, and S. Robins, Computing the Continuous Discretely, Springer, 2007.
[3] A. Brøndsted, An Introduction to Convex Polytopes, Springer, 1983.
[4] E. Ehrhart, Sur un problème de géométrie diophantienne linéaire II, J. Reine Angew. Math. 227 (1967), 25-49.
[5] G. Ewald, Combinatorial Convexity and Algebraic Geometry, Springer, 1996.
[6] S. Han, C. Kirfel and M. B. Nathanson, Linear forms in finite sets of integers, Ramanujan J. 2 (1998), 271-281.
[7] A. G. Khovanskiŭ, The Newton polytope, the Hilbert polynomial and sums of finite sets(Russian), Funktsional. Anal. i Prilozhen. 26 (1992), no. 4, 57-63, 96; translation in Funct. Anal. Appl. 26 (1992), no.4, 276-281 (1993).
[8] J. Lee, Geometric structure of sumsets, preprint.
[9] M. B. Nathanson, Sums of finite sets of integers, Amer. Math. Monthly 79 (1972), 1010-1012.
[10] M. B. Nathanson, Growth of sumsets in abelian semigroups, Semigroup Forum 61 (2000), no. 1, 149-153.
[11] M. B. Nathanson, Bi-Lipshitz equivalent metrics on groups, and a problem in additive number theory, preprint.
[12] M. B. Nathanson, An inverse problem in number theory and geometric group theory, in: Additive Number Theory. Festschrift In Honor of the Sixtieth Birthday of Melvyn B. Nathanson, D. Chudnovsky and G. Chudnovsky (eds.), Springer, 2010, 249-258.
[13] M. B. Nathanson, Phase transitions in infinitely generated groups, and related problems in additive number theory, Number Theory. New York Seminar, to appear.
[14] G. M. Ziegler, Lectures on Polytopes, Springer, 1995

[^0]: ${ }^{1}$ This work was supported in part by grants from the City University of New York Collaborative Incentive Research Grant Program and the PSC-CUNY Research Award Program.

