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Abstract
One of the first concepts one meets in elementary number theory is that of the
multiplicative order. We give a survey of the literature on this topic emphasizing the
Artin primitive root conjecture (1927). The first part of the survey is intended for a
rather general audience and rather colloquial, whereas the second part is intended
for number theorists and ends with several open problems. The contributions in
the survey on ‘elliptic Artin’ are due to Alina Cojocaru. Wojciec Gajda wrote a
section on ‘Artin for K-theory of number fields,’ and Hester Graves (together with
me) on ‘Artin’s conjecture and Euclidean domains.’

–To the memory of John L. Selfridge (1927-2010)
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1. Introduction

Gauss [175] considered in articles 315-317 of his Disquisitiones Arithmeticae (1801)
the decimal expansion of numbers of the form 1

p
with p prime. For example, 1

7 =
0.142857142857 . . ., 1

11 = 0.090909 . . ..
These decimal expansions for p �= 2 and p �= 5 are purely periodic. It is easy to see

that the period is equal to the smallest positive integer k such that 10k ≡ 1(mod p).
This integer k is the multiplicative order of 10 modulo p and is denoted by ordp(10).
The integer k equals the order of the subgroup generated by 10 in (Z/pZ)∗, the
multiplicative subgroup of residue classes modulo p. By Lagrange’s theorem the
order of a subgroup of a finite group is a divisor of the number of elements in
the group. Since (Z/pZ)∗ has p − 1 elements, we conclude that ordp(10)|p − 1. If
ordp(10) = p−1, we say that 10 is a primitive root mod p. The decimal expansion we
have given for 1

7 shows that 10 is a primitive root mod 7. Gauss’ table gives several
other such examples and he must have asked himself whether there are infinitely
many such primes, that is, primes p for which the decimal period is p− 1.

Some light on this question can be shed on using the simple observation (due to
Chebyshev) that if q = 4p+1 is a prime with p a prime satisfying p ≡ 2(mod 5), then
10 is a primitive root modulo q. Note that, a priori, ordq(10) ∈ {1, 2, 4, p, 2p, 4p}.
Now, using the law of quadratic reciprocity (see, e.g., Lemmermeyer [291]), one
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deduces that

102p
≡

�
10
q

�
=

�
2
q

��
5
q

�
= (−1)

q2−1
8

�q

5

�
= −

�
4
5

�
≡ −1(mod q),

where we also used that q ≡ 4(mod 5) and q ≡ 5(mod 8). Since no prime divisor of
104−1 satisfies the requirements (and hence ordq(10) � 4), one sees that ordq(10) =
4p = q − 1.

The logarithmic integral Li(x) is defined as
� x

2 dt/ log t. By partial integration
one has that Li(x) ∼ x/ log x (i.e. the quotient of the r.h.s. and l.h.s. tends to 1 as
x tends to infinity). The prime number theorem in the form

π(x) := #{p ≤ x} ∼ Li(x), x→∞,

suggests that the ‘probability that a number n is prime’ is 1/ log n. (Then we expect�
2≤n≤x

1/ log n primes ≤ x and asymptotically this is equal to Li(x).) Thus for
both n and 4n + 1 to be prime and n ≡ 2(mod 5) we expect a probability of
1/(5 log2 n), assuming independence of these three events. Since they are not, we
have to correct by some positive constant c and hence expect that up to x there are
at least cx/log2 x (note that

�
2≤n≤x

log−2 n ∼ x log−2 x) primes p such that 10 is
a primitive root mod p. Hence we expect that there are infinitely many primes p
having 10 as a primitive root mod p. This conjecture is commonly attributed to
Gauss, however, to the author’s knowledge there is no written evidence for it.

Emil Artin in 1927, led by a partial heuristic argument (sketched in §4), made
the following conjecture, where for a given g ∈ Q∗ we define

P(g) = {p : ordp(g) = p− 1} and P(g)(x) = #{p ∈ P(g) : p ≤ x}.

(In general, if S is a set, we define S(x) = #{s ∈ S : s ≤ x}.)

Conjecture 1. (Artin’s primitive root conjecture (1927)). Let g ∈ Q\{−1, 0, 1}.
(Qualitative form) The set P(g) is infinite if g is not a square of a rational number.
(Quantitative form) Let h be the largest integer such that g = gh

0 with g0 ∈ Q. We
have, as x tends to infinity,

P(g)(x) =
�

q�h

�
1−

1
q(q − 1)

��

q|h

�
1−

1
q − 1

�
x

log x
+ o

�
x

log x

�
. (1)

Here an Euler product
�

q
f(q) appears, where f(q) = 1 + O(q−2) (to ensure

convergence) and q runs over the primes. We will come across many more Euler
products in this paper. Usually they have an interpretation as a density.

Write the main term in (1) as A(h)x/ log x. In case h is even, A(h) = 0 and,
furthermore, clearly P(g) is finite and hence assertion (1) is trivial. Thus the
condition that g is not a square is necessary (and according to Artin sufficient) for
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P(g) to be infinite. For h odd we have that A(h) equals a positive rational multiple
of

A(1) = A =
�

q

�
1−

1
q(q − 1)

�
= 0.3739558136192 . . . ,

the Artin constant. Thus the quantitative form implies the qualitative form.
The product defining the Artin constant does not converge quickly. It turns out

that for numerical approximations it is possible and indeed much more efficient to
write A =

�∞
k=2 ζ(k)−ek , with ek ∈ N and ζ(s) =

�∞
n=1 n−s the celebrated Rie-

mann zeta function. This then allows one to determine A without too much effort
with a precision of 1000 decimals, as zeta values can be easily evaluated with high
numerical precision. This method applies to all Euler products that occur in the
sequel, cf. [22, 95, 157, 341].

Usually one speaks about the Artin primitive root conjecture, rather than Artin’s
conjecture since there are various unresolved conjectures due to Artin (most notably
the Artin holomorphy conjecture). Indeed, there are even papers where both these
conjectures make an appearance, e.g. [321].

The starting point of our analysis of Artin’s primitive root conjecture is the
following observation :

p ∈ P(g) ⇐⇒ g
p−1

q �≡ 1(mod p) for every prime q dividing p− 1. (2)

“=⇒” Obvious.
“⇐=” Suppose p /∈ P(g). Then g

p−1
k ≡ 1(mod p) for some k|(p − 1), k > 1. But

this implies that g
p−1
q1 ≡ 1(mod p) for some prime divisor q1 of k. This is a contra-

diction.
Thus, associated with a prime p we have conditions for various q. We are going

to interchange the role of p and q; that is, for a fixed q we consider the set of primes
p such that p ≡ 1(mod q) and g

p−1
q �≡ 1(mod p).

This set of primes can be considered heuristically (§2), but also studied on in-
voking (analytic) algebraic number theory and hence we make a brief excursion to
this area (§3) before taking up our Artinian considerations in §4 again.

Remark 1. Instead of asking whether infinitely often the period length is maximal,
one might ask the easier question of whether infinitely often the period length is
even. Here the answer is yes and much more is known. We come back to this in §9.2.

Remark 2. There is more to decimal expansions than meets the eye. For example,
Girstmair [177] proved that if a prime p is such that its decimal expansion 1/p =
0.x1x2 . . . xp−1x1 . . . has period p − 1, then the difference between the sums of its
even and odd places, namely (x2+x4+. . .+xp−1)−(x1+x3+. . .+xp−2), is 11hQ(

√
−p)
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if p ≡ 3(mod 4) and is zero otherwise, where hQ(
√
−p) denotes the so-called class

number of the imaginary quadratic number field Q(
√
−p) (number fields are briefly

discussed in §3.) For a variation of this result involving
�p−1

k=1(−1)kxkxk+r see
Aguirre and Peral [2]. Hirabayashi [232] generalized Girstmair’s formula to all
imaginary abelian number fields. Ram Murty and Thangadurai [380] generalized
Girstmair’s result to the case where the period is (p − 1)/r, where now r > 1 is
also allowed. Here generalized Bernoulli numbers B1,χ enter the picture. Other
examples are provided in §9.2 and Khare [256].

Historical remark. To the modern number theorist it is a bit strange that Gauss
spent such an effort on the rather recreational topic of decimal periods. However,
Bullynck [54] points out that this was a German research topic (1765-1801), and
that the young Gauss, being aware of these developments, placed the whole theory
on a firm number-theoretic foundation, thereby solving most of the problems left by
the mathematicians before him. One might have expected him to raise the question
of whether the period is maximal for infinitely many primes. There does not seem
to be evidence for this. As Bullynck (personal communication) points out, this kind
of existential question is not typical for 18th century mathematics.

In Hasse’s mathematical diary (Tagebuch) of the year 1927 there is (information
provided by Roquette) an entry entitled “Die Dichte der Primzahlen p, für die a
primitive Wurzel ist (nach mündlicher Mitteilung von Artin 13. IX. 27)” under the
date of 27 Sep. 1927. Although the Artin conjecture presumably predates the 13th
of September of 1927, for lack of written evidence of this, the author takes the 13th
of September of 1927 to be its birthday.

The Artin conjecture has already been formulated before Artin. It can already
be found in a paper of Cunningham [117], but, in contrast to Artin, Cunningham’s
insights into the problem do not seem to go beyond numerical observations. Today
Cunningham is best known for the Cunningham Project which seeks to factor the
numbers bn ± 1 for b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers n; see, e.g., [484].

Warning. This survey aims to be fairly complete, but still it reflects the (un)famil-
iarity of its author with various aspects of the topic. He sought to compensate for
this in some cases by inviting a ‘guest surveyor’ to write something on aspects not
so familiar to him, where there is a more extensive literature available.

2. Naive Heuristic Approach

Fix any prime q. We try to compute the density of primes p such that both
p ≡ 1(mod q) and g

p−1
q ≡ 1(mod p). The prime number theorem for arithmetic
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progressions states that, as x tends to infinity,

π(x; d, a) :=
�

p�x
p≡a(mod d)

1 ∼
x

ϕ(d) log x
. (3)

The residue classes a(mod d) with (a, d) = 1 are said to be primitive. Note that
given an integer d, with finitely many exceptions, a prime must be in a primitive
residue class modulo d. Since there are ϕ(d) primitive residue classes modulo d, (3)
says that the primes are asymptotically equidistributed over the primitive residue
classes modulo d (in view of the prime number theorem). Dirichlet’s theorem (1837)
is the weaker statement that any primitive residue class contains infinitely many
primes.

By (3) p ≡ 1(mod q) holds true for primes p with frequency 1/ϕ(q) = 1/(q − 1).
Recall Fermat’s little theorem which asserts that gp−1 ≡ 1(mod p) if p � g. Using
this we infer, in case p � g, that g

p−1
q is a solution of xq ≡ 1(mod p). We expect

there to be q solutions and we want a solution to be 1 modulo q. Thus we expect to

be successful with probability 1
q
, except when q|h. Then g

p−1
q = g

h
p−1

q

0 ≡ 1(mod p),
trivially. If we assume that these events are independent, then the probability that
both events occur is 1

q(q−1) if q � h and 1
q−1 otherwise.

By (2) the above events should not occur for any q in order to ensure that
p ∈ P(g). This suggests a natural density of

�

q�h

�
1−

1
q(q − 1)

��

q|h

�
1−

1
q − 1

�
= A(h)

for such primes and hence we expect (1) to hold true.

3. Algebraic Number Theory

In order to understand Artin’s approach to his conjecture we need some facts about
algebraic number theory. We say α is algebraic over Q if it satisfies an equation
of the form f(α) = 0 with f(x) ∈ Z[x]. We say α is an algebraic integer over Q
if it satisfies an equation of the form f(α) = 0, where f(x) ∈ Z[x] is monic. A
number field over Q is a field obtained by adjoining finitely many algebraic numbers
α1, . . . ,αs to Q. That is, K = Q(α1, . . . ,αs). By Q(α1, . . . ,αs) we denote the
smallest field containing α1, . . . ,αs and Q. The so-called theorem of the primitive

element asserts that for a given number field K there exists an algebraic integer
α such that K = Q(α). The element α is said to be a primitive element. For
an algebraic integer α let fα(x) be the unique (as it turns out) monic polynomial
fα(x) of smallest degree such that fα(α) = 0. Then K = Q(α) is isomorphic to
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Q[x]/(fα(x)). The degree [K : Q] of K is defined as degfα(x). The compositum of
two fields K and L is defined as the smallest field containing both K and L.

Example. Let α = i. Then fi(x) = x2 + 1. Note that Q[x] contains elements of
the form

�m

j=0 ajxj . These elements correspond with an element in Q[x]/(x2 + 1)
obtained by replacing every x2 by −1. Thus, as a set, Q[x]/(x2 + 1) ∼= {a + bx |

a, b ∈ Q}. Similarly, as a set, Q(i) = {a + bi | a, b ∈ Q}. It is not difficult to see
that a field isomorphism between Q(i) and Q[x]/(x2 +1) is given by sending x to i.

For a general number field K, we have the following picture :

Q(α) = K ⊃ OK

∪ ∪

Q ⊃ Z

Here OK is the ring of integers of the field K. It plays a role analogous to that
of Z in Q (in our example OK is Z[i] = {a + bi|a, b ∈ Z} the ring of Gaussian

integers). The main theorem of arithmetic states that, up to the order of factors,
factorisation into primes in Z is unique. One might hope for a ring inside K with
similar properties. Let us consider the set of algebraic integers over Q that are
inside K. This set is actually a ring, the ring of integers, OK , of K. It usually does
not have unique factorization in elements. It, however, has unique factorization into
terms of prime ideals (up to order of factors). The prime ideal (p) in Z turns out
to factor as P

e1
1 . . .P

eg
g inside OK . The equivalent statement of p = #Z/pZ in Z,

reads in OK : pfi = #OK/PiOK . Here fi is called the degree of the prime ideal Pi.
More generally, #OK/aOK , notation Na is the norm of the ideal a. We have the
relationship

�g

i=1 eifi = n, with n the degree of K. We say that a rational prime p
splits completely in OK if ei = fi = 1 for i = 1, . . . , g. Note that in this case g = n.
If a prime p splits completely in the ring of integers OK , with K ∼= Q[x]/(f(x)),
then over Z/pZ, f(x) splits into n distinct linear factors.

3.1. Analytic Algebraic Number Theory

Let O run through the non-zero integral ideals of OK , with K a number field. For
�(s) > 1, we define ζK(s) =

�
O

NO−s and elsewhere by analytic continuation.
Note that if K = Q, then ζK(s) = ζ(s), the usual Riemann zeta-function. For
�(s) > 1 we have an Euler product, ζK(s) =

�
P

(1−NP−s)−1, where the product
runs over all prime ideals P of OK . In 1903, Landau proved the Prime Ideal

Theorem to the effect that

πK(x) :=
�

NP�x

1 ∼ Li(x), x→∞.

Assuming the Riemann Hypothesis (RH) for the field K; that is, assuming that
all the non-trivial zeros of ζK(s) are on �(s) = 1

2 , one obtains the much sharper
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estimate
πK(x) = Li(x) + OK(

√
x log x), x→∞, (4)

where the implied constant depends at most on K. (For Landau’s big O-notation
and related notation like Ω(x) we refer to any introductory book on analytic number
theory, e.g., [11, 330, 473].)

In the analysis of Artin’s primitive root conjecture an infinite family of fields will
play a role and we need an error term in (4) that is explicit in its dependency on
K. Such a result was folklore and finally written down by Lang [282]:

πK(x) = Li(x) + O(
√

x log(x[K:Q]
|DK |)), (5)

where DK denotes the discriminant of the field K.
The function πK(x) is heavily biased towards prime ideals of degree one:

πK(x) =
�

NP�x
NP=p

1 +
�

NP�x

NP=p2

1 + · · ·

=
�

NP�x
NP=p

1 + O([K : Q]
�

pj�x

j�2

1) =
�

NP�x
NP=p

1 + O([K : Q]
√

x).

In Artin’s problem one is specifically interested in so-called normal fields. For
such a field all prime ideals of degree one, with at most finitely many exceptions,
come from rational primes p that split completely. Throwing out these exceptions
we have the following picture :

P1P2 . . .Pn

. . .
... . .

.

p1

P�1P
�
2 . . .P�n

. . .
... . .

.

p�1

(A [K : Q]-fold covering of the rational primes.) Thus, for a normal field we have

πK(x) = [K : Q]
�

p�x
p splits completely in K

1 + O([K : Q]
√

x log x),

that is, by the Prime Ideal Theorem,

�

p�x
p splits completely in K

1 ∼
1

[K : Q]
x

log x
, x→∞. (6)

This is a particular case of a very important result called the Chebotarev density the-

orem. For a nice introductory account see Lenstra and Stevenhagen [470]. Another
recommendable paper (research level) on this topic is a paper by Serre [454].
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Example. (Cyclotomic fields). A cyclotomic field K is a field of the form K =
Q(ζn) with ζn = e2πi/n and n a natural number. One can show that

fζn(x) =
n�

a=1
(a,n)=1

(x− ζa

n) = Φn(x) ∈ Z[x].

The polynomial Φn(x) is the nth cyclotomic polynomial. From this we deduce that
[Q(ζn) : Q] = deg Φn(x) = ϕ(n). The cyclotomic fields are normal. It can be shown
that p splits completely in K if and only if p ≡ 1(mod n), if and only if xn−1 factors
completely over Z/pZ.

Applying (6) we deduce that
�

p�x
p≡1(mod n)

1 ∼
x

ϕ(n) log x
, x→∞,

a particular case of (3). The same result can be deduced for every primitive residue
class modulo n on invoking Chebotarev’s density theorem. Thus the Chebotarev
density theorem implies the prime number theorem for arithmetic progressions (3).

4. Artin’s Heuristic Approach

We have now assembled the required preliminaries to continue the story on the
progress made on Artin’s primitive root conjecture. Remember that we are inter-
ested in the set of all primes p satisfying

p ≡ 1(mod q), g
p−1

q ≡ 1(mod p),

where q is any fixed prime. By what we have learned about cyclotomic fields the
primes p ≡ 1(mod q) are precisely those for which the equation xq ≡ 1(mod p)
has q distinct solutions mod p. Claim: if g

p−1
q ≡ 1(mod p), then xq ≡ g(mod p)

has a solution mod p. To see this, write g = γa with γ a primitive root mod p.
Then γa

p−1
q ≡ 1(mod p). A power of a primitive root can only be congruent to

1(mod p) if the exponent is a multiple of p − 1, hence q|a. This implies a = bq.
Then (γb)q ≡ g(mod p) and this proves the claim. Let α1, . . . ,αq be the distinct
mod p solutions of xq ≡ 1(mod p). Then we see that α1γb, . . . ,αqγb are all distinct
solutions of xq ≡ g(mod p). We conclude that a prime which satisfies p ≡ 1(mod q)
and g

p−1
q ≡ 1(mod p) splits completely in the number field

kq := Q(ζq, g
1
q ). (7)

(Note that it does not make a difference which qth root of g we take, since we
always end up with the same field.) We leave it to the reader to show that if p splits
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completely in kq, then p ≡ 1(mod q) and g
p−1

q ≡ 1(mod p). Thus we have

p ≡ 1(mod q), g
p−1

q ≡ 1(mod p) ⇐⇒ p splits completely in kq.

Let us denote the degree of kq by n(q). It is not difficult to show that kq is normal.
Hence we may apply (6) to deduce that the number of primes p ≤ x that do not
split completely in kq equals (1 − 1/n(q))x/ log x, asymptotically. So one expects�

q
(1− 1/n(q)) as the density of primes p for which g is a primitive root mod p.
This heuristic argument was thought to be plausible until about 1960, when the

Lehmers [289] made some numerical calculations that did not seem to always match
with Artin’s heuristic. Then, in 1968, Heilbronn realized that the events ‘p does
not split completely in kq’ are not necessarily independent as p and q range through
all primes and published a corrected quantitative conjecture. Artin, however, made
this correction much earlier, namely in 1958 in a letter to the Lehmers in a response
to a letter of the Lehmers regarding his numerical work. Artin did not publish
his corrected conjecture, nor did the Lehmers refer to Artin in their paper [289],
although they give the correction factor. As late as 1964 Hasse provided a correction
factor in the 1964 edition of his book [217] that is incorrect if g ≡ 1(mod 4) is not

a prime. For some excerpts of the correspondence between Artin and the Lehmers,
see Stevenhagen [468].

Take for example g = 5, thus h = 1 (with h defined as in Conjecture 1). Then
k2 = Q(

√
5) � k5 = Q(ζ5, 51/5), i.e. k2 is a subfield of k5 (since

√
5 = ζ5 − ζ2

5 −

ζ3
5 + ζ4

5 ). Now if K � L and p splits completely in L, then p must split completely
in K. This means that the condition ‘p does not split completely in k2’ implies the
condition ‘p does not split completely in k5’. So, assuming that there are no further
dependencies between the various conditions on q, we expect that

P(5)(x) ∼
�

q �=5

�
1−

1
n(q)

�
x

log x
∼

�

q �=5

�
1−

1
q(q − 1)

�
x

log x
, x→∞.

Note that the Euler product involved equals 20A/19. This turns out to be more
consistent with the numerical data than Artin’s prediction A.

5. Modified Heuristic Approach (à la Artin)

Recall that kq is defined in (7) for prime q. Let m be squarefree. We define km

to be the compositum of the fields kq with q|m and prime. It can be shown that
km = Q(ζm, g1/m). We are interested in the density of primes p that do not split
completely in any kq (if this exists). We can try to compute it by inclusion-exclusion.
So we start writing down 1− 1

n(2) −
1

n(3) · · · . However, we have counted double here
the primes p that split completely in both k2 and k3. It can be shown that the
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primes that split completely in both kn and km are precisely the primes that split
completely in klcm(n,m). Thus we have to add 1

n(6) . Continuing in this way we arrive
at the heuristic

P(g)(x) ∼
∞�

k=1

µ(k)
[Q(ζk, g1/k) : Q]

x

log x
, x→∞. (8)

Here µ is the Möbius function. It is defined by µ(1) = 1, and if n > 1, then
µ(n) = (−1)s, where s denotes the number of distinct prime factors of n if n is
squarefree, and µ(n) = 0 otherwise. If we are only interested in the primes p that
do not split completely in any of a finite set of number fields, then there would be
little to prove (by invoking Chebotarev’s theorem). It is the infinitely many q that
makes the problem hard.

Artin’s heuristic amounts to assuming that the fields kq1 and kq2 are linearly

disjoint over Q (i.e., kq1 ∩ kq2 = Q), for distinct primes q1 and q2. This has as a
consequence that [kq1q2 : Q] = [kq1 : Q][kq2 : Q] and in general for squarefree k that
n(k) = kϕ(k)/(k, h). Thus, according to Artin we should have

∞�

k=1

µ(k)
n(k)

=
∞�

k=1

µ(k)(k, h)
kϕ(k)

=
�

q�h

�
1−

1
q(q − 1)

��

q|h

�
1−

1
q − 1

�
= A(h),

where in the derivation of the last equality we used the fact (see, e.g., [330, Theorem
1.9]) that if f(k) is a multiplicative function, then

∞�

k=1

|f(k)| <∞⇒

∞�

k=1

f(k) =
�

q

(1 + f(q) + f(q2) + · · · ).

(A function f on the integers is called multiplicative if when (n,m) = 1, then
f(nm) = f(n)f(m).) It can be shown that if g �= −1 and g is not a square, then

∞�

k=1

µ(k)
n(k)

= cgA,

where cg > 0 is a rational number depending on g.
Let g �= −1 or a square. Hooley [238] proved in 1967 that if the Riemann

Hypothesis holds for the number fields Q(ζk, g1/k) with k squarefree, then we have

P(g)(x) =
x

log x

∞�

k=1

µ(k)
[Q(ζk, g1/k) : Q]

+ Og

�
x log log x

log2 x

�
(9)

and he explicitly evaluated the latter sum, say δ(g), as

δ(g) =






A(h) if d �≡ 1(mod 4);�
1− µ(|d|)

�
q|d
q|h

1
q−2

�
q|d
p�h

1
q2−q−1

�
A(h) otherwise, (10)
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with d the discriminant of Q(√g). For convenience we denote the assumption on
the fields Q(ζk, g1/k) made by Hooley as Hooley’s Riemann Hypothesis (HRH) and
the quantity x log log x/ log2 x as R(x).

6. Hooley’s Work

For simplicity we assume g = 2 and sketch Hooley’s proof [238]. The restriction
g = 2 allows us to focus exclusively on the analytical aspects, the algebraic aspects
being discussed elsewhere in this survey.

A large part of his paper is devoted to proving an estimate for

P (x, l) = #{p � x : p splits completely in kl},

for which the implied constant in the error term does not depend on l. His result
on this is a special case of the result (5) of Lang [282] (proven a few years later):

P (x, l) =
Li(x)

[kl : Q]
+ O(

√
x log(lx)), (11)

where we assume the Riemann Hypothesis for kl. Another quantity needed is

N(x, η) = #{p � x : p does not split completely in kq, ∀q � η}.

By inclusion-exclusion we have N(x, η) =
�

l� µ(l�)P (x, l�), where l� ranges over all
divisors of

�
q�η

q. Note that, for η large enough,
�

q�η

q = e
�

q�η log q � e2η,

where we used that
�

q�η
log q ∼ η (which is equivalent with the prime number

theorem). Observe that P(2)(x) = N(x, x− 1). The problem in estimating N(x, η)
is that by using inclusion-exclusion and (11) we can only estimate N(x, η) for rather
small η, whereas one would like to take η = x − 1 and so we are forced to work
with N(x, η) for η rather smaller than x. We will actually choose η = 1

6 log x
and thus l� < e2η = x1/3 (for x large enough). Let us introduce a third quantity
M(x, η1, η2) = #{p � x : p splits completely in some kq, η1 < q < η2}. It is easy to
see that N(x, ξ1)−M(x, ξ1, ξ2)−M(x, ξ2, ξ3)−M(x, ξ3, x−1) � P(2)(x) � N(x, ξ1),
that is,

P(2)(x) = N(x, ξ1) + O(M(x, ξ1, ξ2)) + O(M(x, ξ2, ξ3)) + O(M(x, ξ3, x− 1)).

We will choose ξ1 = 1
6 log x, ξ2 =

√
x log−2 x and ξ3 =

√
x log x. Note the small

gap between ξ2 and ξ3. This is the ‘hard region’ and unfortunately it seems out of
reach to close it, and work say with

P(2)(x) = N(x, ξ1) + O(M(x, ξ1, ξ2)) + O(M(x, ξ2, x− 1)).
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Now using the estimate for P (x, l) one easily arrives at

N(x, ξ1) = Li(x)
�

l��x
1
3

µ(l�)
l�ϕ(l�)

+ O

�
x

log2 x

�

= ALi(x) + O

�
x

log2 x

�

Again using the estimate for P (x, q) we arrive at

M(x, ξ1, ξ2) �
�

ξ1�q�ξ2

P (x, q) = O

�
x

log2 x

�
.

In the region (ξ2, ξ3) we use the fact that the primes p counted by P (x, q) certainly
satisfy p ≡ 1(mod q). Thus P (x, q) � π(x, q, 1). Then using the Brun-Titchmarsh
estimate

π(x, q, 1) <
2x

ϕ(q) log(x/q)
, 1 � q < x,

we obtain

M(x, ξ2, ξ3) �
�

ξ2�q�ξ3

P (x, q) �
�

ξ2�q�ξ3

π(x, q, 1) = O(
x

log x

�

ξ2≤q≤ξ3

1
q
).

Using a result of Mertens to the effect that

�

p≤x

1
p

= log log x + constant + O(
1

log x
),

it then follows that �

ξ2≤p≤ξ3

1
p

= O
� log log x

log x

�

and hence M(x; ξ2, ξ3) = O(R(x)). Finally, if a prime p is counted by M(x, ξ3, x−1),
then its order is less than x

ξ3
=

√
x

log x
and thus it divides 2m − 1 for some m <

√
x/ log x. Now

2M(x,ξ3,x−1) <
�

p counted by M(x,ξ3,x−1)

p �
�

m<

√
x

log x

(2m
− 1).

Thus
M(x, ξ3, x− 1) <

�

m<

√
x

log x

m = O

�
x

log2 x

�
.

On gathering all terms we obtain P(2)(x) = ALi(x) + O(R(x)).
Repeating this argument for arbitrary g �= −1 or a square, we arrive at (9) under
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HRH, which implies the truth of the qualitative form of Artin’s primitive root con-
jecture and a modified form of the quantitative version. This completes the sketch
of the proof.

Vinogradov [482] has shown that unconditionally

P(g)(x) ≤ δ(g)π(x) + Og

�x(log log x)2

log5/4 x

�
, (12)

where δ(g) is the density of primitive roots as determined by Hooley (given by (10)).
Vinogradov’s proof contains some small errors that have been corrected by Van der
Waall [478]. Wiertelak [501] has established a version of this result (with a larger
error term, however), where he made the g dependence of the error explicit.

6.1. Unconditional Results

If one asks for unconditional results, the state of affairs is quite appalling. There
is no known number g for which P(g) is known to be infinite! In 1986, however,
Heath-Brown [222] proved (improving on earlier fundamental work by Gupta, Ram
Murty and Srinivasan [202, 379]) a result which implies that there are at most two
primes q1 and q2 for which P(q1) and P(q2) are finite and at most three squarefree
numbers s1, s2 and s3 for which P(s1), P(s2) and P(s3) are finite.

Remember the observation that if q = 4p + 1 and p ≡ 2(mod 5), then q ∈ P(10).
Sieve theory cannot prove presently that there are infinitely many such primes.
However, the so-called lower bound sieve method combined with the Chen-Iwaniec
switching method gave rise to� x log−2 x primes p � x such that either p−1 = 2eq
for some prime q or p − 1 = 2eq1q2 with pα < q1 < pδ for some α > 1

4 and δ < 1
2 .

This together with a rather elementary argument, is then enough to establish Heath-
Brown’s result.

Reznikov and Moree [428] established a variant of Heath-Brown’s result and used
it to make considerable progress regarding a conjecture of Lubotzky and Shalev to
the extent that for all d sufficiently large the number of subgroups of index d in the
fundamental group π1(M) of a hyperbolic three manifold M is at least edc(M), for
some positive constant c(M) depending at most on M .

Skolem has raised the question of whether all the integral solutions of X1X2 −

X3X4 = 1 can be obtained from a fixed polynomial solution by letting the variables
run through Z and expressed his belief in favour of a negative answer. Zannier
[506] has shown that if one not only considers solutions in integers, but those in
S-integers, where S is a finite set of places, then for a suitable finite S the answer
to Skolem’s question is positive. His proof makes use of a fundamental lemma, the
proof of which makes use of a variation of Heath-Brown’s arguments.
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6.1.1. Variants for Quadratic Fields

Narkiewicz [385] proved the unconditional result, valid for a certain subclass of
abelian number fields, that if a1, a2, a3 are multiplicatively independent integers
in OK with their norms satisfying certain conditions, then at least one of the num-
bers a1, a2, a3 is a primitive root for infinitely many prime ideals of K of the first
degree. The proof uses ideas from the papers by Gupta and Ram Murty [202] and
Heath-Brown [222].

Given a nontrivial unit in a real quadratic number field, for a rational prime p
which is inert in the field the maximal order of the unit modulo p is p + 1. An
extension of Artin’s conjecture is that there are infinitely many such inert primes
for which this order is maximal. This is known at present only under GRH. Un-
conditionally, J. Cohen [96] showed that for any choice of 7 units in different real
quadratic fields satisfying a certain simple restriction, at least one of these units
satisfies this version of Artin’s conjecture.

Given an algebraic number from a quadratic field, for a rational prime p which
is inert in the field the maximal order of the unit modulo p is p2 − 1. An extension
of Artin’s conjecture is that there are infinitely many such inert primes for which
this order is maximal. J. Cohen [97] recently showed that, given a quadratic field
K, for any choice of 85 algebraic numbers satisfying a certain simple restriction, at
least one of them has order modulo p at least (p2 − 1)/24 for infinitely many inert
primes p in K.

7. Probabilistic Model

Is there a probabilistic model for a prime p to be such that g is a primitive root
mod p? That is, does there exist a function fg(p) such that

�

p∈S, p�x

fg(p) ∼
�

p∈S, p�x

g is a primitive root mod p

1, (13)

where S must be a set of primes having a positive natural density.
There are ϕ(p− 1) primitive roots mod p and thus one could try to take fg(p) =

ϕ(p− 1)/(p− 1), assuming that the primitive roots are randomly distributed over
1, . . . , p − 1. Results of Elliott [130], Cobeli and Zaharescu [93], Rudnick and Za-
harescu [440] and Wang and Bauer [489] indeed all suggest that the distribution
of the primitive roots over 1, . . . , p − 1 is to a large extent governed by Poisson
processes. Thus we would hope to find something like

�

p�x

ϕ(p− 1)
p− 1

∼ P(g)(x), x→∞. (14)
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However, by Hooley’s theorem there are under HRH g1 and g2 such that P(g1)(x) �
P(g2)(x). Thus (14) cannot be true for all g. Let us not be deterred by this and
try to evaluate

�
p�x

ϕ(p−1)
p−1 . Note that ϕ(n)

n
=

�
p|n(1− 1

p
) =

�
d|n

µ(d)
d

. Thus

�

p�x

ϕ(p− 1)
p− 1

=
�

p�x

�

d|p−1

µ(d)
d

=
�

d�x

µ(d)
d

�

p≤x
p≡1(d)

1 =
�

d�x

µ(d)
d

π(x, d, 1).

Let c1 be a fixed real number. Then the estimate

π(x; d, a) =
Li(x)
ϕ(d)

+ O(xe−c2
√

log x) (15)

holds uniformly for all integers a and d such that (a, d) = 1 and 1 ≤ d ≤ logc1 x,
with c2 some positive constant. This is a well-known result due to Siegel and Walfisz
and sharpens (3). On applying it we obtain

�

p�x

ϕ(p− 1)
p− 1

= Li(x)
�

d�logc1 x

µ(d)
dϕ(d)

+ O

�
x

logc1 x

�
= ALi(x) + O

�
x

logc1 x

�
.

(This result is Lemma 1 in Stephens [466], an earlier argument along the same lines
is given in Pillai [418] who considered

�
p≤x

ϕ(p− 1).)
Recall that Artin’s heuristic answer was not always correct because it failed to

take into account quadratic interactions. So let us try to incorporate this into our
model. In order that g is a primitive root mod p it is necessary that (g/p) = −1 and
this is a quadratic condition. In particular if g has to be a primitive root it must
be a non-square mod p. There are (p − 1)/2 non-squares and 2ϕ(p− 1)/(p− 1) is
their density. Thus it makes sense to try to evaluate the sum in the identity below.
Assuming HRH, by a computation a little more complicated than for the sum with
the condition (g/p) = −1 omitted:

2
�

p�x, ( g
p )=−1

ϕ(p− 1)
p− 1

= P(g)(x) + O(R(x)).

In case h > 1, with h as in Conjecture 1, equality does not always hold. The
effect we have to take into account there is that if (p− 1, h) > 1, then

g
p−1

(p−1,h) ≡

�
g

h
(p−1,h)
0

�p−1

≡ 1(mod p),

and thus g cannot be a primitive root mod p.
Here is a proposal for fg(p):

fg(p) =

�
2ϕ(p−1)

p−1 if ( q

p
) = −1 and (p− 1, h) = 1;

0 otherwise
(16)
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It can be shown assuming HRH (see [339]) that
�

p�x

fg(p) = P(g)(x) + O(R(x)), (17)

and thus if S is the set of all primes, then (16) gives a probabilistic model that
works.

On noting that the naive heuristic fails the traditional approach was to show
that it holds true on average:

1
N

�

g�N

P(g)(x) =
1
N

�

p�x

Mp(N),

where Mp(N) is the number of integers g � N that are primitive roots modulo p.
Clearly Mg(N) = ϕ(p− 1){N

p
+ O(1)}. Thus

1
N

�

g�N

P(g)(x) =
�

p�x

ϕ(p− 1)
p− 1

+ O

�
x2

N log x

�
+ O

�
x

logD x

�
,

provided that N > x2 logD−1 x. Less trivial unconditional results in this direction
were obtained by Goldfeld [179] and Stephens [466]; see also Li [304]. (For an
analogue for number fields see Egami [129].)

It is relatively easy to compute the first sum in (13) with S = {p : p ≡ a(mod f)}
and one obtains a relatively complicated but completely explicit Euler product. The
question is whether the true behaviour of

P(g, f, a)(x) := #{p � x : p ∈ P(g), p ≡ a(mod f)}

works with this.
Lenstra’s work [292], which introduced Galois theory into the subject, implies

the following result on P(g, f, a)(x).

Theorem 1. Let 1 ≤ a ≤ f, (a, f) = 1. Let σa be the automorphism of Q(ζf )
determined by σa(ζf ) = ζa

f
. Let ca(n) be 1 if the restriction of σa to the field

Q(ζf ) ∩Q(ζn, g1/n) is the identity and ca(n) = 0 otherwise. Put

δ(a, f, g) =
∞�

n=1

µ(n)ca(n)
[Q(ζf , ζn, g1/n) : Q]

.

Then, assuming RH for all number fields Q(ζf , ζn, g1/n) with n squarefree,

P(g, f, a)(x) = δ(a, f, g)
x

log x
+ Og,f (R(x)).
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Inspired by the relatively easy Euler product coming from quadratic heuristics,
the author set out to explicitly evaluate δ(a, f, g) and managed to find an Euler
product for it (see the 2008 paper [353] which appeared earlier as a MPIM-preprint
in 1998):

Theorem 2. Let g be an integer with |g| > 1. Let h be the largest integer such

that g is an h-th power of an integer. Write g = g1g2
2 with g1, g2 integers and g1

squarefree. Put

A(a, f, h) =
�

q|(a−1,f)

(1−
1
q
)
�

q�f
p|h

(1−
1

q − 1
)
�

p�f
p�h

�
1−

1
q(q − 1)

�

if (a− 1, f, h) = 1 and A(a, f, h) = 0 otherwise. Let

β =
g1

(g1, f)
and γ1 =

�
(−1)

β−1
2 (f, g1) if β is odd;

1 otherwise.

We have

δ(a, f, g) =
A(a, f, h)

ϕ(f)

�
1− (

γ1

a
)

µ(|β|)�
q|β, q|h(q − 2)

�
p|β, p�h(q2 − q − 1)

�

in case g1 ≡ 1(mod 4) or g1 ≡ 2(mod 4) and 8|f or g1 ≡ 3(mod 4) and 4|f and

δ(a, f, g) =
A(a, f, h)

ϕ(f)
,

otherwise. Here ( ·
· ) denotes the Kronecker symbol.

This formula is the same as the one found with quadratic heuristics! As a con-
sequence we have the following result [339], which generalizes (17):

Theorem 3. Assume RH for all number fields Q(ζf , ζn, g1/n) with n squarefree.

Then �

p�x
p≡a(mod f)

fg(p) = P(g, f, a)(x) + Og,f (R(x)).

A rather more insightful derivation of the Euler product for δ(a, f, g) is given
in a paper by Lenstra, Moree and Stevenhagen [296], as a consequence of a more
explicit approach involving quadratic characters in the line of Lenstra’s earlier work.
This approach is the most powerful thus far in finding explicit Euler products for
primitive root densities. For a preview of this work see Stevenhagen [468]. The
upshot is that the density for a whole class of Artin type problems can be always
written as

δ = (1 +
�

q

Eq)
�

q

Aq,
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where the Eq are (real)-character averages and hence satisfy −1 ≤ Ep ≤ 1. Only
finitely many of them are distinct from 1. The infinite product

�
q
Aq can be

regarded as the ‘canonical’ density of the problem at hand. In this formulation the
situations where δ = 0 can be relatively easily computed (from the expression of
the density as an infinite sum this can be quite hard, cf. the formula for δ(a, f, g)
in Theorem 1). For the original Artin problem a very easy computation yields�

q
Aq = A(h) and 1 +

�
q
Eq = E and one finds (10) again; see [468]. In the

same paper the method is applied to deal with near-primitive roots (see §9.7.3),
improving on earlier treatments of this problem. In particular, the first satisfactory
treatment of the vanishing in the near-primitive root problem is given. In a sequel
to this paper, authored by Moree and Stevenhagen [361], the method is used to deal
with some higher-rank variations of Artin’s primitive root conjecture. Again this
leads to the quickest known proofs of Euler product forms of the relevant densities.

Rodier [432], in connection with a coding theoretical result involving Dickson
polynomials, was interested in the set of primes p such that p ≡ a(mod 28), with
a ∈ {−1, 3, 19}. Assuming equidistribution over the congruence classes modulo 28
one would expect (as did Rodier) that the density of this set of primes is 3A/ϕ(28) =
A/4. Moree [334] computed the density of primes p (on GRH) such that 2 is
a primitive root modulo p, ( p

lj
) = �j , for 1 ≤ j ≤ s and p ≡ �0(mod 4), with

�0, . . . , �s ∈ {±1} and the lj distinct odd primes. Applying this result with �0 = −1,
s = 1, �1 = −1 and l1 = 7, it then follows that Rodier’s set has density 21A/82 on
GRH, contradicting his conjecture. Of course one can also use Theorem 2 to arrive
at this density.

One can ask for which f and g we have equidistribution over the congruence
classes modulo f of the primes p for which g is a primitive root modulo p, that is
for which f and g does there exist δ such that δ(a, f, g) = δ for all a with (a, f) = 1?
The explicit formula for δ(a, f, g) allows one to determine the f such that the primes
in P(g) are equidistributed in the various primitive residue classes mod f . This was
done earlier by Moree [338] using an Euler product for δ(1, f, g) (which is easier to
obtain) and some Galois theoretic arguments. Using the Euler product for δ(a, f, g)
given in [353] a shorter proof can be given (in the same article). Basically f must
be a power of two in case h = 1. Also 2α3β can occur, the smallest positive integer
g for which this happens is g = 217.

8. The Indicator Function

8.1. The Indicator Function and Probabilistic Models

Let G be a finite cyclic group of order n and put f(g) = 1 if G is generated by g
and f(g) = 0 otherwise. It was already observed a long time ago (see, e.g., [280,
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Satz 496] and [225] for a version over number fields) that

f(g) =
ϕ(n)

n

�

d|n

µ(d)
ϕ(d)

�

ordχ=d

χ(g), (18)

where the sum is over the characters χ of G having order d. Using this, one deduces
that

P(g)(x) =
�

p≤x

ϕ(p− 1)
p− 1

�

d|p−1

µ(d)
ϕ(d)

�

ordχ=d

χ(g),

where the inner sum is over the characters of (Z/pZ)∗ of order d. Now write
P(g)(x) =

�
d≤x

Sd(x), with

Sd(x) =
µ(d)
ϕ(d)

�

p≤x
p≡1(mod d)

ϕ(p− 1)
p− 1

�

ordχ=d

χ(g).

Note that
S1(x) =

�

p≤x

ϕ(p− 1)
p− 1

and that
S2(x) = −(

g

p
)
�

p≤x

ϕ(p− 1)
p− 1

,

with ( g

p
) the Legendre symbol. The term Sd(x) can be written as a linear combi-

nation of terms
1

π(x)

�

p≤x, p≡1(mod d)
p≡1(mod δ)

�
g

p

�

d

,

where ( g

p
)d denotes the d-th power residue symbol, cf. Lemmermeyer [291, p. 111].

In case g is squarefree these terms are o(S1(x)) for every d > 2 and δ. Hence we
expect that

P(g)(x) ∼ (S1(x) + S2(x)) ∼ 2
�

p≤x

( g
p )=−1

ϕ(p− 1)
p− 1

, x→∞.

A slightly more complicated argument leads to the conjecture

P(g)(x) ∼ 2
�

p≤x, (p−1,h)=1
( g

p )=−1

ϕ(p− 1)
p− 1

, x→∞,

where g is not required to be squarefree. The problem in proving this (and hence
a quantitative Artin’s primitive root conjecture) is that we have ‘too many error
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terms’ and can only achieve this if it can be established that there is sufficient
cancellation, which is presently out of reach.

The analog of the latter conjecture for the general index t case (cf. §9.7.3) is
far from easy to infer by ad hoc methods (as we managed to do for t = 1 in the
previous section), but can be merely computed using the approach sketched here.
Furthermore, under the usual RH proviso this conjecture can then be shown to be
true [340, Theorem 1]. A rather easier proof of this result is given in [342].

The unconditional results on Artin’s conjecture on average in [179, 466], were
obtained on using the indicator function and estimates for character sums.

8.2. The Indicator Function in the Function Field Setting

We now give another application of the identity (18). Let Fq be the finite field
with q = pn elements. Recall that its multiplicative group is cyclic. Let a(x)
be a polynomial in the polynomial ring Fp[x]. We are interested in the number
of irreducible polynomials p(x) ∈ Fp[x] such that a(x) generates (Fp[x]/(p(x)))∗.
Recall that if p(x) is of degree n, then Fp[x]/(p(x)) is isomorphic with Fpn , where
the isomorphism is given explicitly as follows: for h(x) ∈ Fp[x], we write, using the
Euclidean algorithm,

h(x) = p(x)q(x) + r(x), with either r(x) = 0 or 0 ≤ deg r < deg p = n.

Let ρ ∈ Fpn be a root of p(x). Then

h(ρ) = r(ρ) = a0 + a1ρ + . . . + an−1ρ
n−1, ai ∈ Fp

describes all the elements of Fpn . Thus, a(x) generating (Fp[x]/(p(x)))∗ is equivalent
to a(ρ) generating F∗pn .

Hence, to count the number of irreducible p(x) of degree n for which a(x) is a
generator is tantamount to counting the number of ρ of degree n for which a(ρ)
generates F∗pn . Indeed, since each p(x) has n roots, we find that the number of
irreducible polynomials of degree n in Fp[x] such that a(x) generates (Fp[x]/(p(x)))∗

is equal to the number of elements ρ ∈ Fpn of degree n such that a(ρ) generates F∗pn

divided by n. The latter number is by (18) equal to

1
n

�

ρ∈Fpn

degρ=n

ϕ(pn − 1)
pn − 1

�

d|pn−1

µ(d)
ϕ(d)

�

ordχ=d

χ(a(ρ)).

By inclusion-exclusion we find that the number of irreducible polynomials of degree
n over Fq[x] equals

1
n

�

ρ∈Fpn

degρ=n

1 =
1
n

�

d|n

µ(d)p
n
d =

pn

n
+ O

�
p

n
2

n

�
.
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(For t ≥ 2 we have
�

d|n µ(d)tn/d > tn −
�[n/2]

j=0 tj > 0 and hence that at least one
irreducible polynomial of degree n over Fq[x] exists.) Thus the contribution from
the main term (the term with d = 1) is

pn + O(pn
2 )

n

ϕ(pn − 1)
pn − 1

,

and the error term is

ϕ(pn − 1)
n(pn − 1)

�

d|pn−1
d>1

µ(d)
ϕ(d)

�

ordχ=d

�

ρ∈Fpn

degρ=n

χ(a(ρ)).

Applying Weil’s estimate for character sums and imposing the appropriate condi-
tions on a(x), the truth of Artin’s conjecture in this situation is then established,
cf. Pappalardi and Shparlinski [406].

A little knowledge of the history of Weil’s estimate makes clear that we do not
always need to invoke this powerful and deep result. Weil, in a period when he
felt depressed, turned to the works of Gauss and started reading haphazardly. He
soon found himself awestruck by Gauss’ approach in counting solutions mod p of
homogenous equations of the form xm

0 + · · · + xm
s . This approach involves Gauss

sums (and Jacobi sums). Weil then started musing about generalisations of this
beautiful work and the rest is mathematical history.... Thus we would expect that
in case a(x) = xm +c the required estimate for the error term can be obtained using
only Gauss sums over finite fields. This is indeed so; see Jensen and Ram Murty
[246].

The situation described here is a particular case of the Artin primitive root
conjecture for function fields. Hasse, who was at the cradle of Artin’s conjecture
(Artin first formulated it in a discussion with Hasse), remained very interested in
it throughout his life and tried to stimulate people to work on it, cf. [216]. One of
them was his PhD student Bilharz [39], who in 1937 proved Artin’s conjecture for
function fields assuming the RH for the zeta function corresponding to the function
field. Indeed, much later this was proved by Weil and hence Artin’s primitive root
conjecture is true for function fields! The result of Bilharz has been subsequently
generalized by Hsu [240] to Carlitz modules, a particular case of rank one Drinfeld
modules, and in a subsequent paper to rank one Drinfeld modules [242]. (In the
latter case the authors work with an A-field K having an injective homomorphism
γ : A → K, in a more recent paper [504] the case where γ is not-injective is ad-
dressed.) Chen et al. [71] generalized Bilharz’s theorem to all one-dimensional tori
over global function fields having a finite constant field. Rosen in his well-written
book [435] devotes a whole chapter to the Artin primitive root conjecture in the
function field setting.
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9. Some Variations of Artin’s Problem

9.1. Elliptic Artin (by A.C. Cojocaru)

Artin’s problem is pertinent to many generalizations and variations. A natural
generalization appears in the context of elliptic curves and was formulated by S.
Lang and H. Trotter in 1976 [283], as follows.

Let E/Q be an elliptic curve defined over Q and with arithmetic rank ≥ 1. Let
a ∈ E(Q) be a point of infinite order. For a prime p of good reduction for E, let
E/Fp be the reduction of E modulo p and a the reduction of a modulo p. Here,
we are also excluding the primes dividing the denominators of the coordinates of
a. Following standard notation, we let |E(Fp)| = p + 1 − ap denote the number
of Fp-rational points of E. The elliptic curve analogue of Artin’s problem is to
determine the density of the primes p for which

E(Fp) = �a�.

In this case, we say that a is a primitive point of E modulo p. In 1976, Lang and
Trotter conjectured that this density exists; moreover, they conjectured that there
exists a constant CE(a) ≥ 0, depending on E and a such that as x→∞,

#{p ≤ x : E(Fp) = �a�} ∼ CE(a)
x

log x
.

In most cases, this is still an open question. The only result known is due to Rajiv
Gupta and Ram Murty [203] who proved that if E/Q has Complex Multiplication
(CM) by the full ring of integers of an imaginary quadratic field K, then under
GRH,

#{p ≤ x : ap �= 0, E(Fp) = �a�} = CE(a)π(x) + O

�
x log log x

(log x)2

�
.

Additionally, they proved that if 2 and 3 are inert in K, or K = Q(
√
−11), then

CE(a) > 0; therefore, under GRH, as x→∞,

#{p ≤ x : ap �= 0, E(Fp) = �a�}�
x

log x
.

The method used by Gupta and Ram Murty is an elliptic curve adaptation of
Hooley’s method. It requires the assumption of GRH, even though it treats the case
of an elliptic curve with CM, which in many instances allows for unconditional re-
sults. This attests to the difficulty of the elliptic curve analogue of Artin’s primitive
root conjecture. No results are known in the case that E/Q is without CM.

It is a remarkable piece of history that the above result of Gupta and Ram
Murty led to the current best result on the original Artin primitive root conjecture.
Indeed, in their paper, Gupta and Ram Murty also considered variations of the
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elliptic curve analogue of Artin’s problem: instead of working with only one point
a ∈ E(Q) of infinite order, they also worked with a free subgroup Γ ≤ E(Q) of
rank > 1 and considered the question of counting the primes p ≤ x for which
E(Fp) = �Γ(mod p)�. Subsequently, they considered a similar variation of the
classical Artin problem which led to the important results by Gupta and Ram
Murty [202] and by Heath-Brown [222].

Another interesting feature of the elliptic curve analogue of Artin’s problem is
that, in contrast with the classical situation for which the group F∗p is always cyclic,
when we require that E(Fp) = �a� we are making two assumptions: first, E(Fp) is
cyclic, and second, it is generated by a.

In general, E(Fp) is the product of two cyclic groups. Therefore it is natural
to consider the first question of finding the density of primes p for which E(Fp)
is cyclic. This question was first studied by Borosh, Moreno and Porta [41] who
conjectured that there are infinitely many such primes. A few years later [453] Serre
proved this conjecture under GRH, by using an elliptic curve analogue of Hooley’s
method. More precisely, by considering the field extensions Q(E[k]) obtained by
adjoining to Q the x and y coordinates of the k-division points of E, he showed
that under GRH,

#{p ≤ x : E(Fp) is cyclic} = CEπ(x) + O

�
x log log x

(log x)2

�
, (19)

where
CE =

�

k≥1

µ(k)
[Q(E[k]) : Q]

.

In the case that E is with CM, this result was made unconditional by Ram Murty
[372], and later using a new simpler proof by A.C. Cojocaru [105]. Ram Murty did
not provide an error term, Cojocaru provided the error term O(x/((log x) log log x)).
Recently this error term has been considerably sharpened by A. Akbary and Kumar
Murty [8]. In the case that E is without CM, the GRH assumption was relaxed
to a ‘quasi 3/4-GRH’ assumption by A.C. Cojocaru [103]. Unconditionally, it is
known by Rajiv Gupta and Ram Murty [204] that, for any elliptic curve E/Q with
Q(E[2]) �= Q, the number of primes p ≤ x such that E(Fp) is cyclic is bounded
from below by a constant times x/(log x)2. Thus, unconditionally, for any such
E/Q, there are infinitely many primes p for which E(Fp) is cyclic.

Recently, work of Banks and Shparlinski [37], combined with work of N. Jones
[247], shows that, on average over a sufficiently large two-parameter family of elliptic
curves E over Q, the cyclicity asymptotic formula #{p ≤ x : E(Fp) is cyclic} ∼
CEπ(x) holds without any additional hypothesis. However, such an average result
does not imply that the formula holds for any curve E.

The division fields Q(E[k]) are natural generalizations of the cyclotomic fields
Q(ζk), hence it is natural to expect that Hooley’s method (which requires the use of
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the Kummer extensions Q(ζk, a1/k)) would be amenable to generalization to elliptic
curves. However, the non-abelian nature and the size of the extensions Q(E[k])/Q
lead to many obstacles in the elliptic curve case that cannot be overcome as in the
classical case. For a nice exposition of such difficulties (such as Brun-Titchmarsh
type results for Q(E[k])/Q) put in the context of elliptic analogues of other classical
analytic problems, the reader is refered to Kowalski [267].

For the Lang-Trotter conjecture on primitive points, the fields Q(E[k], k−1a)
that occur are direct generalizations of Q(ζk, a1/k). In this case, the additional
complications which arise because of the large size of the conjugacy classes involved
could be overcome only if E is with CM, under GRH. This is the content of the
work by Gupta and Ram Murty mentioned above [203].

The positivity of the cyclicity constant CE was explained by Serre in [453]
and proved rigorously by Cojocaru and Ram Murty in [110]: CE > 0 if and
only if Q(E[2]) �= Q. In [110], Cojocaru and Ram Murty also show that the
asymptotic formula (19) can be proven with substantially better remainder terms:
O

�
x5/6(log x)2/3

�
in the non-CM case and O

�
x3/4(log x)1/2

�
in the CM case, pro-

vided that the full strength of GRH holds. These results, together with the afore-
mentioned ones, suggest that there is an important divergence between the cyclicity
conjecture for elliptic curves and the Artin primitive root conjecture, as the latter
does not seem to be amenable to all the approaches of the first one.

Similar problems have been considered in the context of elliptic curves over Fq[T ]
in works by Clark and Kuwata [87], Cojocaru and Tóth [111], and Hall and Voloch
[211].

A different but related problem was also considered by Chen and Ju in [73]. Given
an elliptic curve E over a finite field Fp they considered the finite field extension
Fp(E[l]) obtained by adjoining the l-division points of E to Fp with l a prime, which
has degree ≤ l2 − 1. Chen and Ju investigated how often this degree is actually
equal to l2−1. Under GRH they showed that when E is not supersingular over Fp,
the set of primes l for which [Fp(E[l]) : Fp] = l2−1 has a positive density which can
be given explicitly in terms of

C2 =
1
4

�

q>2

�
1−

2
q(q − 1)

�
= 0.1337767531541596833 . . . ,

where the product is over the odd primes p. They reduce this problem to a variation
of the Artin primitive root conjecture, which subsequently can be dealt with by the
methods of Hooley [238].

We leave it as an exercise for the reader to show that C2 = T/π2, with

T = 2
�

q>2

�
1−

1
(q − 1)2

�
,

the twin prime constant.
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9.2. Even Order

Let g ≥ 2 be an integer. As we saw in the introduction, for a prime p, the period
of the decimal expansion of 1/p in base g is maximal if and only if ordp(g) =
p−1. In 1969 Krishnamurty [268] wondered how often the periods in these decimal
expansions are even. This can be studied by algebraic methods similar to those
sketched above.

We say that a prime p divides a sequence of integers, if it divides at least one
non-zero term of the sequence. Notice that

ordp(g) is even ⇐⇒ gx
≡ −1(mod p) has a solution ⇐⇒ p|{gk + 1}∞k=0.

There is a unique j ≥ 1 such that p ≡ 1 + 2j(mod 2j+1). Now ordp(g) is even if
and only if

g
p−1
2j �≡ 1(mod p).

It is more natural to consider the primes p such that ordp(g) is odd; that is, the set
{p : 2 � ordp(g)}. Let

Pj = {p : p ≡ 1 + 2j(mod 2j+1), 2 � ordp(g)}.

Note that
Pj = {p : p ≡ 1 + 2j(mod 2j+1), g

p−1
2j ≡ 1(mod p)}.

Now Pj consists of the primes p that split completely in Q(ζ2j , g1/2j
) but do not

split completely in Q(ζ2j+1 , g1/2j
). Since {p : 2 � ordp(g)} = ∪∞

j=1Pj , and the Pj

are disjoint, one expects that the natural density of the set {p : 2 � ordp(g)} equals�∞
j=1 δ(Pj), where δ(Pj) = limx→∞ Pj(x)/π(x). Now

∞�

j=1

δ(Pj) =
∞�

j=1

�
1

[Q(ζ2j , g1/2j ) : Q]
−

1
[Q(ζ2j+1 , g1/2j ) : Q]

�
.

Taking g = 2 one expects by computing the field degrees involved that the density
of prime divisors of the sequence {2k + 1}∞

k=0 equals

δ = (
1
2
−

1
4
) + (

1
8
−

1
8
) +

�

j≥3

(
4
4j
−

2
4j

) =
7
24

.

With natural density replaced by Dirichlet density, this result had been proved
in 1966 by Hasse [219]. Earlier, involving fewer technical complications, he had
considered the Dirichlet density of primes p such that an odd prime l divides ordp(a)
[218]. The natural density of primitive divisors of sequences of the form {ak+bk}∞

k=1

with a and b integers was computed independently along similar lines by Ballot
[27], Odoni [395] and Wiertelak [495]. For the sequence {ak + bk}∞

k=1 with a and b
canonical, the density is 2/3. In particular if g = 10, one finds that the primes p



INTEGERS: 12A (2012) 27

such that the period of the decimal expansion of 1/p is even have density 2/3.
Note that this result, unlike Hooley’s, is unconditional. Both involve infinite

towers of field extensions, but the one appearing in this problem is so sparse (in
the sense that the degrees of the fields quickly increase) that the profusion of error
terms that occur in the Artin primitive root conjecture does not arise and one can
afford working with the relatively large error terms in πK(x) that are conditionally
known. A probabilistic model for ordp(g) to be even was found by Moree [351]. For
a related heuristic approach see Ballot [31].

Early authors working on divisors of sequences of the form {ak + bk}∞
k=1 were

interested in showing that primes in certain arithmetic progressions occur either
all as divisors or non-divisors, see, e.g., [47, 444, 462]. Fermat was also interested
in this and made some false claims in one of his letters to Mersenne [362, 444].
Moree and Sury [362] computed the density of primes p such that p ≡ c(mod d)
and p|ak + bk for some k ≥ 1 in case both a and b are positive integers.

Midy (see Leavitt [286]) proved in 1836 that if 1/p has even period 2d (that is,
ordp(10) is even), then writing

1
p

= 0.(UV )(UV ) . . . ,

where U, V are blocks of d digits each, one has U + V = 10d − 1. For example,
103 ≡ −1(mod 7), 1

7 = 0.142857142857 . . ., and 142 + 857 = 999. The result of
Midy was generalized by Gupta and Sury [201] to the case where the period is ld;
for some recent results in this direction see Lewittes [299] and H.W. Martin [322].

Instead of asking when 2|ordp(g), one can ask for m|ordp(g) or for (m, ordp(g)) =
1 an so forth. These questions with sharp error terms are dealt with in various pa-
pers of Wiertelak [496, 497, 498, 499, 500]. Again it turns out the corresponding
density exists and is a rational number. Wiertelak [497] gave a complicated expres-
sion for this density for the ‘m|ordp(g)’ problem that was substantially simplified
by Pappalardi [403]. Pappalardi’s expression was simplified by Moree [345], who
used a simple to prove, yet previously unknown, identity for the associated counting
function ([345, Proposition 1]). For a number field generalization of some of these
results see Perucca [413].

9.3. Order in a Prescribed Arithmetic Progression

The problem of determining for how many primes p ≤ x one has ordp(g) ≡
a(mod d), with a and d prescribed integers, was first considered by Chinen and
Murata [76] in case d = 4. By a different method their results for d = 4 are re-
proved in Moree [346] for more general g. This gives also a rather more compact
formulation of their results. In the same paper also the case d = 3 was dealt with.

In this generality the problem turns out to be much harder than the case where
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d|a. Under an appropriate generalization of RH it turns out that δg(a, d), the den-
sity of primes p ≤ x such that ordp(g) ≡ a(mod d) exists (see Chinen and Murata
[77] in case d is a prime power, [78, 347] in the general case). Let Ng(a, d)(x) be
the associated counting function. The proof of the existence of δg(a, d) by Moree
[346] starts with noting the identity

Ng(a, d)(x) =
∞�

t=1

#{p ≤ x : rp(g) = t, p ≡ 1 + ta(mod dt)},

where rp(g) = (p−1)/ordp(g) denotes the residual index. The individual terms can
be dealt with by a variation of Hooley’s method, where now one also needs to keep
track of the dependence on t. The more novel aspects of the work rest in making the
resulting formula for δg(a, d) more explicit, which requires algebraic number theory.
Chinen and Murata [78] express δg(a, d) as a six-fold sum, in [346] it is expressed
as a double sum, Ziegler [512] generalized the author’s approach to Ng(a, d)(x) to
the case where instead of primes one considers prime ideals (see Problem 10 below
for more details).

The much simpler quantity δ(a, d), the average density of elements of order
≡ a(mod d) in a field of prime characteristic also exists [343]. It turns out that
under the latter RH variant for almost all g with |g| ≤ x one has δg(a, d) = δ(a, d).
Moreover, if δg(a, d) �= δ(a, d), then |δg(a, d)− δ(a, d)| tends to be small. Neverthe-
less, it is possible to find specific g (usually appropriately chosen high powers of a
small basis number), for which δg(a, d) shows highly non-canonical behaviour. For
precise formulations and proofs see [348].

Despite the subtle arithmetic behaviour of δg(a, d), there are some surprises. For
example, if g > 0 then always δg(1, 4) ≤ δg(3, 4). The rule of thumb that a rational
density in an Artin type problem indicates that the associated tower of field exten-
sion is rather sparse, seems to be incorrect in this context.

The analogous problem of determining for how many primes p ≤ x the residual
index is in a prescribed congruence class modulo d was first studied by Pappalardi
[399]. This turns out to be a much easier problem.

For a more detailed survey of the material in this section, see Moree [349].
The main results in [346, 347] are also obtained in papers by Chinen and Mu-
rata [76, 77, 78] by different methods (the comparison of δg(a, d) with δ(a, d) which
is the theme of Moree [348], has not (yet) been considered by Chinen and Murata).

9.4. Divisors of Second Order Recurrences

The sequences {ak + bk}∞
k=1 are special cases of sequences satisfying a second order

linear recurrence and one can wonder about prime divisors of such recurrences in
general, cf. Ballot [27], or about divisors in general. A good general comprehensive
survey on results on recurrences can be found in the book [151]. A lot of information
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on second order recurrences can also be found in the book by Ribenboim [429].
A general linear second order recurrence R has the form un+2 = eun+1 + fun,

with ef �= 0. Once the values of u0 and u1 are given, it is uniquely determined.
The characteristic polynomial associated to the recurrence is defined as f(X) =
X2 − eX − f . Stevenhagen [469] shows that the set of prime divisors, πR, of R
is most conveniently described in terms of two parameters: the root quotient r of
the characteristic polynomial and the initial quotient q of the sequence. In this
characterization the integer sequence R no longer plays a role. It greatly clarifies
the group structure introduced by Laxton [284, 285] on the set of equivalence classes
of sequences satisfying a given second order recurrence. Stevenhagen introduces the
notion of an equivalence class [q, r] of a second order recurrence with root quotient
r �= ±1 and a sequence group S(r).

9.4.1. Prime Divisors of Torsion Second Order Recurrences

A second order recurrence with root quotient r and initial quotient q is said to be
torsion if [q, r] is an element of finite order in S(r). For example, the sequences
{ak + bk}∞

k=1 are torsion. Another case occurs when K is a quadratic number field,
� its fundamental unit, �̃ its conjugate, and Ln = �n +�n (this is a generalized Lucas
sequence). Stevenhagen proved that a second order torsion sequence has a density
of prime divisors that is positive and rational. In the case of Ln above the result is
due to Moree and Stevenhagen [358], who extended a result of Moree [333], who on
his turn generalized Lagarias’ result [276] that the sequence of Lucas numbers Ln

(defined by L0 = 2, L1 = 1 and Ln+1 = Ln + Ln−1) has natural density 2/3.

9.4.2. Prime Divisors of Non-Torsion Second Order Recurrences

If the characteristic polynomial of the recurrence is reducible over Q, then the
recurrence has the form R = {cak−dbk}∞

k=0, and finding the prime divisors amounts
to finding the prime divisors of the sequence with general term (a/b)k−d/c = αk−β.
Now p is a prime divisor of R, with at most finitely many exceptions, if and only
if ordp(β)|ordp(α). This can be phrased differently by saying that, with at most
finitely many exceptions, p divides R if and only if the subgroup mod p generated
by β, �β�, is contained in the subgroup �α�. One can then base a two variable Artin
conjecture on this, of which the qualitative form says that the sequence R should
have infinitely many prime divisors. This is not difficult to prove; see Pólya [423].
(Schinzel [445, pp. 909-911] proved that if a and b are rational integers with a > 0
and b �= ae, then there are infinitely many primes p that do not divide the sequence
{ak − b}∞

k=1.) To investigate the quantitative form, we put S(x) =
�

p≤x, p|R 1.
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Then

S(x) =
�

p≤x

�

w|p−1
ordp(β)|ordp(α)=(p−1)/w

1 =
�

w≤x−1

�

p≤x
p≡1(mod w)

ordp(β)|ordp(α)=(p−1)/w

1.

Now p ≡ 1(mod w) and ordp(β)|ordp(α) = (p − 1)/w if and only if p splits com-
pletely in Q(α1/w,β1/w, ζw) and p does not split completely in any of the fields
Q(α1/qw,β1/w, ζqw) with q a prime. Denote the degree of the latter field by n(qw).
Then, as x→∞, the limit S(x)/π(x) tends to

∞�

w=1

∞�

k=1

µ(k)
n(kw)

, (20)

provided a sufficiently strong generalisation of RH is true. The sum (20) equals a
rational number times the Stephens constant

S =
�

q

�
1−

q

q3 − 1

�
= 0.5759599688929 . . .

This result is due to Moree and Stevenhagen [359] and improves on earlier work
by Stephens [467]. Stephens evaluation of (20) (who restricted himself to the case
where both α and β are integers) is not always correct and was corrected in [359].
Using the average-character-sum method [296] a rather easier reproof can be given
[361]. The Stephens constant, just like A, can also be evaluated with high numerical
precision by expressing it in terms of zeta values at integer arguments [341].

A naive heuristic argument would lead us to expect that the density equals the
average density (over the primes) of pairs (u, v) ∈ F∗p × F∗p such that u ∈ �v�. It is
not difficult to see that the density of the pairs (u, v) ∈ F∗p × F∗p such that u ∈ �v�
equals

1
(p− 1)2

�

d|p−1

dϕ(d).

Thus the naive heuristic would give

lim
x→∞

1
π(x)

�

1<p≤x

1
(p− 1)2

�

d|p−1

dϕ(d)

as density. The above limit was evaluated by Luca [312] to be the Stephens constant,
thus answering an open problem in von zur Gathen et al. [172]. Luca’s proof is quite
similar to the evaluation of

�
p≤x

ϕ(p−1)/(p−1) given in §7. Another interpretation
of Stephens’ constant (see Korolev [266]) is as the average value of

1
ϕ(n)

n�

k=1
(k,n)=1

1
(k − 1, n)

.
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Note that the problem considered here is a variant of Artin’s primitive root
conjecture that is more complicated than the original one, whereas the variant
discussed in §9.2 is easier, although both deal with second order recurrences. The
variants discussed in §9.2 are torsion sequences. For every torsion sequence the
prime density exists and is a rational number. It can be explicitly determined.
Here the case when the characteristic polynomial is reducible over Q is easier, than
when it is irreducible. For a non-torsion sequence assuming GRH the density can
be shown to exist and also be explicitly determined. Here again the case where the
characteristic polynomial is irreducible is the most difficult. An example is given
by the sequence an defined by a0 = 3, a1 = 1 and an+1 = an + an−1. Lagarias
[276] raised the challenge here of determining the density of prime divisors. Moree
and Stevenhagen [360] showed that under an appropriate generalisation of RH this
density equals

1573727
1569610

S = 0.577470679956 . . .

Indeed, for every non-torsion sequence assuming GRH the density exists, can be
explicitly evaluated and is a rational multiple of the Stephens’ constant S.

For the convenience of the reader we give some references for the various cases:
-Torsion, reducible characteristic polynomial: [27, 218, 219, 395, 495]
-Torsion, irreducible characteristic polynomial: [276, 333, 358, 469]
-Non-torsion, reducible: [467, 359]
-Non-torsion, irreducbile: [360].

Recently, in addition to the techniques used in the above articles, the theory of
dynamical systems has also been brought to bear on the issue of prime divisors of
sequences; see, e.g., [186, 248, 249].

9.4.3. General Divisors

One can also try to count the number of divisors ≤ x of a given sequence. In case
the sequence is Sp,1, where Sa,b denotes the sequence {ak + bk}∞

k=1, this plays a role
in the analysis of the average behaviour of Ulmer’s rank formula; see [425]. The
divisor counting problem also has some applications outside number theory. For
example, Pless et al. [421, Theorem 3] have shown that a nontrivial cyclic self-dual
code of length n exists if and only if n does not divide the sequence S2,1. Kanwar
and López-Permouth [252, Theorem 4.5] proved that if p is a prime not dividing n
and m is even, then nontrivial self-dual cyclic Zpm-codes exist if and only if n does
not divide Sp,1.

In Moree [421] it is shown that for any 0 < � ≤ 1/24 and r the smallest integer
such that 1

3 (1/2r+3) ≤ �, there exist positive constants c1, . . . , cr such that G(x),
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the number of divisors n of the sequence S2,1 that are ≤ x, satisfies

G(x) =
x

log x

�
c1 log1/3 x + c2 log7/24 x +

r�

k=0

c3+k log2−k−3
/3 x + O(log� x)

�
.

Similar results for divisors of the sequence Sa,b, with a and b integers, are derived
in Moree [335], and for Lucas numbers in Moree [337]

The divisibility of certain sequences is related to the level (Stufe) of a field F ,
s(F ), which is the smallest integer s (if it exists) such that −1 = α2

1 + . . . + α2
s

with αi in F . In case −1 cannot be written as a sum of squares from K we put
s(K) = ∞. Pfister [417] (cf. [198, pp. 203-208]) proved that in case s(F ) is finite
we have s(F ) = 2j for some j ≥ 0. Hilbert (cf. [279, XI, Theorem 1.4]) proved that
if F is an algebraic number field, then s(F ) ≤ 4. It follows that s(F ) ∈ {1, 2, 4} in
this case. Note that s(F ) = 1 if and only if

√
−1 ∈ F .

Let us put Kn = Q(ζn). If 4|n, then s(Kn) = 1. If n is odd, then clearly
s(K2n) = s(Kn) since Kn = K2n. Thus we may assume that n is odd. P. Chowla
[80] proved that s(Kp) = 2 when p ≡ 3(mod 8) is a prime. In later unpublished pa-
pers John H. Smith and P. Chowla proved independently that s(Kp) = 2 also when
p ≡ 5(mod 8). In 1970, P. Chowla and S. Chowla [81] proved that s(Kp) = 4 when
p ≡ 7(mod 8). Fein et al. [153] proved that for an odd prime p we have s(Kp) = 2 if
and only if p|S2,1 (and so s(Kp) = 4 if and only if p � S2,1). Apparently unaware of
Hasse’s work [218], they gave their own proof of the fact that the Dirichlet density
of prime divisors of S2,1 is 17/24. Moree [335, Theorem 7] gave an asymptotic for
the number of integers m ≤ x such that s(Km) = 4.

Recently Nassirou [389] considered the level of Qp(ζn) with p odd, where Qp

denotes the p-adic field. Since s(Qp) = 1 when p ≡ 1(mod 4), we may assume that
p ≡ 3(mod 4). Let q �= p be an odd prime. The results of Nassirou imply that
s(Qp(ζq)) = 1 if and only if q|Sp,1 and s(Qp(ζq)) = 2 if and only if q � Sp,1.

In the above we considered a fixed sequence ak + bk. In the context of super-
singular Fermat varieties, a reverse problem comes up. Here one fixes an integer
m and asks for the density δ(m) of primes p such that m divides the sequence
{pk +1}∞

k=1. For this Yui [505] and independently Waterhouse [492] gave an explicit
formula. It is known that the Jacobian variety of a Fermat curve Xm + Y m = Zm

considered in characteristic p, is supersingular (i.e., isogenous to a product of su-
persingular elliptic curves), if and only if m divides the sequence {pn + 1}∞n=1, see,
e.g., [457, 492, 505]. Using the explicit formula of Yui and Waterhouse, Schwarz
and Waterhouse [452] gave an asymptotic formula for

�
2<m≤x

δ(m). This was im-
proved on by Nowak [394], who proved that for every fixed K there exist positive
constants A0, A1, . . . , AK such that,

�

2<m≤x

δ(m) = x
K�

k=0

Ak(log x)2
−k

/3−1 + O(x(log x)2
−K

/4−1),
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where the implied constant may depend on the integer K and x tends to infinity.
Note the similarity of this formula with that given above for G(x).

9.5. Lenstra’s Work

The most far reaching generalisation of the Artin primitive root conjecture was
considered by Lenstra [292], in the context of his research on Euclidean number
fields: Let K be a global field (that is, a finite extension of Q or a function field
in one variable over a finite field) and F a finite normal extension of K. Let C
be a subset of Gal(F/K) which is stable under conjugation and let d be a positive
integer (coprime to the characteristic of K in the case of a function field). Consider
a finitely generated subgroup W of K∗ which has, modulo torsion, rank r � 1, and
let M be the set of prime ideals P of K satisfying

1. the Artin symbol (P, F/K) ⊆ C

2. the normalized exponential valuation attached to P satisfies ordP(w) = 0 for
all w ∈W .

3. if ψ : W → K̄∗
P

is the natural map, then the index of ψ(W ) in K̄∗
P

divides d.

Here K̄∗
P

denotes the multiplicative group of K̄P, the residue class field at P.
Lenstra conjectured that M has a density. He also obtained necessary and sufficient
conditions for this density to be nonzero under a sufficiently strong generalisation
of RH. His main result implies Theorem 1 for example. Lenstra applied his results
to show that under the usual RH proviso certain principal ideal rings are Euclidean
(see the next section).

9.6. Artin’s Conjecture and Euclidean Domains (written with Hester Graves)

A Euclidean algorithm for an integral domain R is a map φ : R\{0} → W , a
well-ordered set, such that for all a, b ∈ R with b �= 0, there exist q, r ∈ R with
a = qb+r and φ(r) < φ(b). From every Euclidean algorithm, one can create another
Euclidean algorithm φ : R\{0} → W , a well-ordered set, such that φ(0) = 0 and
for all a, b ∈ R with b �= 0, there exist q, r ∈ R with a = qb + r and φ(r) < φ(b) or
r = 0. We will concern ourselves with this second type of Euclidean algorithm.

Nagata showed that one can replace “W , a well-ordered set ” with “W an ordered
set with minimum condition” in the above definition. He was nonetheless able to
show that every such Euclidean algorithm implied the existence of a Euclidean al-
gorithm that mapped to a well-ordered set. In other words, his definition expanded
the set of possible Euclidean algorithms, but not the set of possible Euclidean rings.

If an integral domain has a Euclidean algorithm, then all of its ideals are princi-
pal. The converse of this is not true in general. Not all principal rings of integers
of imaginary quadratic fields are Euclidean. The nine quadratic imaginary number
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fields with class number one are Q(
√
−d) with d = 1, 2, 3, 7, 11, 19, 43, 67 and 163;

only the rings of integers of Q(
√
−d) with d = 1, 2, 3, 7, or 11 are Euclidean.

An integral domain R equipped with a Euclidean algorithm is called a Euclidean
domain. For algebraic number fields the Euclidean algorithm most often stud-
ied is the absolute value of the norm. Such fields and their rings of integers are
called norm-Euclidean. The classification of rings of algebraic integers which are
Euclidean (not necessarily for the norm function) is a major unsolved problem.
Dedekind showed in Supplement XI to Dirichlet’s Vorlesungen über Zahlenthe-

orie [125] that Q(
√

d) is norm-Euclidean for d = −11,−7,−3,−2,−1, 2, 3, 5, 13.
Now it’s known that the full list of norm-Euclidean quadratic fields also includes
d = 6, 7, 11, 17, 19, 21, 29, 33, 37, 41, 57 and 73. Lemmermeyer [290] determined all
real cubic norm-Euclidean fields with discriminant less than 4692. Clark [86] gave
two examples of cubic fields which are Euclidean but not norm-Euclidean. Further
examples were found by Cavallar and Lemmermeyer [68].

Motzkin [363] constructed the so-called minimal Euclidean algorithm. Given a
nonempty collection of Euclidean algorithms φj on R, the map defined by φ(r) =
minj φj(r) is easily seen to also be a Euclidean algorithm on R. If the minimum is
taken over all the Euclidean algorithms of the ring R, the resulting algorithm φ is
called the minimal algorithm. Let A0 = {0}, and define Aj for j ≥ 1 by

Aj −Aj−1 = {a ∈ R : each residue class of R/(a) contains an element of Aj−1}.

Note that A1 −A0 is the set of units of R. If

R = ∪∞j=0Aj , (21)

then R is Euclidean, with φ(a) = min{j : a ∈ Aj}. Motzkin [363] proved that
the condition (21) is also necessary if R is to be Euclidean. As an example, if
R = Z, then A1 = {−1, 0, 1}. This set consists of three consecutive integers and
thus it provides representatives for the classes mod 2 and mod 3, so that A2 =
{−3,−2,−1, 0, 1, 2, 3}. Here we have 7 consecutive integers so that A3 is the interval
[−7,+7] consisting of 15 consecutive integers. It can be easily shown that if θ(n)
denotes the number of binary digits of |n|, then the minimal algorithm on Z is
given by θ. Using the sets An we can easily see, for example, why Q(

√
−19) is not

Euclidean for any algorithm. This follows because ±1 are its only units and every
non-trivial ideal has norm at least 4 so the construction of the sets An stops at
A1. If the reader wants to learn more about Euclidean rings, Lenstra [295] wrote
an introductory account. Samuel [441] wrote a more advanced survey on Euclidean
rings. In this survey, he studied the function θ defined below in Theorem 6 and
noticed that the condition on the value of np (defined in order to study θ) was similar
to Artin’s conjecture. He may have been the first to notice the connection between
Euclidean rings and Artin’s conjecture. In addition, Samuel asked questions that
shaped the study of Euclidean rings. For example, he asked whether there were a
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real quadratic number field such that its ring of integers were Euclidean but not
norm-Euclidean; he suggested the ring Z[

√
14] as a candidate.

Two years later, assuming GRH, Weinberger [494] was able to use Hooley’s work
on Artin’s conjecture in the Euclidean ring situation and established the following
result.

Theorem 4. (GRH). Let K be an algebraic number field whose ring of integers

both is a principal ideal domain and has infinitely many units. Then the ring of

integers of K is Euclidean.

At first sight GRH seems to have little to do with the statement of the result. It
comes from the fact that the following variant of Artin’s primitive root conjecture
is needed for the proof of Theorem 4 and can presently be only proved assuming
GRH.

Theorem 5. (GRH). Let K be an algebraic number field whose ring of integers

R both is a principal ideal domain and has infinitely many units. Let � be a fun-

damental unit of R, i.e. � �= �n
1 for all units �1 and all integers n > 1. Let p be

a prime ideal of K and let I be the multiplicative group of ideals of K prime to p

and let H = {a ∈ I : a ≡ (1) (mod p)}. Then every ideal class of I/H contains

infinitely many prime ideals q for which � is a primitive root mod q, i.e. the class

of � generates the (cyclic) group of units in the finite field R/q.

The proof of this result is a variant of Hooley’s proof of the original Artin con-
jecture.

The proof that Theorem 5 implies Theorem 4 consists of two steps. We first
define irreducibility; an element b is irreducible if the ideal (b) is prime. Assuming
GRH, one uses Theorem 5 to show that every irreducible of R is in A3. If one
chooses an irreducible element p, then every ideal class of I/H has infinitely many
prime ideals q = (q) such that (R/q)× = �[�]�. This implies the q are in A2 and
therefore, for all a ∈ R − (p), there exists an irreducible q ∈ A2 such that a ≡ q
(mod p). We conclude that p is in A3.

This means that every element of R − A1 can be written as a product of irre-
ducibles in A2 − A1 and in A3 − A2. If n2 is the number of these irreducibles in
A2 − A1 and n3 is the number of these irreducibles in A3 − A2, then we define
the height of b to be ht(b) = 2n2 + 3n3. One then shows that if b ∈ R − A1, then
b ∈ Aht(b). Thus the sets Aj exhaust R and so R is Euclidean.

Let K be a global field, and let S be a non-empty set of prime divisors of K
containing the set S∞ of archimedean prime divisors of K. The ring of S-integers
of K is RS = {x ∈ K : νp(x) ≥ 0 for all primes p �∈ S}. Lenstra [292] generalized
the result of Weinberger above as follows.

Theorem 6. Suppose that RS is a principal ideal ring, and that #S ≥ 2. Further,

if K is a number field, assume that for every squarefree integer n and every finite
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subset S� ⊂ S the Dedekind zeta function ζ
K(ζn,R∗S

1/n)(s) satisfies the Riemann

Hypothesis. Then RS is Euclidean, and its minimal algorithm θ is given by

θ(x) =
�

p�∈S

νp(x)np (x ∈ RS , x �= 0),

where the sum is over all primes p of K which are not in S and

np =

�
1 if the natural map R∗

S
→ Kp

∗ is surjective;
2 else.

The function field case of this result is due to Queen [426]. Lenstra also points
out that the Euclidean algorithm given by Weinberger is not the minimal one. The
assumption #S ≥ 2 is only an apparent restriction in the latter result, as in case
#S = 1 Lenstra gives the complete list of RS , both for the number and function
field situations, that are principal and those that are Euclidean.

Under some further assumptions, the GRH condition is not needed. Gupta, Ram
Murty, and Kumar Murty [205] established the following result.

Theorem 7. Let K be a number field Galois over Q and let g be the gcd of the

numbers NK:Q(P)− 1 for P ∈ S − S∞. If

(a) |S| ≥ max(5, 2[K : Q]− 3), and

(b) K has a real embedding or ζg ∈ K,

then the ring of S-integers RS is principal if and only if it is Euclidean.

The proof combines ideas from a paper by Gupta and Ram Murty on Artin’s
conjecture [202] and from a paper of Ram Murty and Kumar Murty [374] on an
analogue of the Bombieri-Vinogradov theorem.

Harper and Ram Murty published further results on Euclidean rings that did
not assume GRH. In his thesis [214], Harper adapted Motzkin’s construction of
the sets Aj defined above in the number field situation. He decided to define
B0 = {0 ∪ R∗} and Bi = Bi−1 ∪ {irreducible elements p : R∗ � (R/(p))∗}. Using
Dirichlet’s theorem on primes in arithmetic progressions, he showed that if R is
principal and ∪Bi contains every irreducible element of R, then R is Euclidean. He
then further refined the sets by augmenting B0 by an ‘admissible set of primes.’ A
set of primes {π1, . . . ,πs} is called admissible if, for all integers β composed of only
these primes, every coprime residue class modulo β can be represented by a unit.
He then used the large sieve to show that if |{b ∈ B1 : Nm(b) ≤ x}|� x

log2 x
, then

∪Bi contains all of the irreducible elements of R. In particular, if a real quadratic
field has two admissible primes, then its ring of integers is principal if and only if it
is Euclidean. He found two such primes in the ring Z[

√
14] and used them to show

that Z[
√

14] is Euclidean, thereby answering Samuel’s question. He then used the
same techniques to show that if the ring of integers of a cyclotomic field, Z[ζd], is
principal, then it is Euclidean.
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Harper and Ram Murty [215] generalized this work by proving that if K is a
finite Galois extension of Q with unit rank greater than 3, and if the ring of integers
of K is principal, then there exists a large enough set of admissible primes, implying
that the ring of integers is a Euclidean domain. The truth of this result assuming
GRH was previously established by Weinberger (Theorem 4).

Petersen and Ram Murty extended Ram Murty’s earlier work with Harper by
removing the Galois condition in certain cases. They showed that if K is a number
field with ring of integers R, rank(R∗) > 3 and M is a subfield of K such that K
is a Galois extension of M of degree > 3, then R is a principal ideal domain if and
only if R is a Euclidean ring [376]. It is worth noting that Petersen and Ram Murty
did other work involving Artin’s conjecture. They showed that if 1 ≤ a < q, with
(a, q) = 1, and if K is a finite Galois extension of Q such that rank(R∗) > 3 and
ζq /∈ K, then there are infinitely many prime ideals p of first degree in R such that
|Nm(p)| ≡ a (mod q) and R∗ � (R/p)× [375]. They used this to show that if K is
a finite Galois extension of Q, rank(R∗) > 3 and

√
−1 /∈ K, then there are infinitely

many maximal hK-cusped subgroups of PSL2(R) [375]. Previously, Petersen [414]
proved such a result for all K with positive unit rank and

√
−1 �∈ K, assuming the

GRH. As all of these subgroups are congruence subgroups, this result is a contrast
to situation when K is Q or an imaginary quadratic, where there are many maximal
hK-cusped subgroups, but few of these are congruence subgroups. (cf. [416] and
[415].) The geometry is discussed in [375, 414, 415].

Harper’s proof that Z[
√

14] is Euclidean, but not norm-Euclidean, answered a
question that had inspired a great deal of mathematical activity. The earliest known
example of a quadratic Euclidean field that is not norm-Euclidean is Q(

√
69) ([85,

390]). Since Samuel asked the question, much has been done to find a function other
than the norm which makes Z[

√
14] Euclidean (see [290]). Nagata was unable to

prove that Z[
√

14] is Euclidean. Instead, he introduced the concept of a ‘pairwise
algorithm’ and showed that Z[

√
14] has such an algorithm ([382]). Clark and Ram

Murty [88] proved that Z[
√

14, 1/p] is Euclidean for p = 1298852237. On combining
their techniques with earlier work of Gupta, Ram Murty and Kumar Murty [205],
Harper [214] observed that it can be shown that Z[

√
14, 1/p] is Euclidean for any p.

In 1995, Lemmermeyer [290] wrote a survey of known results and open questions
on Euclidean and non-Euclidean algebraic number fields. It was updated in 2004,
but in 2007, Narkiewicz proved that there are at most two real quadratic fields such
that their ring of integers is principal but not Euclidean [387]. He also showed that
there is at most one normal cubic number field with class number one that is not
Euclidean. He proved this by combinining Harper and Ram Murty’s work with his
earlier results (Narkiewicz [386]) on units in residue classes. There have been no
other major advances in the study of Euclidean rings since then, but there has been
work on Euclidean ideals and Euclidean systems.

In 1979, Lenstra [294] introduced the notion of a Euclidean ideal class which
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generalizes that of a Euclidean ring. As the existence of a Euclidean algorithm for a
domain implies trivial class group, the existence of a Euclidean ideal in a Dedekind
domain implies cyclic class group. Lenstra was inspired by norm-Euclidean rings of
integers. Suppose that K is a number field and that OK is its ring of integers. Let
Nm denote the field norm. If, for all a, b ∈ OK , b �= 0, there exists some q, r ∈ OK

such that
a = qb + r, where r = 0 or |Nm(r)| < |Nm(b)|,

then
|Nm

�a

b
− q

�
| = |Nm

�r

b

�
| < 1.

In other words, R is norm-Euclidean if and only if, for all x ∈ K, there exists some
y ∈ OK such that

|Nm(x− y)| < 1 = Nm(R).

Lenstra then asked what would happen if R were replaced by some fractional ideal
C. If, for all x ∈ K, there exists some y ∈ C such that

|Nm(x− y)| < |Nm(C)|,

then C is a norm-Euclidean ideal. The only quadratic number fields with a norm-
Euclidean ideal are Q(

√
d), with d = −1,−3,−5,−7,−11,−15,−20, 3, 5, 6, 7, 8, 10

11, 13, 15, 17, 19, 21, 29, 33, 37, 41, 57, 73, and 85 ([294],[195]). Note that only for
d = −15,−5, 10, 15, and 85, does Q(

√
d) have a non-principal norm-Euclidean ideal.

As mentioned above, there are rings that are Euclidean but not norm-Euclidean.
Lenstra generalized norm-Euclidean ideals as follows. For the rest of the section,
we define E to be the set of all inverses of integral ideals of a Dedekind domain R.
Suppose that C is a fractional ideal of R. If there exists a function ψ : E −→ W ,
W a well-ordered set, such that for all I ∈ E and all x ∈ IC \C, there exists some
y ∈ C such that

ψ((x + y)−1IC) < ψ(I).

We say ψ is a Euclidean algorithm for C and C is a Euclidean ideal.
If we define I to be the set of all integral ideals of R, we can rewrite this definition.

A fractional ideal C is Euclidean if there exists a function ψ : I −→ W , W a well-
ordered set, such that for all integral ideals I and all x ∈ I−1C \ C, there exists
some y ∈ C such that

ψ((x− y)IC−1) < ψ(I).

If C is a Euclidean ideal, then so is every ideal in its ideal class. If C is a Euclidean
ideal, then its ideal class [C] is called a Euclidean ideal class. One can check that if
R is a Euclidean ring, then R is a Euclidean ideal and [R] is a Euclidean ideal class.
If C is a Euclidean ideal, then its ideal class generates the class group of R, implying
that the class group is cyclic. Lenstra then proceeded to prove a generalization of
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Weinberger’s result for Euclidean ideals.
Lenstra showed [294] by generalizing Weinberger’s work on Euclidean rings, that

assuming GRH if K is a number field with cyclic class group and with OK having
infinitely many units, then [C] generates the class group of K if and only if C is a
Euclidean ideal. To be more precise, the assumption is that for every squarefree n,
the ζ function associated to K((R∗) 1

n ) satisfies the RH.
As in the Euclidean ring situation, there has been work to prove this without

assuming the GRH. In her thesis [193], Graves generalized Motzkin’s reformulation
of the Euclidean algorithm and Harper’s work on Euclidean rings to the Euclidean
ideal situation. One can define analogous constructions for the Ai’s and Bi’s. One
can then, using a variation of the large sieve, prove Harper’s theoretical results for
the Euclidean ideal situation. They imply that if K is a number field such that
|O
×
K
| =∞, if [C] generates ClK , and if

���prime ideals p
��Nm(p) ≤ x, [p] = [C], R∗ � (R/p)×

���� x

log2 x
,

then C is a Euclidean ideal. In a later paper [192], she used this along with a result
of Narkiewicz [386], to show that Q(

√
15,
√

35) has a Euclidean ideal.
Recently, Graves and Ram Murty used the above growth results to prove Lenstra’s

result in some cases without assuming the GRH. More precisely, if K is a finite Ga-
lois extension of Q with ring of integers R, rank(R∗) > 3, and cyclic class group
ClK , such that its Hilbert class field H(K) has an abelian Galois group over Q,
then [C] generates ClK if and only if [C] is a Euclidean ideal class [194]. They then
used this to show that Q(

√
5,
√

21,
√

22) has a non-principal Euclidean ideal class
that is not norm-Euclidean [194].

9.7. Miscellaneous

We mention some other related results without delving deeply into the mathematics
involved.

1) How many primes p are there with p − 1 squarefree? There are two
lines of attack. One is à la Artin’s primitive root conjecture. In this approach one
notes that p− 1 is squarefree if and only if p does not split completely in any of the
cyclotomic fields Q(ζq2), where q runs over all primes. By inclusion-exclusion this
gives then the conjectural natural density δ =

�∞
n=1 µ(n)/[Q(ζn2) : Q]. The latter

sum is easily seen to equal A. An approach to this problem in this spirit was made
by Knobloch [216, 261], a student of Hasse. It turns out, however, that a quite
elementary proof is possible. It was found by Mirsky [325]. This uses the trivial
identity

�
d2|n µ(d) = 1 if n is not squarefree and zero otherwise. Note that the

number of primes p ≤ x such that p−1 is squarefree equals
�

p≤x

�
a2|p−1 µ(a). Now
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swap the order of summation. The inner sum is a prime counting sum and can be
estimated by the Siegel-Walfisz theorem (15) for a small enough. The contribution
from all large a we can trivially estimate. Carrying out this procedure gives us
the same sum for the density δ as found in the earlier approach. (Mirsky gives
the details of another proof and then for the relevant one for our purposes says it
can be done similarly. This is worked out, however, in more detail in, e.g., Moree
and Hommersom [356, pp. 17–20].) The same approach was recently followed by
Broughan and Zhou [51] to show that the density of primes p such that p−1 = 2em
with m odd and squarefree, equals 2A. Clary and Fabrykowski [89] determined the
density of primes p ≡ l(mod k) such that ap + b is squarefree, where (l, k) = 1 and
a > 0. It is an explicitly defined rational multiple of the Artin constant.

In view of the analogy between the groups F∗p and E(Fp), where E/Fp is an
elliptic curve, it is natural to also consider the squarefreeness of the elements of
the sequence #E(Fp) = p + 1 − ap, as p goes to infinity. This problem may be
interpreted as a stronger version of that of calculating the number of primes p for
which the group E(Fp) is cyclic, where E is a global elliptic curve defined over Q
and then reduced modulo primes p. The problem of how often p+1−ap is squarefree
was first considered by A.C. Cojocaru in her PhD thesis [104], where she proved
an unconditional asymptotic formula for these primes if E/Q is with CM (see also
[107]) and a conditional asymptotic formula if E/Q is without CM.

The above topic is related to the question of how many ways, R(n) say, there
are one can write a given number n as a sum of a prime and a squarefree number.
Let B > 1 be fixed. In 1936 Walfisz [485] (see also [330, pp. 386-387]) showed that
R(n) = c(n)Li(n) + O(n log−B n), where

c(n) = A
�

q|n

�
1 +

1
q2 − q − 1

�
.

The appearance of A in this context seems to be unrelated to the multiplicative
order. It comes from the first sum below, which happens to be equal to the second
sum arising in primitive root theory:

c(n) =
∞�

d=1, (d,n)=1

µ(d)
ϕ(d2)

=
∞�

d=1, (d,n)=1

µ(d)
dϕ(d)

.

For some material related to the result of Walfisz; see [150, 397].

2) Higher rank Artin. Note that g is a primitive root mod p if the subgroup
generated by ḡ, the reduction of g mod p, equals (Z/pZ)∗. If g1, . . . , gr are rational
numbers, one can wonder about
a) the density of primes p ≤ x such that �ḡ1, . . . , ḡr� is the full multiplicative group
(Z/pZ)∗;
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b) the density of primes p such that each gi, 1 ≤ i ≤ r, is a primitive root modulo
p.
a) This was studied by Cangelmi and Pappalardi, see [65, 402]. The analogue of A
in this setting is the r-rank Artin constant

Ar =
�

q

�
1−

1
qr(q − 1)

�
.

Trivially A1 = A.
Let κ(p) denote the smallest integer r such that the first r primes generate

(Z/pZ)∗. Brown and Zassenhaus conjectured in [52] that κ(p) ≤ [log p] for almost
all primes p and that κ(p) > log p for infinitely many primes p. The latter part
of the assertion is true by the result of Graham and Ringrose [188] that the least
quadratic non-residue exceeds c(log p) log log log p for infinitely many primes p.

If U denotes the number of primes p ≤ x for which g(p) ≥ T , then, by (25),
we have UT �

�
p≤x

g(p) � π(x) log2 x(log log x)4. For any � > 0, we choose
T = log2 x(log log x)4+�/2 so that U = o(π(x)) and since g(p) ≤ T is a product
of primes ≤ T , we infer that for almost all primes p we have the estimate κ(p) ≤
log2 x(log log x)4+�/2 ≤ (log p)2(log log p)4+�. Pappalardi [400] improved this by
showing that κ(p) = O(log2 p/ log log p) for almost all primes p ≤ x. Under GRH
he showed in another paper [402] that the Brown-Zassenhaus conjecture is true.
Moreover, he shows that there is a positive absolute constant B such that for every
divergent function y = y(x) ≤ log x/(4 log log x) and for all primes p ≤ x with
at most O(π(x)B−y(x)) exceptions we have κ(p) ≤ [y(p)]. In 1993, Konyagin and
Pomerance [262] and Pappalardi [398] independently proved that for all � > 0 and
for all primes p ≤ x, G(p) ≤ x� with at most O�(1) exceptions.
b) This was studied by K. Matthews [324], who determined the density under GRH
(formula (1.4)). (This formula contains a typo, one has to replace q > 2 by q ≥ 2.)
The analogue of A in this setting is

A�r =
�

q

�
1−

1
q − 1

�
1−

�
1−

1
q

�n��
.

Trivially A�1 = A. Pappalardi [404] studied the infinitude of this set of primes p
assuming Schinzel’s Conjecture H. Schinzel [446], relying heavily on results from
Matthews paper, determined assuming GRH the density of primes p such that two
prescribed disjoint sets of odd primes A and B have the property that (b/p) = 1
for every b ∈ B and every a ∈ A is a primitive root modulo p. He used this to
determine the density D(pk, pl) of primes p such that the kth-prime pk is for p the
least quadratic non-residue and pl the least prime primitive root modulo p.

The shortest route known to calculating the densities is provided by the average-
character-sum method, see Moree and Stevenhagen [361]. In their setup Schinzel’s
result follows very easily.
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Again, this higher rank analogue of Artin’s conjecture can be formulated in the
context of reductions of an elliptic curve E/Q with arithmetic rank > 1, as well as
that of an elliptic curve E/Fq[T ]. As mentioned before, the rational situation was
studied by Gupta and Ram Murty in [203, 204], and the function field one by Hall
and Voloch in [211].

3) Near-primitive roots. Fix an integer t. For the primes p ≡ 1(mod t) we can
ask for the subset of them such that �ḡ� generates a subgroup of index t in (Z/pZ)∗;
see [117, 289, 292, 296, 326, 340, 342, 354, 355, 368, 483]. We let Ng,t(x) denote
the corresponding counting function. Assuming GRH the corresponding density,
δ(g, t), can be shown to be

∞�

n=1

µ(n)
[Q(ζnt, g1/nt) : Q]

.

The first person to do so seems to have been H. Möller [326], followed a few years
later by Wagstaff [483]. Since now nt can be non-squarefree making the degree
evaluation technically more involved, the resulting answer is less elegant than in
the case t = 1. For g > 0 or g not minus a square, the resulting density was given
in Euler product form by Wagstaff [483]. For general g the density has been given
in Euler product form by Moree [355]. It turns out that the average-character-sum
method [296] leads far more efficiently to this result. The latter method leads also
very directly to an if and only if result for δ(g, t) to vanish. Lenstra [292] was
the first to give these vanishing conditions, but he did this without proof. Since
Wagstaff did not work out the Euler product form of the density for every g, his
result did not make such a proof possible. In the paper by Moree cited above, [355],
a proof along the lines of Wagstaff’s approach can be found.

Moree introduced a function wg,t(p) ∈ {0, 1, 2} for which he proved (see [340];
for a rather easier reproof see [342]) under GRH that

Ng,t(x) = (h, t)
�

p≤x, p≡1(mod t)

wg,t(p)
ϕ((p− 1)/t)

p− 1
+ O

�x log log x

log2 x

�
.

This function wg,t(p) has the property that, under GRH, wg,t(p) = 0 for all primes p
sufficiently large if and only if Ng,t is finite. Since the definition of wg,t(p) involves
nothing more than the Legendre symbol, it is then not difficult to arrive at the
vanishing conditions.

To sum up, there are three different approaches to determine exactly when δ(g, t)
vanishes:
1) completing Wagstaff’s work and bringing δ(g, t) into Euler product form [355];
2) using asymptotically exact heuristics for Ng,t(x) [340, 342];
3) using the average-character-sum method [296].
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There is no doubt though, that at present approach 3 yields the most elegant
and short derivation of the vanishing conditions.

Unaware of the above results Solomon Golomb made in 2004 [76] the following
near-primitive root conjecture (a review of near-primitive roots from the perspective
of Golomb’s conjecture is given in Moree [354]. This perspective was abandoned in
Moree [355], the final version).

Conjecture 2. For every squarefree integer g > 1, and for every positive integer
t, the set Ng,t is infinite. Moreover, the density of such primes equals a constant
(expressible in terms of g and t) times the corresponding density for the case t = 1
(Artin’s conjecture).

In a 2008 paper Franc and Ram Murty [161] made some progress towards estab-
lishing this conjecture. In particular they prove the conjecture in case g is even and
t is odd, assuming GRH. In general though, this conjecture is false, since in case
g ≡ 1(mod 4), t is odd and g|t, Ng,t is finite. To see this note that in this case we
have ( g

p
) = 1 for the primes p ≡ 1(mod t) by the law of quadratic reciprocity and

thus rp(g) must be even, contradicting the assumption 2 � t.
The author proposes the following conjecture (which on GRH can be shown to

be true).

Conjecture 3. For every squarefree integer g > 1, and for every positive integer t,
the set Ng,t is finite if and only if g ≡ 1(mod 4), t is odd and g|t. In case N(g, t) is
infinite it has a natural density that equals a positive constant (expressible in terms
of g and t) times the corresponding density for the case t = 1.

Golomb apparently made his conjecture having in mind the problem of estimating
the number of primes in the set S, defined as follows. Let Φn(x) denote the n-th
cyclotomic polynomial. Let S be the set of primes p such that if f(x) is any
irreducible factor of Φp(x) over F2, then f(x) does not divide any trinomial. Using
the explicit evaluation of δ(g, t) and results from Golomb and Lee [184], one can
then deduce that, on GRH, the set S has a subset of density > 0.95; see [354].

Felix and Ram Murty [155, 156] are interested in the problem of proving estimates
of the type �

p≤x

f(rp(g)) ∼ Af (g)π(x), (22)

The case f(x) = log x and g = 2 was first studied by Bach et al. [25]. Fomenko [159]
showed that (22) holds true in case f(x) = log x, assuming GRH and Conjecture A
of Hooley [239, p. 112]. Felix and Ram Murty [156] managed to prove this result
without assuming Conjecture A in case f(x) = logα x, with 0 < α < 1. In fact they
can deal with a wider class of functions including some arithmetic functions, e.g.,
ω and Ω. In a sequel Felix [155] establishes (22) with rp(g) replaced by its higher
rank analogue. When the rank is at least two, a much more precise version of (22)
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can be established (under GRH), namely with error term O(xθ) and θ < 1.
Ram Murty and Simon Wong [381] showed that at least one of the following

holds true:
1) N2,2 is infinite.
2) There exist infinitely many primes p such that 2p − 1 is composite.
In the same spirit, they announce that a variation of their argument gives that if
2 is not a primitive root for infinitely many primes p, then (2p + 1)/3 is composite
for infinitely many primes p.

4) Primitive λ-roots. The definition of primitive roots was extended by Car-
michael to that of primitive λ-roots for composite moduli n, which are integers
with the maximal order modulo n (which equals the exponent, λ(n), of the group
(Z/nZ)∗). We have λ(n)|ϕ(n). It is an exercise in elementary number theory to
describe those n for which λ(n) = ϕ(n)/2; see, e.g., Lee et al. [287]. Let Ng(x) be
the number of natural numbers up to x for which g is a primitive λ-root. One might
wonder then, in analogy with Artin’s conjecture, whether Ng(x) ∼ B(g)x for some
positive constant B(g) depending on g, perhaps with some exceptional values of g.
Li [303] provides results suggesting that Ng(x)/x does not typically tend to a limit.
Let R(n) denote the number of residues modulo n which are primitive λ-roots for n.
One has R(n) ≥ ϕ(ϕ(n)). Müller and Schlage-Puchta [367] showed that the set of
n with R(n) = ϕ(ϕ(n)) has density zero. Li [303] showed that (1/x)

�
n≤x

R(n)/n
does not tend to a limit as x tends to infinity. In particular, one has

lim
x→∞

sup
1
x

�

n≤x

R(n)
n

> 0, lim
x→∞

inf
1
x

�

n≤x

R(n)
n

= 0.

Let E denote the set of integers g which are a power higher than the first power
or a square times a member of {±1,±2}. Li [302] showed that for g ∈ E we
have Ng(x) = o(x), and that for every integer g one has lim infx→∞Ng(x)/x = 0.
Li and Pomerance [307] showed that, under GRH, for each integer g not in E

one has lim supx→∞Ng(x)/x > 0. Furthermore, Li [304] showed that, for y ≥
exp((log x)3/4), one has

1
y

�

1≤g≤y

Ng(y) ∼
�

n≤x

R(n)
n

, as x→∞.

The range for y was extended by Li and Pomerance [308]. See also [301, 304, 305,
367] for further results and [306] for a survey on primitive roots, with special focus
on primitive λ-roots.

5) Squarefreeness. Pappalardi [403] studied the problem of determining how
many primes p ≤ x there are such that ordp(g) is squarefree (and similarly ordm(g),
where m ranges over the integers ≤ x for which the latter order is defined). Using a
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simple characterisation of those n for which Carmichael’s function λ(n) is squarefree
together with Mirsky’s result from §9.7.1, Pappalardi, Saidak and Shparlinski [405]
have shown that the number of n ≤ x such that λ(n) is squarefree is asymptotically
equal to cx logA−1 x, for some constant c > 0. Note that Artin’s constant appears
in an unusual position in the formula! There are of course various generalisations
possible, e.g., to ‘roughly’ squarefree values [35] and kth powerfree values [36].

6) Goldstein’s conjecture and follow up. Larry Goldstein formulated a conjec-
ture in 1968 which implies Artin’s conjecture (announcement [180], detailed version
[181]). For each prime q, let Lq be a Galois extension over Q. For each integer k
let Lk be the compositum of those Lp for which p divides k, and let n(k) be the
degree of Lk and dk its discriminant; then the set of primes p that split completely
in none of the Lq equals

∞�

k=1

µ(k)
n(k)

(23)

if this series converges absolutely. This conjecture is known to be false, even for
certain abelian Lq (Weinberg [493]). In 1973, Goldstein [182] proved a special
case of his conjecture (assuming GRH) for families of abelian Lq satisfying certain
conditions on their discriminants, degrees, and splitting of primes. An unconditional
version of his result was established by Ram Murty [371].

Theorem 8. Suppose that for q sufficiently large, the extensions Lq are abelian

over Q and

1. log |dk| = O(n(k) log k)

2. if a prime p splits completely in Lq,then for q sufficiently large p ≥ fq, where

fq is the conductor of Lq

3.
�

k≥y

1
n(k) = o( 1

log y
), as y →∞.

Then the set of primes which do not split completely in any Lq has a density δ given

by (23).

In 1983, assuming GRH Ram Murty established a variant of Goldstein’s conjec-
ture in a lattice theoretic setting and applied it to elliptic curves [370].

7) Brizolis’ conjecture. Brizolis conjectured that for every prime p > 3 there
exist an x and a primitive root g(mod p) such that x ≡ gx(mod p). Let N(p)
denote the number of 1 ≤ x ≤ p−1 such that x is a primitive root mod p and x and
p−1 are coprime. It is easy to see that if N(p) ≥ 1, then Brizolis’ conjecture is true
for the prime p. (Let y be the multiplicative inverse of x modulo p− 1 and consider
g = xy. Then gx ≡ xxy ≡ x(mod p) and g is a primitive root for p.) Hausman



INTEGERS: 12A (2012) 46

[220] showed that N(p) ≥ 1 for every sufficiently large prime p. Let ω(n) denote the
number of distinct prime divisors of n and d(n) the number of divisors of n. Cobeli
and Zaharescu [94] and, independently Wen Peng Zhang [507] using character sums
and the Weil bounds proved that

N(p) =
ϕ(p− 1)2

p− 1
+ O(

√
p 4ω(p−1) log p),

and used this to show that Brizolis’ conjecture is true for every prime p > 1050.
The full Brizolis’ conjecture was settled by Campbell [63]. In a later paper [298]
she and her coauthors using a numerically explicit “smoothened” version of the
Pólya-Vinogradov inequality showed that for each prime p > 3, there is a primitive
root g for p in [1, p− 1] that is coprime to p− 1. This led to a new proof of Brizolis
conjecture requiring far less computer calculation.

Note that if x ≡ gx(mod p), then x is 1-cycle under taking the discrete logarithm
with respect to g. For small k, k-cycles of the discrete logarithm problem are
studied in Holden and Moree [236] (for more experimental work in this direction
see [233, 234]); see also Glebsky and Shparlinski [178]. Let F (p) denote the number
of pairs (g, h) satisfying gh ≡ h(mod p) with 1 ≤ g, h ≤ p − 1. Let G(p) denote
the number of pairs (g, h) satisfying gh ≡ h(mod p) with 1 ≤ g, h ≤ p − 1, where
in addition we require g to be a primitive root modulo p. Holden and Moree [236,
Conjecture 8.3] conjectured that

�

p≤x

F (p)
p− 1

= (1 + o(1))π(x) and
�

p≤x

G(p)
p− 1

= (A + o(1))π(x).

This conjecture with quantitative error estimates has meanwhile been established
by Bourgain et al. [44]. A related conjecture by Holden and Moree [236] states
that one should have F (p) = (1 + o(1))p. Bourgain et al. [44] showed that F (p) =
p + O(p4/5+�) for a set of primes p of relative density 1 and in a later paper, [45],
F (p) ≥ p + O(p3/4+�) and F (p) = O(p).

The above questions are all modulo p, we can also ask them modulo prime pow-
ers. A preliminary approach to these questions was made by Holden and Robinson
[237] using p-adic methods, primarily Hensel’s lemma and p-adic interpolation.

8) ω(n) = ω(n+1) and Artin. Erdős conjectured that there are infinitely many
integers n such that Ω(n) = Ω(n + 1), where Ω(n) denotes the total number of
prime divisors of n and a similar result for ω(n). The former conjecture was proved
in 1984 by Heath-Brown [221], but the latter was only proved by Schlage-Puchta in
2003 [448]. Kan in 2004 [251], unaware of the latter result, proved the weaker result
that not both the ω(n) = ω(n + 1) conjecture and the qualitative form of Artin’s
primitive conjecture can be false.

Heath-Brown actually proved that there are infinitely many integers n such that
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d(n) = d(n + 1) (thus solving a conjecture of Erdős and Mirsky) and remarks that
his method can similarly prove that Ω(n) = Ω(n + 1) infinitely often, where d(n)
denotes the number of positive divisors of n.

9) Artin over number fields. Over arbitrary number fields, there are two ob-
vious ways in which Artin’s conjecture can be generalized. Fix a number field K
with ring of integers OK , and a nonzero element α ∈ OK , which is not a root of
unity. We expect the following generalization to hold: the set of primes p of K for
which α generates the cyclic group (OK/pOK)∗ has a density inside the set of all
primes of K. Moreover, the situation is highly similar to the rational case, as the
set of primes p of K for which (OK/pOK)∗ is isomorphic to (Z/pZ)∗ has density
1. In 1975 Cooke and Weinberger [112] proved that this generalization of Artin’s
conjecture is indeed true and the density is given by the infinite sum in (9) with Q
replaced by K, if an appropriate generalization of RH holds.

Roskam [439] considers a generalization of Artin’s conjecture in a “rational” di-
rection: the set of rational primes p for which the order of α in (OK/pOK)∗ is equal
to the exponent of this group has a density inside the set of all rational primes.
He proves that, assuming that an appropriate generalization of RH is true, this
conjecture holds for quadratic fields K. A less general result in this direction he es-
tablished in [437] (but with a rather easier proof). Kitaoka and various of his pupils
did a lot of work on Artin’s conjecture for units (rather than general elements) in
number fields, cf. [70, 245, 253, 254, 257, 258, 259, 260] (this being only a partial
list of references).

10) Artin for matrices. Let A be a hyperbolic matrix in SL2(Z); that is, a matrix
with absolute trace greater than 2. We may define ordn(A) to be the order of A
in SL2(Z/nZ). It can be shown that for a hyperbolic matrix in SL(2, Z) there is a
density-one sequence of integers n such that its order mod n is slightly larger than
√

n. This is a crucial ingredient in an ergodicity theorem regarding eigenstates of
quantized linear maps A of the torus (‘cat maps’); see Kurlberg and Rudnick [275].
Under an appropriate generalisation of RH it can be shown [272] that for almost
all n we have ordn(A)� n1−� for any � > 0. Call a matrix A exceptional if it is of
finite order or if it is diagonalizable and a power Ar of A has all eigenvalues equal
to powers of a single rational integer > 1, or equal to powers of a single unit �= 1 of
a real quadratic field. Corvaja et al. [113] established that if A is not exceptional,
then the quotient ordn(A)/ log n tends to infinity with N , with their proof ulti-
mately relying on the Schmidt subspace theorem from Diophantine approximation.
Their result is best possible since, for any exceptional matrix A, there exist some
c > 0 and arbitrarily large integers n for which ordn(A) < c log n.

Since the eigenvalues of A are units in a quadratic number field, this problem is
closely related to that discussed in part 9.
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11) Artin for K-theory of number fields. (Written by W. Gajda.) For basic
references concerning K-theory the reader should consult [169] and [170]. For a num-
ber field K we denote by OK the ring of algebraic integers. The class group of OK

is isomorphic to the quotient K0(OK)/Z, where K0(R) denotes the Grothendieck
of a commutative ring R with unity. The group of units (OK)� coincides with the
group K1(OK) defined by Bass in the sixties. In 1972 Quillen introduced groups
Kn(R), for all integers n ≥ 0, the so-called higher algebraic K-theory groups of R.
In the case R = OK one can treat Quillen’s groups as higher dimensional analogs
of the class group of OK - for n even, and of the group of units (OK)� - for n
odd. The groups Kn(R) enjoy many very useful properties. In particular, they
depend functorially on the ring R. For a fixed n, the reduction at a prime ideal p

of OK induces a group homomorphism: Kn(OK) −→ Kn(OK/p), which for n = 1
can be easily identified with the map (OK)� −→ (OK/p)�. Due to a classical re-
sult of Quillen Kn(OK) are finitely generated abelian groups. On the other side,
Kn(OK/p) vanishes, for n>0 and even, and is a finite cyclic group, if n>0 and
odd. The ranks of the groups Kn(OK) were determined by Borel. In particular, if
OK=Z, then the group Kn(OK) is of rank 1, if n=0 or n=4m + 1 for an integer
m>0, and is finite, otherwise. We expect that the following analog of the Artin
conjecture holds for the K-groups of the integers: for a fixed n=4m + 1 and m>0,
the set of primes p for which the homomorphism Kn(Z) −→ Kn(Fp) is onto, has a

natural positive density. Note that for n as above, due to another classical result
of Quillen Kn(Fp) � Z/(p2m+1−1), and conjecturally Kn(Z) � Z, at least up to
2-torsion. For some results supporting this conjecture and the discussion of the
relation of the reduction map on the K-groups to deep questions in number theory,
such as the Kummer-Vandiver conjecture, we refer the reader to the survey paper
[170].

12) Griffin’s dream. R. Griffin (a mathematical amateur) thought in 1957 that
the decimal expansions of 1/p should have period length p− 1 for all primes of the
form 10X2 + 7. The first 16 primes p of the form 10X2 + 7 have indeed decimal
period p − 1, but this is not true for p = 7297, the 17th such prime. D. Lehmer
[288] found in 1963 that 326 is a primitive root for the first 206 primes of the form
326X2 + 3. More impressive examples in the same spirit can be given using recent
results on prime producing quadratics by Moree [352] and K. Scholten [451]. Y.
Gallot holds the record in which 206 is being replaced by 38639. Scholten [451] was
the first to consider prime producing cubics and he found one having the property
that the first 10011 primes p it produces are such that that 11045 is a primitive
root modulo p.

13) Artin and binomial coefficients. Interest in prime divisors of binomial co-



INTEGERS: 12A (2012) 49

efficients dates back at least to Chebyshev. It is not difficult to see that unless k is
fairly close to one of the ends of the range 0 ≤ k ≤ n, then the coefficient

�
n

k

�
contains

many prime factors and many of these occur with high multiplicity. Erdős made
a number of conjectures quantifying these observations, one well-known conjecture
being that the middle coefficient

�2n

n

�
is not squarefree for any n > 4. Granville

and Ramaré [190] proved this conjecture in 1996. The corresponding problem for q-
binomial and, more generally, q-multinomial coefficients is much more complicated.
Sander [443] showed how Artin’s primitive root conjecture implies the respective
results.

14) Ulmer’s rank result. Let Fq be the finite field of q elements of prime char-
acteristic p. If (n, q) = 1, then it can be shown that Xn − 1 factors into

iq(n) =
�

r|n

ϕ(r)
ordq(r)

distinct irreducible factors over Fq. The quantity iq(n) appears in various math-
ematical settings, for example in Ulmer’s study of elliptic curves with large rank
over function fields [476], the study of the cycle structure of repeated exponentation
modulo a prime p [79, 455]; see Moree and Solé [357] for further examples). Using
the Cauchy-Frobenius identity coupled with elementary group-theoretical consider-
ations, Deaconescu [121] has shown that

iq(n) =
1

ordq(n)

�

d|ordq(n)

ϕ
�ordq(n)

d

�
(n, qd

− 1).

Ulmer considers the parametric family of curves Ed : y2 + xy = x3 − td over the
function field Fq(t), where d is a positive integer. Ulmer [476, Theorem 9.2] showed
that if d is a divisor of the sequence {pk + 1}, then the rank Rq(d) of Ed over Fq(t)
is given by Rq(d) = iq(d)− �q(d), with �q(d) an explicit correction term that always
satisfies 0 ≤ �q(d) ≤ 4.

Using techniques from the study of Artin primitive root type problems (for ex-
ample a version of the Chebotarev density theorem due to Lagarias and Odlyzko),
Pomerance and Shparlinski [425] showed that the typical rank in Ulmer’s family
Rq(d) tends to infinity as d→∞. In particular, they proved that except for op,�(x)
values of d ≤ x, one has Rq(d) ≥ (log d)(1/3−�) log log log d. Further they established
the existence of an absolute constant α > 1/2 such that for all finite fields Fq and all
sufficiently large values of x (depending only on the characteristic p of Fq), one has
x−1

�
d≤x

Rq(d) ≥ xα. This shows that the family Ed is quite special, as Brumer
[53] has shown that the average rank for all elliptic curves over a function field of
positive characteristic is asymptotically bounded above by 2.3.
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15) Primitive roots compared with quadratic non-residues. Let n be a
power ph or 2ph, with p an odd prime. Write

PR(n) = {g ∈ (Z/nZ)×, g is a primitive root modulo n},

QNR(n) = {a ∈ (Z/nZ)×, a is a quadratic non−residue modulo n}

for the set of primitive roots and quadratic non-residues modulo n, respectively.
Obviously PR(n) ⊆ QNR(n). By methods from elementary number theory and
combinatorics Gun et al. [200] classified those n for which

#(PR(n)) = #(QNR(n))− 2r.

Modulo p the number of nonquadratic residues which are not primitive roots is
obviously g(p) := (p− 1)/2− ϕ(p− 1). The values assumed by g were investigated
by Luca and Walsh [316] and by Robbins [430]. More recently, Gun et al. [199] ap-
plied character sum estimates to prove results on consecutive quadratic non-residues
modulo p that are not primitive roots. They showed for example that given a fixed
0 < � < 1/2 and any positive integer N , then for all primes p ≥ exp((2�−1)8N ) sat-
isfying ϕ(p−1)/(p−1) ≤ 1/2−�, we can find N consecutive quadratic non-residues
modulo p that are not primitive roots. More recently Luca et al. [314] showed that
in fact the same property holds starting with significantly smaller primes. These re-
sults are analogous to earlier results by A. Brauer [46] (quadratic residues, quadratic
non-residues) and Szalay [472] (primitive roots).

16) The Crandall-Collatz qx + 1 problem. For positive odd numbers q and
m, let Cq(m) denote the largest odd factor of qm + 1. The sequences of iterates
Cq(m), Cq(Cq(m)), . . . consists of the odd numbers in the orbit of m under the
qx + 1 function. The 3x + 1 conjecture (unproven) asserts that for q = 3 such an
orbit always contains the number 1; cf. Lagarias [277] or the book [278]. Crandall
conjectured that for every odd number q > 3 there always exists an integer m such
that 1 does not occur in the orbit of m under the qx + 1 function. A number q
for which such an m exists we call a Crandall number. Crandall [115] showed that
5, 181 and 1093 are Crandall numbers. The proofs for 5 and 181 involve cycles: for
q = 5, we have the cycle 13, 33, 83, 13, and for q = 181, we have the cycle 27, 611, 27.
The proof for 1093 depends on the fact that it is a Wieferich prime, that is, a prime
p such that 2p−1 ≡ 1(mod p2). It is conjectured that there are infinitely many,
but presently only two of them are known: 1093 and 3511. We define a positive
odd integer q to be a Wieferich number if q and (2ordq(2) − 1)/q are not coprime.
These definitions are consistent in the sense that a Wieferich prime is a Wieferich
number, and a prime Wieferich number is a Wieferich prime. Franco and Pomer-
ance [162] showed that every Wieferich number is a Crandall number, and that the
Wieferich numbers have relative density 1 in the odd numbers. The appearance of
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ordq(2) in this setting is trivial: the odd number r is in the range of Cq if and only
if 2jr ≡ 1(mod q) for some integer j, so that the residue classes modulo q in the
range of Cq are precisely those in the subgroup of (Z/qZ)∗ generated by 2 modulo
q (see also [265]). Also in some weaker versions of the 3x + 1 problem, the order of
2 modulo q makes its appearance, see, e.g., [66].

As a byproduct Franco and Pomerance [162] showed that Nm(x) = o(x) (see
§9.7.17 for the definition of Nm(x)).

17) Counting integers with odd order. Let m ≥ 1 be an arbitrary integer and
let Nm(x) count the number of odd integers u ≤ x such that m � ordu(2). In case
m = q is an odd prime H. Müller [364] proved that

x

log1/(q−1) x
� Nq(x)�

x

log1/q x
.

This was improved in Moree [336] to

Nq(x) = cq

x

logq/(q2−1) x

�
1 + O

� (log log x)5

log x

��
,

with cq > 0 a constant. The latter result was subsequently generalized by Müller
[365] to the case where m = qn. Subsequently this result was generalized to arbi-
trary m see Moree [350]. For a nice survey of the material discussed under §9.7.16
and §9.7.17, see Müller [366].

18) Pseudorandom number generators. Of importance in computer science are
pseudorandom number generators, an example being the power generator, where
the sequence is given by ui+1 ≡ ue

i
(mod n). This generator is periodic, and for

it to behave pseudorandom, the period must be large. Some light on this can be
shed by techniques used in the study of Artin’s primitive root conjecture; see, e.g.,
[164, 273, 321]. Goubin, Mauduit and Sárkőzy [187] studied the pseudorandomness
of sequences e1, . . . , eN with en = ( f(n)

p
) if p and f(n) are coprime, and en = 1

otherwise, where f(X) ∈ Fp[X] has positive degree. In their considerations the
order of 2(mod p) plays an important role (the larger it is the better).

The analogous problem of studying pseudoprime reductions of an elliptic curve
over Q was considered by Cojocaru, Luca and Shparlinski in [109]. Some of their
results were recently improved on by David and Wu [120].

19) Non-primitive roots. Let E(M,N) denote the number of integers in the
interval [M + 1,M + N ] which are not primitive roots modulo p for any odd prime
p ≤

√
N . Gallagher, in the fundamental paper [168] in which he introduced what

is now called Gallagher’s large sieve, gave the estimate E(M,N) = O(
√

N log N).
This was improved by Vaughan [479] to E(M,N) = O(

√
N logc N) for some explicit
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c = 0.37 . . .. Note that the result is quite sharp as E(M,N) includes the squares
in the interval and so trivially E(0, N) �

√
N . A number field analogue of Gal-

lagher’s result was established by Hinz [228]. In a later paper Hinz [230] obtained
an analogue of Vaughan’s result with an explicit value of c < 1 depending on the
field.

20) Romanoff’s result and follow up. In Bilharz’s [39] work on the Artin
primitive root conjecture over Fq[T ] the density

∞�

m=1, q�m

µ(m)
m ordm(q)

(24)

appeared. The absolute convergence of this sum was proven by Romanoff [434].
A simpler proof was given by Erdős and Turán [148]. However, a much simpler
proof of this was given by Erdős [141]. Romanoff’s result was strengthened and
generalized by Landau [281] and more recently by Ram Murty et al. [377], who also
established analogous results over number fields and for abelian varieties.

Romanoff proved that the integers of the form p+2k have positive lower density
(for a nice reproof see Montgomery and Vaughan [330, pp. 98-99]). He raised
the following question: does there exist an arithmetic progression consisting only
of odd numbers, no term of which is of the form p + 2k? Erdős [140] found such
an arithmetic progression by considering integers which are congruent to 172677
modulo 5592405(= (224 − 1)/3). Thus the density of numbers of the form p + 2k is
less than 1/2, the trivial bound obtained from the the odd integers. Put

d = lim inf
x→∞

#{p + 2k ≤ x}

x/2
and d = lim sup

x→∞

#{p + 2k ≤ x}

x/2
.

Habsieger and Roblot [208] showed that d < 0.9819. Pintz [420] showed that d ≥
0.18734. The first explicit lower bound for d was found by Chen and Sun [72].

A related conjecture is due to Erdős, who conjectured that 7, 15, 21, 45, 75 and
105 are the only integers n for which n− 2k is a prime for every k with 2 ≤ 2k < n.
Vaughan [479] gave an estimate for the number of integers n ≤ x of this form [479,
(1.5)]. Assuming that 2 is a primitive root infinitely often, it is not difficult (see
Hooley [239, pp. 113–115]) to show that the number of such integers n ≤ x is
O(x1−A+�). Narkiewicz [384] sharpened this estimate to O(x1−A/(log 2)+�).

Ram Murty and Srinivasan [379] considered a sum akin to (24). They showed
that if

Sa(x) :=
�

p≤x, p�a

1
ordp(a)

= O(x1/4),

then Artin’s conjecture holds true. Unconditionally they showed that the latter sum
is�

√
x. Erdős and Ram Murty [144] later improved on this by showing there exists
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δ > 0 such that Sa(x) �
√

x log−1−δ x. Felix [154] showed that if x/ log x = o(y),
then

1
y

�

a≤y

Sa(x) = log x + O(log log x) + O(
x

y
),

showing that Sa(x) equals log x on average. He established a similar result for Sa(x),
but with ordn(a) replaced by ϕ(ordn(a)), showing that this sum is ζ(2)ζ(3) log x/ζ(6)
on average. The asymptotic he obtains involves a constant arising in the Titchmarsh
divisor problem (cf. Problem 40).

21) Erdős-Kac type theorems for the multiplicative order. An arithmetic
function is said to have a normal order F (n), if and only if for any � > 0, for almost
all n ≤ x, one has (1−�)F (n) < f(n) < (1+�)F (n). In 1917 Hardy and Ramanujan
[212] showed that ω(n) has normal order log log n. In 1940, Erdős and Kac [143]
proved a more refined result: the quantity

ω(n)− log log n
√

log log n

is normally distributed, thus the normal order log log n serves as the mean, and
√

log log n as standard deviation. This result can be more precisely formulated as
follows:

lim
x→∞

� 1
x
· #

�
n ≤ x : α ≤

ω(n)− log log n
√

log log n
≤ β

��
= G(α,β),

where G(a, b) := 1√
2π

� b

a
e−t

2
/2dt denotes the Gaussian normal distribution. This

celebrated result marked the birth of a whole new branch of number theory: proba-
bilistic number theory. See Elliott [133, 134] and Tenenbaum [473] for books dealing
with this topic.

Under GRH the following result was proved by Saidak in his PhD thesis and
Ram Murty and Saidak [378]. Let a ≥ 2 be an integer. We have

lim
x→∞

� 1
x
·#

�
n ≤ x : (a, n) = 1,α ≤

ω(ordn(a))− 1
2 (log log n)2

�
1
3 (log log n)3

≤ β
��

= G(α,β)
ϕ(a)

a
.

Later Li and Pomerance [307] gave a different proof, also requiring GRH. Erdős and
Pomerance [145] had earlier conjectured the latter result and proved that it is true
with ordn(a) replaced by ϕ(n). For analogues in the setting of elliptic curves, see,
e.g., Cojocaru [106] and Liu [310, 311], and in the context of Drinfeld modules see
[108, 269, 270, 271].

In [269] Kuo and Liu give a short survey of Erdős-Kac type theorems and sketch
the proof of the main result in their paper [270].
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22) Gauss periods. In connection with a problem involving Gauss periods, Gao
et al. [171] raised the question of determining the density of primes p ≡ 1(mod k)
such that p−1

ordp(g) and p−1
k

are coprime. For a given g and k, von zur Gathen and
Pappalardi [174] showed that, under GRH, this density exists and computed an
Euler product for it. Gauss periods are of interest to perform fast arithmetic in
finite fields [173].

23) Golomb’s conjectures. In 1984, Golomb [183] made four conjectures, which
if true could be applied to construct so-called Costas arrays which were first con-
sidered by Costas [114] in attempting to construct sonar signal patterns. Indepen-
dently, Gilbert [176] also wrote about them in the same year, publishing what is
now known as the logarithmic Welch method of constructing Costas arrays. Costas
arrays concern primitive elements in finite fields. For our purposes it suffices to
formulate the first three of these conjectures in the case where the finite field is of
prime order.
A) If p is odd, then there are two not necessarily distinct primitive roots g1 and g2

such that g1 + g2 ≡ 1(mod p).
B) If p is odd, then there are two not necessarily distinct, primitive roots g1 and g2

such that g1 + g2 ≡ −1(mod p).
C) For all p large enough, every c with p � c can be written as c ≡ g1 + g2 with g1

and g2 primitive roots modulo p.

After work of various authors, it is now known that these conjectures are true; see
S. Cohen and Mullen [100]. A more general form of Conjecture C is also known to
be true [99]. A related question is to estimate the number of solutions g1, g2 for a
fixed c (representations of c) asymptotically as p→∞ [102, 511].

24) Fibonacci primitive roots. Various authors considered primitive roots that
in addition are required to satisfy a polynomial equation. In this context, most
frequently the Fibonacci primitive roots have been considered: a primitive root g
modulo a prime p is called a Fibonacci primitive root if g2 ≡ g + 1(mod p). More
generally, if m > 1, A and B are integers, then a primitive root g modulo m is
called a generalized Lucas primitive root modulo m with parameters A and B if m
divides g2 −Ag + B; see, e.g., Mollin [327].

Shanks [456] conjectured that the density of Fibonacci primitive roots equals
27A/38. Under GRH this was shown to be true by Sander [442] in 1990. However,
this result was already established by Lenstra in 1977 [292, Theorem 8.1].

25) N(H, p). For primes p let N(H, p) denote the number of primes q ≤ H which
are primitive roots modulo p. Heuristically one expects that N(H, p) should be well
approximated by φ(p−1)

p−1 π(H). Results in this direction were established by Elliott
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[130] and, more recently, Nongkynrih [391].

26) Primitive roots and groups. There are many papers in the group theory
literature based on the problem of recognizing a finite group by the set of its el-
ement orders. For a finite group the set of orders of all its elements is called a
spectrum of this group. A finite group is called recognizable from its spectrum if all
finite groups with the same spectrum are isomorphic to this group. Lyuchido and
Mogkhaddamfar [317] proved that for an odd prime p the projective special linear
group Lp(2) is recognizable from its spectrum if 2 is a primitive root modulo p.

Recall that Aut(Cn(p)) is the symplectic group of 2n × 2n matrices over Fp.
Thompson [474] proved that if p is an odd prime which is a primitive root modulo
the prime l ≥ 5, then Aut(C(l−1)/2(p)) is the Galois group of an extension of Q(t).

Let p and r be odd primes. Abért and Babai [1] considered the wreath product
W (r, p) of the cyclic groups Cp and Cr. They showed that the maximum size of the
minimal generating set of W (r, p) equals 2 + (p− 1)/ordp(g). They used this result
to answer a question of Lubotzky.

Martin and Valette [319] considered the solvable Baumslag-Solitar group BSn =
{s, b : aba−1 = bn} for n ≥ 2. They showed for example that if the Artin conjec-
ture holds for the integer n, then the spectrum of the associated Markov operators
contains the set {z ∈ C : |z| = 1/2}.

27) Least primitive root modulo p. Let g(p) denote the least primitive root
modulo p, and h(p) be the least positive primitive root modulo p2. Using Gauss sums
Vinogradov [481] (see also Landau [280]) showed in 1930 that g(p) < 2ω(p−1)p1/2 log p.
This was improved to g(p) < 2ω(p−1)+1√p in 1942 by Hua [243]. Erdős [139] showed
that g(p) = O(√p log17 p), and Erdős and Shapiro [147] that g(p) = O(ω(p−1)c

√
p),

for some absolute constant c. Burgess [55] using his celebrated character sum
estimates proved that g(p) = O(p1/4+�) and h(p) = O(p1/2+�). The former es-
timate was achieved independently by Wang [487]. S. Cohen et al. [101] sharp-
ened the latter estimate to h(p) = O(p1/4+�). Elliott and Murata [137] consid-
ered the least primitive root mod 2p2. They also considered moments of g(p);
that is, sums of the form π(x)−1

�
p≤x

g(p)δ (in [136]); in particular they showed
that if δ < 1/2 assuming GRH the latter sum tends to a constant depending on
δ. Elliott [130] has shown that for all but O(X�) primes p up to X, one has
g(p) = O(logc� p), with c� a constant depending on �. In the same paper he proved
that g(p) < 475 log1.6 p for infinitely many primes p. The latter result was super-
seded in 1984 by Gupta and Murty [202] who obtained the bound g(p) < 2250 for
infinitely many primes p. Subsequently this bound was reduced to g(p) ≤ 7 for in-
finitely many primes p by Heath-Brown [222]. Under GRH, Wang [487] has shown
that g(p) � (log2 p)ω(p − 1)6. Utilizing a combinatorial sieve due to Iwaniec,
Shoup [458] improved this to g(p) � ω(p − 1)4(log(ω(p − 1)) + 1)4 log2 p. To-



INTEGERS: 12A (2012) 56

wards a lower estimate for g(p), it is known that infinitely often g(p) can exceed
c(log p)(log log log p) for a certain c > 0 [188]. This improves dramatically on a re-
sult of Pillai [419], who showed that unconditionally g(p) = Ω(log log p). Assuming
GRH one has g(p) > c(log p)(log log p) for infinitely many primes p (see Montgomery
[328, Theorem 13.5]). An often studied quantity in the literature is n2(p), which is
defined as the least quadratic non-residue modulo p. For example in 1952, Ankeny
[10] proved the important result that n2(p) = O(log2 p) on GRH. This consequence
of GRH has the important corolloray of makng Miller’s primality test polynomial
time (cf. Bach [20]). Since clearly g(p) ≥ n2(p), any Ω-result for n2(p) will imply
the same result for g(p).

Burgess and Elliott [58] have shown that

1
π(x)

�

p≤x

g(p)� log2 x(log log x)4, (25)

improving on an earlier bound x logA x (with an unspecified A) of Burgess [56].
Cohen et al. [101] showed that in (25) one can replace g(p) by h(p), thus improv-
ing on an earlier result of Burgess [57] to the effect that π(x)−1

�
p≤x

h(p) �
log3 x(log log x)6. Murata [369] has shown that π(x)−1

�
p≤x

g(p)� log x(log log x)7,
assuming the GRH, meanwhile the exponent 7 has been replaced by any number
> 4 by Elliott and Murata [136].

Let D(i) be the density of primes p such that g(p) = i. Elliott and Murata [136]
proved under GRH that D(i) =

�
M

(−1)|M |−1AM , where M runs over all the sub-
sets of the set {1, 2, . . . , i} containing i, with AM the density (under GRH) of primes
p such that each ai ∈M is a primitive root modulo p, as computed by K. Matthews
[324]. This formula can be transformed using finite difference methods, into a
form which allows one to prove that D(i) > 0 if i is not a power; see Buttsworth
[61, 62]. Paszkiewicz and Schinzel [410] carried out extensive numerical work con-
cerning D(i) for i ≤ 32. Paszkiewicz did extensive computations to study whether
or not g(p) = h(p). Litver and Yudina had computed in 1971 that g(p) = h(p) for
p ∈ [2, 232] with the single exception of p = 40487. Paszkiewicz [408] showed that
in the interval [232, 1012] there is one further such prime: p = 6692367337.

Let d > 1 be an integer. Linnik proved in 1944 the celebrated result that there
is a constant c such that every reduced residue class modulo d contains a prime not
exceeding dc. Subsequent proofs and improvements use, like Linnik, zero-free re-
gions for L-series, zero density estimates for these and a quantitative version of the
Deuring-Heilbronn phenomenon (for an introduction, see Stopple [471]). This also
applies to Heath-Brown’s paper [223] in which he established c = 11/2. Recently
T. Xylouris in his Diplomarbeit (Bonn, 2009), established c = 5.2; see [502]. Elliott
[135] gave a rather different proof in which as a ‘waystation’ (as he called it), he es-
tablished the result that the least prime primitive root, g∗(p), to a prime modulus p
does not exceed pc. In another paper Elliott [131] proved that g∗(p) < 475(log p)8/5
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infinitely often. Shoup [458], assuming GRH, gave a much sharper upper bound. G.
Martin [320] showed that for all but O(Y �) primes p ≤ Y we have g∗(p)� logC(�) p.
Assuming GRH, Paszkiewicz and Schinzel [409] derived from the work of K.R.
Matthews [324] a formula for the density E(q) of primes p for which g∗(p) = q.
They computed E(q) for the first 25 primes q. Bach [23] conjectured that

lim
p→∞

sup
g∗(p)

(log p)(log log p)2
= eγ .

Murata [369] showed that, under GRH, for any positive constant D we have

|{p ≤ x : g∗(p) ≥ D(log p) log log p}|�D

π(x)
log log x

and g∗(p) = O(p�) for almost all primes p.
A polynomial analogue of g(p) also exists. There one can prove, as did Hsu [241],

that there exists a c > 0 such that if n ≥ c·deg(P )/logq deg(P ), one can find at least
one positive irreducible of degree n which is a primitive root modulo P . Davenport
[119] had proven much earlier that if q (taken to be prime) is large enough with
respect to deg(P ), then there even exists a linear polynomial which is a primitive
root.

Various authors [226, 227, 229, 230, 231, 488, 486] considered the least primitive
root in number fields. For example, Hinz [225] generalized the Pólya-Vinogradov
inequality to arbitrary algebraic number fields K. As an application he estimated
the totally positive primitive root ν modulo a prime ideal p of least norm and
showed that it satisfies N(ν)� N(p)1/2+�. In a later paper [226] he improved this
to N(ν)� N(p)1/4+�.

Dieulefait and Urroz [124] used results on g(p) in order to study the malleability
of RSA moduli. An encryption algorithm is malleable if it is possible for an adver-
sary to transform a ciphertext into another ciphertext which decrypts to a related
plaintext. That is, given an encryption of a plaintext m, it is possible to generate
another ciphertext which decrypts to f(m), for a known function f , without neces-
sarily knowing or learning m.

These results on g(p) immediately give an efficient search procedure for primitive
roots, that is, lead to the construction a small set S with at least one element that
is a primitive root modulo p. Bach [23] gave a different search procedure, where
the set S has size O(log4 p/(log log p)3) and can also be constructed in polynomial
time, assuming GRH. However, the set tends to have larger elements. (In writing
this section I made grateful use of §2.2.4.3 in Narkiewicz’s book [388].)

28) Inverse primitive roots. Zhang [509] considered the distance between a
primitive root g with 1 ≤ g ≤ p − 1 and its inverse, ḡ (which is also a primitive
root), with 1 ≤ ḡ ≤ p−1. For about 75% of the primitive roots g modulo p in [1, p],
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one has that |g − ḡ| ≤ p/2.

29) Consecutive primitive roots. Vegh (see, e.g., [480]) wrote a series of pa-
pers on consecutive primitive roots and primitive roots in arithmetic progression.
Mozingo [331], using elementary arguments, showed that the only positive integers
> 1 having all their primitive roots consecutive are 2, 3, 4, 5 and 6.

30) Average multiplicative order. J. von zur Gathen et al. [172] defined u(n)
to be the average multiplicative order of the elements of (Z/nZ)∗. Note that
u(n) ≤ λ(n). They proved various results comparing u(n) with λ(n); see also
[312, 313, 343].

31) Smooth orders. An integer is said to be “y-smooth” (or “y-friable”) if none
of its prime factors exceed y. The distribution of smooth integers is by now very
well understood; for a survey up to 1993 see Hildebrand and Tenenbaum [224]. A
more recent survey is due to Granville [189]. Banks et al. [34] established some
results on the smoothness of the order function, thus improving upon earlier results
by Pomerance and Shparlinski [424].

32) Distribution of ϕ(p − 1)/(p − 1). Trivially ϕ(p − 1)/(p − 1) ≤ 1/2 if p is
odd. For any real numbers x ≥ 2 and u, let

D(x, u) =
1

π(x)

�

p≤x
ϕ(p−1)/(p−1)≤x

1.

Elliott [132] proved that the limit limx→∞D(x, u) = D(u) exists for all real numbers
u. The function D(u) turns out to be continuous and is strictly increasing on the
interval [0, 1/2]. Schoenberg [450] (see also Kac [250]) had earlier considered the
distribution problem for ϕ(n)/n and proved the existence of the analogue of D(u)
and its continuity as a function of u. Li [301] considered the analogue of D(x, u)
with R(n)/ϕ(n) as function, with R(n) the number of primitive λ-roots in [1, n].
He showed for example that in this case there exists u0 > 0 such that for every u
in (0, u0) the function D(x, u) does not have a limit as x→∞.

In the stochastic model proposed by Esseen [149] the sum

�

p≤x

�ϕ(p− 1)
p− 1

�k

with k ≥ 1 an integer played an important role. Without proof Esseen stated an
asymptotic for this sum, namely that the latter sum is asymptotic to A�rLi(x) with
A�r as in §9.7.2. A proof was given much earlier by Vaughan [479, Lemma 4.4].
An easier proof was given by Holden and Moree [236] (following a suggestion of



INTEGERS: 12A (2012) 59

Pomerance).
If in the latter sum we sum over integers n ≤ x we have (see [330, p. 42])

�

n≤x

�ϕ(n)
n

�k

= x
�

q

�
1−

1
q
(1− (1−

1
q
)k

�
+ O(x�).

Vaughan [479] studied the average relative density of primitive roots mod p versus
non-primitive roots mod p,

1
π(x)

�

2<p≤x

ϕ(p− 1)
p− 1− ϕ(p− 1)

,

by relating it to the above ‘Esseen sums’.

33) Cubic reciprocity primitive root criteria. Chebyshev’s criterium we men-
tioned in the introduction only involves quadratic reciprocity. Fueter [166] formu-
lated some criteria which also make use of cubic reciprocity. He proved for example
that if p is a prime of the form p = 1 + 22n32m+3, with n > 0 and m ≥ 0, then 5 is
a primitive root modulo p if and only if m ≡ n(mod 2).

34) Coding theory. In coding theory sometimes the multiplicative order arises.
See, e.g., [38, 123, 185, 206, 252, 293, 357, 421, 427, 431, 432] and cf. §9.4.2. For
example Lenstra applied his methods from [292] to yield existence theorems, as-
suming GRH, for perfect, one-error-correcting arithmetical codes, cf. [185, 293].

35) Hooley-Heath-Brown Hybrids. There are various results which are hybrid
between Hooley’s result and Heath-Brown’s unconditional result in the sense that
under an assumption weaker than GRH a conclusion weaker than Hooley’s is es-
tablished, but strongr than Heath-Brown’s. For example Nongkynrih [392] proved
that if for every squarefree integer k the Dedekind zeta function ζK(s) of the field
K = Q(ζk, 21/k) is zero free in Re(s) > 1− e−12A/5 − δ, then 2 is a primitive root
for a positive proportion of primes. For other examples, see Cojocaru [103, 104]
and Ram Murty [373].

36) Polynomials representing primitive roots. Let f be a polynomial over a
finite field. Is there a primitive root in its image? Madden [318] proved that for
almost all finite fields k, every squarefree polynomial of degree l over k represents
a primitive root in k. Let f1(x), . . . , fr(x) be polynomials modulo p, which are
squarefree and relatively prime in pairs. Carlitz [67] gave an asymptotic formula
for the number of x(mod p) for which each of f1(x), . . . , fr(x) is a primitive root.
The best results to date in this direction are due to S. Cohen [98].
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37) Permutations and primitive roots. Consider the permutation

(1, 2)(1, 2, 3) . . . (1, 2, . . . ,m)

(multiplication of cycles from right to left), then (for a proof see [19]) the product
is a single cycle containing all of 1, 2, . . . ,m if and only if 2m+1 is a prime number
having 2 as primitive root.

To a primitive root g modulo p we associate the permutation σg of X defined by
σg(x) ≡ gx(mod p). More precisely, σg(x) = y, the unique element in {1, 2, . . . , p−
1} satisfying y ≡ gx(mod p). For example, if p = 7, then σ5 = (1 5 3 6)(2 4).
Lewittes and Kolyvagin [300] determined the parity s(σg) of the permutation σg.
Assume p > 3 and put w = ((p− 1)/2)!. Then

s(σg) =

�
−wg(p−1)/4(mod 2) if p ≡ 1(mod 4);
−w(mod 2) if p ≡ 3(mod 4).

In case p ≡ 1(mod 4), using Wilson’s theorem one sees that ±w are precisely the
two roots of X2 + 1 ≡ 0(mod p). On the other hand, ±g(p−1)/4 are also roots
modulo p. The above results allows one to equate these roots.

In case p ≡ 3(mod 4), the congruence can be rewritten as s(σg) ≡ hQ(
√
−p)(mod 4),

using Mordell’s [332] result that w ≡ (−1)a(mod p), with a = (1 + hQ(
√
−p))/2.

38) Perfect card shuffling. Consider an even number of cards numbered 0 to
2k − 1, with 0 the top card. Then a perfect card shuffle takes a card in position i
and sends it to 2i(mod 2k − 1). If the cards continue to be perfectly shuffled, the
deck returns to the order it was in before the first shuffle. For example, if one takes
a deck of 52 cards, cut it in half, and perfectly shuffles it (with the bottom card
staying at the bottom), then it returns after 8 times to its starting order. Thus
Shuf(52) = 8. In general let Shuf(2k) be the least number of perfect shuffles that
will return a deck of 2k cards to its starting order. It is not difficult so show that
Shuf(2k) = ord2k−1(2), cf. [436].

To wit, she that can card shuffle can do algebraic number theory, as the level (see
§9.4.3 for the definition) of the cyclotomic number field Q(ζ2k−1) can be determined
using the parity of Shuf(2k). This level is 4 if Shuf(2k) is odd, and 2 otherwise.

39) Parabolic generators of Γ(p). Frasch [163] has shown that Γ(p), the principal
congruence subgroup of the modular group Γ modulo a prime p, can be generated
as a free group by the generators Sp = (1

0
p

1 ) and (p−1)p(p+1)/12 other generators.
Recall that g(p) is the smallest primitive root modulo p (cf. §9.7.27). Grosswald
[196] has shown that if g(p) <

√
p − 2, then these (p − 1)p(p + 1)/12 generators

can be chosen in such a way that they are all parabolic. In a later paper, [197], he
showed that for all p sufficiently large we have g(p) <

√
p− 2.
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40) Pseudopowers. An x-pseudopower to base g is a positive integer which is
not a power of g, yet is so modulo p for all primes p ≤ x. Let qg(x) denote
the least x-pseudopower to base g. Bach et al. [25] proved that if RH holds for
Dedekind zeta functions, then there is a constant A > 0, depending only on g
such that qg(x) ≥ exp(A

√
x log−2 x). Estimating qg(x) is closely related to deter-

mining the behaviour of the order on average. Using upper bounds of Baker and
Harman [26] for the Brun-Titchmarsh inequality on average (see also the book by
Harman [213]) and new bounds on exponential sums, Konyagin et al. [263] showed
that qg(x) ≤ e0.88715x for x sufficiently large and |g| ≤ x. This improved upon the
upper bound qg(x) ≤ e(1+o(1))x due to Bach et al. [25]. In the course of the proof
the authors showed that

�
p≤x, p�g ordp(g) ≥ e0.58045x for x sufficiently large and for

g an integer with 2 ≤ |g| ≤ x. Recently the result by Konyagin et al. was improved
by Bourgain et al. [43] who showed that qg(x) ≤ e0.86092x for x sufficiently large
and |g| ≤ x.

41) Ducci sequences. The Ducci-sequence generated by X := (x1, . . . , xn) ∈ Zn is
the sequence (X,D(X),D2(X), . . .) where D : Zn → Zn is defined by D(x1, . . . , xn) =
(|x1−x2|, |x2−x3|, . . . , |xn−x1|). Every Ducci sequence (X,D(X),D2(X), . . .) gives
rise to a cycle; there are integers i and j with 0 ≤ i < j with Di(X) = Dj(X).
When i and j are as small as possible, we say that the Ducci-sequence has period
(j − i). Breuer et al. [50] studied links between Ducci-sequences, primitive polyno-
mials and Artin’s primitive root conjecture. They proved for example that if p is
a prime and 2 is a primitive root modulo p, then Ducci-sequences of length p have
only one period other than 1.

Breuer [48] introduced Ducci sequences over abelian groups. They are sequences
U,D(u),D2(u), . . . ∈ Gn, where D(u1, u2, . . . , un) = (u1 +u2, u2 +u3, . . . , un +u1).
In [49] he proved that in case G = (Z/ptZ) and p � n, the maximal period of a Ducci
sequence, Ppt(n), divides pt−1(pordp(n) − 1) and pt−1n(pordp(n)/2 − 1) if ordp(n) is
even. Furthermore, he showed that Ppt(2) = ordpt(2).

42) Divisible trinomials. Golomb and Lee [184] considered irreducible polyno-
mials which divide trinomials in F2. In their considerations ordp(2) played an im-
portant role. They proved for example that if Φp(x) = x

p−1
x−1 = f1(x)f2(x) · · · fr(x)

is a product of r irreducible polynomials, r is even and p > 7r/2, then the fi(x)’s
divide no trinomials. Note that r = (p− 1)/ordp(2). In this context Golomb made
a conjecture on near-primitive roots that subsequently turned out to be false; see
[355].

43) Sidelnikov primes. In the theory of pseudo-random sequences, there is some
interest in finding prime powers q, such that q − 1 has a large prime divisor r such
that 2 is a primitive root modulo r. Let P (x, y) be the number of primes p ∈ (x, 2x]
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such that p − 1 has a divisor r ≥ y satisfying ordr(2) = r − 1. Friedlander and
Shparlinski [165] showed that under GRH for any fixed 1/2 ≤ α < 17/32,

P (x, xα) ≥
�
A log(17/32α)/100 + o(1))

x

log x
.

44) Diffie-Helllman triples. Let g be a primitive root modulo p. Canetti et
al. [64] proved that the triples (gx, gy, gxy), x, y = 1, . . . , p − 1, are uniformly dis-
tributed modulo p in the sense of H. Weyl. In cryptography it is often assumed
that the triples (gx, gy, gxy) cannot be distinguished from totally random triples in
feasible computation time. The above result implies that this is in any case true for
a constant fraction of the most significant bits, and for a constant fraction of the
least significant bits.

45) Carmichael numbers in number rings. If an �≡ a(mod n), for some inte-
ger a, then n is composite. This is a rudimentary Compositeness Test. However,
there are some n for which this test fails, no matter how we pick a. A Carmichael

number is a composite integer n such that an ≡ a(mod n) for all integers a. The
smallest such number is 561. It turns out that there are infinitely many Carmichael
numbers; see [9]. Steele [465] defined a Carmichael ideal to be a composite ideal n

such for α ∈ OK , we have αN(n) ≡ α(mod n). Using Heath-Brown’s result that all
primes, with the possible exception of at most two are primitive roots for infinitely
many primes p, Steele [465] showed that if the integer n is the product of at least
three distinct primes, then there exist infinitely many cyclotomic extensions Q(ζq),
such that n is not Carmichael in Q(ζq).

46) Common primitive root. Let
�r

i=1 pei
i

be the canonical prime factorisation
of an integer n. Finizio and Lewis [158] called an integer m a common primitive

root if m is a primitive root modulo pei
i

for 1 ≤ i ≤ r.

47) Mapping the discrete logarithm. A functional graph is a directed graph
such that each vertex must have exactly one edge directed out from it. If S is a
finite set and f : S → S a mapping, then one can associate a functional graph to
the mapping f by interpreting each element in S as a vertex. The edges are defined
such that an edge (a, b) is in the graph if and only if f(a) = b. Cloutier and Holden
[91] considered the functional graph associated to the mapping x → gx modulo p,
with p a prime and S = {1, 2, . . . , p− 1}. They computed various statistics of this
graph and compared them with those of a random mapping.

48) Hilbert p-class field towers. Furuta [167] and B. Schmidt [449] proved results
relating the multiplicative order to sufficiency criteria for the existence of Hilbert p-
class field towers of Q(ζm). For example, Schmidt proved that if m = kq, where k is
an integer, and q is a prime with q ≡ 1(mod p), (k, q) = 1 and qn �≡ −1(mod k), for
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n = 1, 2, . . ., and also such that ϕ(k)/ordk(q) ≥ 8p + 12, then Q(ζm) has an infinite
Hilbert p-class field tower. Shparlinski [460] used the latter result to show that for
infinitely many m there is an infinite Hilbert p-class field tower over Q(ζm) for some
p ≥ m0.3385+o(1). Furthermore, he used the result of Furuta [167] to show that for
almost all positive integers m, Q(ζm) has an infinite Hilbert p-class field with high
rank Galois groups at each step, simultaneously for all primes p to size up to about
(log log m)1+�. As a consequence, Shparlinski inferred that for all m ≤ x, with x
large enough, except possibly O(x(log log x)−0.08) exceptions, the class number of
Q(ζm) is divisible by all primes p ≤ log log x/(10 log log log x).

49) Cunningham chains. Let p1, . . . , pk be a chain of primes such that for 2 ≤
j ≤ k we have pj = 2pj−1 + 1; that is, we have

pj = 2j−1p1 + 2j−1
− 1 = 2j−1(p1 + 1)− 1. (26)

Such a chain of primes is known as a Cunningham Chain. A basic example is
2, 5, 11, 23, 47, while the longest one known is the Cunningham Chain with k = 16
and p1 = 810433818265726529159, discovered by Carmody and Jobling in 2002.
Let k(p) be the length of the longest Cunningham Chain starting from p. One
has k(p) = 1 for all primes p ≤ x, except for O(x log−3 x) of them. (This follows
by a standard upper bound for Sophie Germain primes coming from sieve theory.)
By the first equality in (26) and Fermat’s little theorem we find k(p) ≤ ordp(2).
Conditonally one can do far better than this. Assuming that P(2)(x) ∼ Aπ(x),
which by Hooley’s result is true under GRH, Ford et al. [160] have shown that

lim
p→∞

sup
k(p)
log p

≤
1
A

.

50) Dynamical systems and Artin. Let k be an A-field. Denote by P (k) the
set of all places of k. Let P∞(k) denote the set of Archimedean places if k is a
number field or the set of infinite places if k is a function field of transcendence
degree one over a finite field. Suppose one is given an element ξ ∈ k∗, and any set
S ⊂ P (k) ⊆ P∞(k) such that ξ is integral for all w /∈ S ∪P∞(k). The dual group of
the S-integers RS , denoted by X, is a compact abelian group. Let α : X → X be a
continuous group endomorphism which is the dual of the monomorphism �α : RS →

RS given by �α(x) = ξx. Dynamical systems of the form (X,α) = (X(k,S),α(k,S,ξ))
are called S-integer dynamical systems. These were introduced in Chothi et al. [90].
The authors show, for example, that if the qualitative version of Artin’s conjecture
holds, then there exist examples with uniformly distributed periodic points.

In [491] (building on an earlier paper [490]) Ward considers a family of isometric
extensions of the full shift on p symbols (with p a prime) parametrized by a prob-
ability space. Using Heath-Brown’s work [222] on the Artin conjecture, he shows
that for all but two primes p the set of limit points of the growth rate of periodic
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points is infinite almost surely. This shows in particular that the dynamical zeta
function is not algebraic almost surely.

51) Converse theorems and Artin. Associated to a newform f(z) is a Dirichlet
series Lf (s) with functional equation and Euler product. Hecke showed that if the
Dirichlet series F (s) has a functional equation of a particular form, then F (s) =
Lf (s) for some holomorphic newform f(z) on Γ(1). Weil extended this result to
Γ0(N) under an assumption on the twists of F (s) by Dirichlet characters. Farmer
and Wilson [152] take another approach by also making the assumption that Lf (s)
has an Euler factor at the prime 2:

L(s, f) = (1− a22−s + 2k−1−2s)
�

2�n

an

ns
.

Their main result has various conditions, one being a weak form of the Artin con-
jecture, described in §10.36, that ensures that a certain subset of matrices of Γ0(N)
actually is a generating set for Γ0(N).

52) Finding M from a string of g-ary digits of 1/M? It has been shown by
Blum et al. [40] that given k = 2L + 3 successive digits of the g-ary expansion of
1/M , one can find M in polynomial time LO(1). On the other hand, under Artin’s
conjecture, it is also shown in [40] that k = L − 1 digits are not enough to de-
termine M unambiguously. Konyagain and Shparlinski [264] proved that for any
� > 0, given a string of k = [(3/37 − �)L] consecutive g-ary integers, there are at
least (1 + o(1))π(gL) prime numbers p < gL such that the g-ary expansion of 1/p
contains this string. Recently Bourgain et al. [44] showed that the 3

37 = 0.0810 . . .
can be replaced by 41

504 = 0.0813 . . ..

53) Fermat quotients. For a prime p and and integer u with p � u, the Fermat
quotient is defined by the condition

qp(u) ≡
up−1 − 1

p
(mod p), 0 ≤ qp(u) ≤ p− 1.

It has the property that qp(uv) ≡ qp(u)+qp(v)(mod p). It is expected that the map
sending u to qp(u) behaves very similarly to a random map on the set {0, . . . , p−1}.
For results in this direction see [396]. Let lp be the smallest positive integer a such
that p � qp(a). It might be true that lp ≤ 3. Bourgain et al. [42] have shown that
lp ≤ log463/252+o(1) p as p tends to infinity. As a consequence, they derive a stronger
version of Lenstra’s squarefree test. Shparlinski [461] shows that for every p there
exists n ≤ p3/4+o(1) such that qp(n) is a primitive root modulo p.

54) Sums of squares of primitive roots modulo p. Let p � c be an integer and
let M(p, c) be the number of solutions of the congruence r2 + s2 ≡ c(mod p) with
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1 ≤ r, s ≤ p− 1 primitive roots. Zhang [508] shows that

M(p, c) =
φ2(p− 1)

p
+ O

�φ2(p− 1)
(p− 1)2

√
p4ω(p−1)

�
.

55) G(n). Let G(n) be the least integer G such that {y : 1 ≤ y ≤ G and (y, n) = 1}
generates (Z/nZ)∗. Any good upper bound for G(n) would have implications
for deterministic primality testing. Assuming GRH, Montgomery [328] showed
that G(n) = O(log2 n), which was made effective by Bach [21] who showed that
G(n) ≤ 3 log2 n for n ≥ 2. As to unconditional results: Bach and Huelsbergen
[24] showed that G(n) = O(

√
n(log n) log log n), which was sharpened by Burthe

[59] to G(n) �� nα+�, where α = 1/(3
√

e) = 0.20217 . . .. The proof is based on
the formula G(n) = max{min{a : χ(a) �= 0 and χ(a) �= 1}}, where χ runs over
the non-principal Dirichlet characters modulo n. Norton [393] improved Burthe’s
bound to G(n) �� nβ+�, where β = 1/(4

√
e) = 0.15163 . . .. Bach and Huelsbergen

[24] conjectured that

lim sup
n→∞

G(n)
log n log log n

=
1

log 2
and

1
x

�

n≤x

G(n) ∼ (log log x) log log log x.

Using zero density estimates Burthe [60] showed that x−1
�

n≤x
G(n) = O(log97 x).

Note that if n is prime, G(n) is bounded below by the least quadratic nonresidue
of n, and above by the least primitive root of n. In this case G(n) = κ(n), with
κ(n) defined as in §9.7.2.

56) Other Artin surveys. For a much shorter introduction to Artin’s primitive
root conjecture see Ram Murty [372]. Li and Pomerance have written a survey with
special emphasis on λ-roots; see [306]. Cheng [74] wrote a survey on algorithms for
finding primitive roots. Konyagin and Shparlinski [264] considered in their book
various questions related to the distribution of integer powers gx for some integer
g > 1 modulo a prime p.

10. Open Problems

1) Remove the GRH assumption that is made in many results in this area.

2) The two papers of Holden and Moree [235, 236] contain various open problems.
Two of these have meanwhile been solved by Shparlinski; see §9.7.7.

3) Study the average behaviour of ranks in families of elliptic curves other than
those considered by Ulmer (see §9.6.13), for example those appearing in Darmon



INTEGERS: 12A (2012) 66

[118].

4) Let g1, . . . , gt denote the primitive roots modulo p. The Dence brothers [122] con-
sidered symmetric functions in the primitive roots of primes. They considered for
example s2(p) =

�
1≤i<j≤t

gigj and show that this quantity, when considered mod-
ulo p, assumes only values in {−1, 0, 1}. They wondered about the density δ(j) of
primes for which, say s2(p) ≡ j(mod p). The author conjectures that δ(−1) = A/4,
δ(0) = 1 − A and δ(1) = 3A/4. In general one has the following problem: given a
symmetric function in the primitive roots, which values are assumed and with what
frequency? For some partial progress see Moree and Hommersom [356].

5) Guy [207, Section F9] formulated some unsolved problems regarding primitive
roots.

6) Find a lower bound, b(p), say, such that ordp(2) > b(p) for almost all p (i.e. for
all but o(x/log x) primes p ≤ x), as x tends to infinity. Erdős [142] proved that
one can take b(p) = p1/2−δ. This was later improved by Erdős and Ram Murty
[144] to b(p) = p1/2+�(p) for any function �(p) → 0. They also proved that under
the assumption of GRH for the Dedekind zeta function of Q(ζd, 21/d) one can take
b(p) = p/f(p) where f(x) is any function that tends to infinity as x → ∞. For
related results see Indlekofer and Timofeev [244] and Pappalardi [401]. For a sub-
group Γ of rank r ≥ 1 of Q∗, Erdős and Ram Murty [144] and Pappalardi [401]
considered the problem of finding a lower bound b(p), for almost all p, such that
|Γp| > b(p), where Γp is the reduction mod p of Γ. Again they proved that under
GRH one can take b(p) = p/f(p) where f(x) tends to infinity. See Elsholtz [138] for
a related result. Unconditionally Pappalardi proved that for almost all primes p one
can take b(p) = pr/r+1 exp(logτ p) for some τ � 0.15. The analogous problems for
subgroups of the group of rational points of CM elliptic curves were considered by
Akbary [3], and Akbary and Kumar Murty [7]. For an elliptic curve E defined over
Q and a subgroup Γ of rank r of the group of rational points of E, Akbary, Ghioca,
and Kumar Murty [6] proved that, under GRH, one can can take b(p) = p/f(p) as
long as r > 18 (for non-CM curves) or r > 5 (for CM curves). The problem remains
open for lower ranks. Duke [127] considered the problem of finding a lower bound,
for almost all p, for the exponent of reduction modulo p of an elliptic curve E and
proved (under GRH) that for almost all primes p, the group of rational points of
and E mod p contains a cyclic subgroup of order at least p/f(p). A related dy-
namical interpretation for the size of reduction mod p of the orbit of a point on
a quasiprojective variety under the action of a monoid of endomorphisms of the
variety proposed by Akbary and Ghioca [4]. Related questions in a more general
context of algebraic groups and abelian varieties were considered by C. Matthews
[323]. He mentioned further applications to nilpotent groups and to manifolds due
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to Milnor, Tits and Wolf.
In the paper of Erdős [142] mentioned above, he conjectured that if c < 1 one can

take b(p) = pc. If one could take c = 0.8 this would imply a conjecture of Ska�lba
[463] to the extent that almost all primes occur as prime divisors of the numbers
2a +2b +1. Under GRH it follows by a result of Pappalardi [401, Theorem 2.3] that
we indeed can take c = 0.8. In the same paper Ska�lba conjectured that there are in-
finitely many primes p such that p does not divide any number of the form 2a+2b+1.
It is easy to see that this set includes all Mersenne primes. Ska�lba showed that if
Ω(2m − 1) < log m/ log 3, then there exists a prime divisor q of 2m − 1 such that q
is not a divisor of 2a + 2b + 1 for any positive integers a and b. Luca and Stanica
[315] conjecture that ω((an−1)/(a−1)) ≥ (1+ o(1))(log n)(log log n) for almost all
integers n and give heuristic arguments to support this. Their conjecture, if true,
implies that the integers m satisfying Ska�lba’s condition Ω(2m − 1) < log m/ log 3
are not typical. Ska�lba [463] conjectures that there are infinitely many primes q
such that q does not divide any number of the form 2a + 2b + 1.

7) Roskam [438] raised the following questions and demonstrated their applications
to the study of divisors of general linear recurrences: let f ∈ Z[X] be an irreducible
monic polynomial, α a root of f , and define K = Q(α) with ring of integers OK .
Furthermore, let T be the set of primes that are inert in K/Q, and define for each
h ≥ 1 the set Th of primes p in T for which the subgroup �α� ⊂ (OK/pOK)∗ has
index h. Is it true for generic α that Th has a natural density δ(Th)? Is it true that�∞

h=1 δ(Th) = δ(T )? Earlier Brown and Zassenhaus had made a similar conjecture
[52].

8) Let q be an odd given prime power and m a natural number. One can wonder
whether there exists an extension Fqn of Fqm such that Fqn has an optimal normal
basis over Fq. A number theoretic question that arises in this context (see [82])
is whether there is a prime p such that p ≡ 1(mod m), and q is a primitive root
modulo p, and if yes to provide a small upper bound for the smallest such prime.
The latter part of the question seems very difficult (it is already a very hard prob-
lem to find a bound for the smallest prime p such that p ≡ 1(mod m) (see, e.g.,
Heath-Brown [223]) but it should be possible to shed some light on the first part of
the question.

9) For a given odd prime l and prime power q, Ballot [29] has computed the Dirich-
let density of primes P of Fq[X] such that l divides the order of X(mod P ), by
an elementary method using neither Kummer theory, nor the Chebotarev Density
Theorem. In an earlier paper Ballot [28] considered this problem for the case l = 2.
Can one likewise compute the Dirichlet density of primes P such that the order of
X(mod P ) is in a prescribed arithmetic progression? Indeed, in this setting one can
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wonder whether the Dirichlet density is the ‘good density’ to consider. For a lively
discussion of this problem see Ballot [30].

10) Let K be a number field, F/K a Galois extension and C a union of conju-
gacy classes of Gal(F/K). Furthermore, let α �= 0 be an algebraic integer in a
number field K which is not a root of unity. In [512], Ziegler was interested in
the set Pα(K,F,C, a, d) of primes p of K such that (p, F/K) ∈ C, p � (α), and
ordp(α) ≡ a(mod d), where (p, F/K) denotes the Frobenius automorphism of p,
and ordp(α) denotes the order of the algebraic integer α in O/pO, O being the ring
of integers of K. Ziegler [512] showed assuming GRH that this set has a natural
density that can be given as a double sum involving field degrees and Galois in-
tersection coefficients. In the case K = Q his result simplifies to results proven by
Moree [347]. In the sequel to the latter paper, [348], Moree showed that there is a
‘generic’ density, and that almost always the density equals the generic density. Do
similar results hold for the more general case considered by Ziegler as well?

11) Moree [351] gave an asymptotically exact heuristic for the number of primes
p ≤ x dividing a sequence of the form {ak + bk}∞

k=1. These numbers satisfy a linear
recurrence of degree 2. Is it possible to derive an asymptotically exact heuristic for
the number of primes p ≤ x dividing a linear recurrence of degree 2 consisting of
integers only?

12) Let g be a primitive root modulo p. How large is the smallest N such that
any residue class modulo p is representable in the form gx − gy (mod p) with
1 ≤ x, y < N? This question is attributed to Odlyzko, who conjectured that
one can take N as small as p1/2+�, for any fixed � and p large enough in terms of
�. Rudnick and Zaharescu [440] proved that one can take N = cop3/4 log p, and
this was sharpened by Cuauhtémoc Garcia [116] to N = 25/4p3/4. Using properties
of Sidon sets the latter estimate was improved to N = (

√
2 + �)p3/4 by Cilleruelo

[83] (with p > p(�)) and more recently by Cilleruelo and Zumalacárregui [84] to
N =

√
2p3/4 for every prime p. For related papers on the distribution of small

powers of a primitive root see [92, 329, 477].

13) Grosswald [197] wrote that an inspection of tabulated values of g(p), the small-
est positive primitive root modulo p, strongly suggests that g(p) <

√
p − 2 for all

primes p > 409. He proved that g(p) < p0.499 if p − 1 ≥ ee
24

. Can one lower this
lowerbound? (Andrew Booker, personal communication, suggested the answer is
yes and even substantially so.) For an application of this bound see §9.7.39.

14) Cat maps are maps of the unit torus given by 2 × 2 matrices with integer
entries, unit determinant, and real eigenvalues. The chaotic nature of these maps
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is traditionally depicted by showing what the map does to the face of a cat (af-
ter several iterations). The cat map models chaotic components of phase space in
Hamiltonian systems. In the analysis of its periodic orbits the order of the cat map
modulo p plays an important role. Keating [255] studied these aspects using heuris-
tic arguments. Meanwhile a much more rigorous treatment using for example the
methods in Kurlberg’s paper [272] is possible. As a working title for this project the
author proposes: Cat maps: the dogged approach. (See also §9.7.10 and [128, 412].)

15) In connection with a question related to codes, Rodier [431] was interested in
computing the density of primes p ≡ 7(mod 8) such that the subgroup in (Z/pZ)∗

generated by 2 is of index 2. He argued that assuming GRH the density is A/2. Re-
cently, Peter Malicky independently in connection with work on the periodic orbits
of a certain 2-dimensional dynamical system asked about the infinitude of this set
of primes. More generally one might ask for an explicit evaluation of the density of
primes p ≡ a(mod f) such that the subgroup in (Z/pZ)∗ generated by g is of index t.

16) Brauer [47] showed that the infinitely many primes p ≡ 9(mod 16) which can be
represented as 65x2+256xy+256y2 are all non-divisors of the sequence {2k +1}∞

k=1.
Can this be generalized?

17) Transposition invariant words. In the context of a problem of words invari-
ant under certain transpositions, Lepistő et al. [297] prove that there are infinitely
many primes p such that there is a primitive root mod p that divides p + 1. They
conjectured that this set of primes has a density B ≥ 0.65 that should be exactly
computable assuming GRH.

18) Nagata [383] raised a question on Z[
√

14]. A positive answer would give a proof
different from Harper’s [214] that Z[

√
14] is Euclidean.

19) Granville and Soundararajan [191] studied a conjecture of Erdős, that every odd
positive integer can be written as the sum of a squarefree number and a power of
2. They showed that this is connected with the behaviour of ordp2(2) and ordp(2)
and made various conjectures on these orders. They showed for example that if�

p2|2p−1−1 1/ordp(2) < ∞, then there exists an integer k such that almost every
odd integer can be written as the sum of a squarefree number plus no more than k
distinct powers of 2. They conjectured that there exists a constant δ > 0 such that,
for any finite set of primes {p1, p2, . . . , pm} and any choice of integers a1, a2, . . . , am,
the proportion of positive integers which belongs to at least one of the congruence
classes ai(mod ordp2

i
(2)), is < 1 − δ. They showed that

�
p
1/ordp2(2) < ∞ if

this conjecture is true. In case the latter sum is < 1, they inferred that all but
O(x/ log x) of the odd integers n ≤ x can be written as a sum of a squarefree
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number and a power of 2. They also asked what the true order of magnitude is of

�

p≤x

�
1−

1
ordp(2)

�
.

20) Elliott and Murata [137] conjectured that the following limits all exist and are
finite:

lim
x→∞

1
π(x)

�

p≤x

g(p) and lim
x→∞

1
π(x)

�

p≤x

g(2p2),

and likewise with g replaced by g∗ (recall that g∗(p) is the smallest prime primitive
root modulo p). Bach [23] conjectured that

lim
p→∞

sup
g∗(p)

(log p)(log log p)2
= eγ .

21) Schinzel-Wójcik problem. Given any rational a, b ∈ Q\{0,±1}, Schinzel and
Wójcik [447] proved that there exist infinitely many primes p such that νp(a) =
νp(b) = 0 and ordp(a) = ordp(b). The first condition ensures that the orders in the
second one are defined and is satisfied for all but finitely many primes. More gen-
erally, given a1, . . . , as ∈ Q\{0,±1}, the Schinzel-Wójcik problem is to determine
whether there exist infinitely many primes p for which the order modulo p of each
a1, . . . , as is the same. Pappalardi and Susa [407] proved assuming GRH that the
primes with this property have a density, and in the special case where each ai is a
power of a fixed rational number, they showed unconditionally that such a density
is positive. In the case where all the ai’s are prime, they expressed the density as
an infinite product.

22) Y. Gallot found a quadratic polynomial f and an integer g such that the first
(distinct) 38639 primes p produced by f are such that g is a primitive root modulo
p. Can this be improved (cf. §9.7.11)?

23) K. Szymiczek asked the following question: Do there exist infinitely many nat-
ural numbers n such that (2n− 3, 3n− 2) = 1? In this direction Ska�lba [464], using
ideas from a paper of Erdős [142], proved that the number of primes p < x dividing
both 2n − 3 and 3n − 2 is O(x log−1.0243 x). Ballot and Luca [33] considered the
number of primes p ≤ x such that p divides both an − b and cn − d.

24) Does the unconditional bound as established by Vinogradov (see (12)) hold in
greater generality?

25) Let q be an odd prime power. For each integer a with (a, q) = 1, is there a pair
of primitive roots g1 and g2 modulo q such that a2 ≡ g1g2(mod q)? Zhang [510]
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proved that if q is an odd prime and (a

q
) = 1, then the answer is yes.

26) Prove or disprove the conjecture of Bach et al. [25] to the effect that qg(x), the
least x-pseudopower to base g, should be about exp(cgx/ log x), where cg > 0 (see
§9.7.40).

27) Let G(n) be the smallest integer k such that the primes p ≤ k generate the
multiplicative group modulo n. Prove or disprove the conjectures formulated by
Bach and Huelsbergen [24] (see §9.7.55).

28) V.I. Arnold’s conjectures. In a series of papers, Arnold [12, 13, 14, 15, 16, 17, 18]
considered dynamical systems related to linear transformations in finite fields and
residue rings and made a series of conjectures. Of these many were confirmed,
several refuted, and Shparlinski [459] observed that several required adjustments.
For example, in [16] Arnold considered the quantity

Tg(L) =
1
L

L�

l=1, (g,l)=1

ordl(g),

where the sum is over the integers l coprime with g and suggested it grows asymptot-
ically like c(g)L/ log L, with c(g) > 0 a constant. Under GRH Shparlinski showed,
however, that

Tg(L) ≥
L

log L
exp(C(g)(log log log L)3/2),

for some constant C(g) > 0. Shparlinski observed that it should be possible to show
under GRH that

Tg(L) ≥
L

log L
exp((log log log L)2+o(1)).

Some of Shparlinski’s other results in [459] have recently been improved by Chang
[69].

Since ordl(g) ≤ λ(l), with λ the Carmichael function, and on GRH there is a set
of positive upper density of numbers coprime to g such that equality holds as Li
and Pomerance [307] showed, it is natural to compare Tg(L) with L−1

�L

l=1 λ(l).
Erdös et al. [146] proved that

1
x

�

n≤x

λ(n) =
x

log x
exp

� B log log x

log log log x
(1 + o(1)

�
, (27)

where
B = e−γ

�

q

�
1−

1
(q − 1)2(q + 1)

�
= 0.3453720641 . . .
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Kurlberg and Pomerance [274] showed that under GRH actually

Tg(x) =
x

log x
exp

� B log log x

log log log x
(1 + o(1)

�
,

as x tends to infinity, uniformly in g with 1 < |g| ≤ log x. On comparing this result
with (27) we see that the mean values of λ(n) and ordn(g) are of a similar order
of magnitude. Further, in the same paper Kurlberg and Pomerance established an
asymptotic for

1
π(x)

�

p≤x

ordp(g).

Earlier Stephens [467] showed that on GRH, the limit

lim
x→∞

1
π(x)

�

p≤x

ordp(g)
p− 1

,

exists and equals the Stephens constant S time a rational correction factor cg de-
pending on g (caution: his cg must be adjusted in certain cases as noted by Moree
and Stevenhagen [359]).

29) (Erdős, [140]). Is it true that 7, 15, 21, 45, 75 and 105 are the only integers n
for which n− 2k is a prime for every k with 2 ≤ 2k < n? (See §9.7.20)

30) Are there Crandall numbers that are not Wieferich numbers other than 5 and
181? Are there infinitely many Crandall numbers that are not Wieferich numbers?
(See §9.7.16 for definitions and references.)

31) Show that
�

n≤x, (n,a)=1

1
ordn(a)

= O(x1/4).

Then Artin’s primitive root conjecture follows by Ram Murty and Srinivasan [379],
who conjectured that actually O(x�) should hold true. Felix [154] showed that the
above sum is log x on average.

32) Very odd sequences. Let V (x) denote the number of binary integers n =
pq ≤ 2x − 1 with p < q such that ordp(2) = (p − 1)/2, ordq(2) = (q − 1)/2 and
(ordp(2), ordq(2)) = 1. The author is inclined to believe that V (x) counts a positive
fraction of all binary integers n ≤ 2x− 1; that is,

V (x) ∼ c0
x log log x

log x
,

for some positive constant c0. If true, this has some consequence for the theory of
very odd sequences (introduced by J. Pelikán in 1973 [411]). For a given number n fix
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integers ai with ai ∈ {0, 1} for 1 ≤ i ≤ n. Put Ak =
�n−k

i=1 aiai+k for 0 ≤ k ≤ n−1.
We say that a1 . . . an is a very odd sequence if Ak is odd for 1 ≤ k ≤ n. By S(n)
we denote the number of very odd sequences of length n and by Nk(x) the number
of integers m ≤ x such that S(m) = k. Then if the above conjecture holds true we
have, as x tends to infinity,

N16(x) ∼ V (x) ∼ c0
x log log x

log x
.

See Moree and Solé [359] for further information.

33) Cherednik’s heuristic. The heuristic considerations sketched in this survey
begin with the behaviour of the sum

�
p≤x

ϕ(p−1)/(p−1). Cherednik [75] proposed
to work instead with �

p≤x
ϕ(p− 1)

�
p≤x

p− 1
.

From Pillai’s work [418] it follows that the latter ratio has A as a limit. One can try
to redo the asymptotically exact heuristics of the author in this spirit. Some numer-
ical work (see [75]) suggests that perhaps the Cherednik variation of the heuristics
tends to be numerically closer to the actual primitive root counting function than
the standard heuristics. Try to investigate and understand this.

34) Least primitive root (mod p) versus least primitive root (mod p2).
Paszkiewicz [408] conjectures that for most primes p we have g(p) = h(p). Quantify
this: do there exist infinitely many primes p for which g(p) �= h(p)? (Presently only
two are known; see also §9.7.27).

35) Primitive roots in image of polynomial mapping. Let f be a polynomial
over a finite field. Is there a primitive root in its image? (See §9.7.36.)

36) Farmer-Wilson variant of the Artin conjecture. This conjecture states
that if (d, bM) = 1, then there exist integers k and n such that b ≡ 2n(mod d+kM).

Note that this follows from Artin’s conjecture, for if p = d+kM is prime and 2 a
primitive root modulo p we are done. Since we do not require d + kM to be prime,
nor 2 to be a primitive root modulo d + kM , the above conjecture is actually much
weaker than Artin’s. (See also §9.7.51.)

37) Let M ∈ Fq[T ] be a fixed polynomial and k ≥ 2 be an integer. Determine
the density of the set of all monic irreducible polynomials P for which P + M is a
k-free polynomial. This is the polynomial variant of problems discussed in §9.7.1.
and was earlier considered by Wei-Chen Yao [503], but according to MR1841909
(2002d:11144) his paper contains mistakes.
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38) Let p ≡ 1(mod n). Put sn(p) =
�
{g/p}, where the sum is over the subgroup

of (Z/pZ)∗ of order n, and { } denotes the fractional part. Hadano et al. [209] raise
7 conjectures related to this quantity.

39) Divisors of af(n) − 1. From Fermat’s little theorem, we know that the set of
primes which divide an − 1 for some n is precisely the set of primes not dividing a.
Ballot and Luca [32] investigated what happens if we replace the exponent n here
by a different polynomial expression in n. Let a be an integer with |a| > 1 and
f(X) ∈ Q[X] a nonconstant, integer-valued polynomial with positive leading term.
Suppose that there are infinitely many primes q for which f does not possess a root
modulo q, then Ballot and Luca showed that almost all primes p do not divide any
number of the form af(n) − 1. Their result was sharpened by Pollack [422] who
also gave a conjectural asymptotic for the number of primes dividing the sequence
af(n) − 1, under the further assumption that the set of primes q for which f does
not possess a root modulo q, has positive Dirichlet density.

40) Generalized Titchmarsh divisor problem. Let τ(n) denote the number
of divisors of the positive integer n. In 1931, Titchmarsh [475] established the
following estimate, assuming GRH,

�

a<p≤x

τ(p− a) = x
�

q|a

�
1−

1
q

��

q�a

�
1 +

1
q(q − 1)

�
+ O

�x log log x

log x

�
.

In 1961, Linnik [309] established the above asymptotic unconditionally by using his
dispersion method. Later Rodriquez [433] and independently Halberstam [210], by
a straightforward application of the Bombieri-Vinogradov theorem, proved uncon-
ditionally the Titchmarsh conjectural asymptotic formula. In the special case a = 1
it is a trivial observation that

�

p≤x

τ(p− 1) =
�

1≤m≤x−1

π(x;m, 1) =
�

m≥1

π(x;m, 1).

Essentially we are counting each prime number p ≤ x for each occurrence of m such
that p splits completely in Q(ζm).

Let F = {Fm : m ≥ 1} be a family of finite Galois extensions of Q. For each m,
let Dm be a union of conjugacy classes of Gal(Fm/Q) and let τF(p) be the number of
m ≥ 1 such that p is unramified in Fm/Q and the Artin symbol σp belongs to Dm.
Suppose that τF(p) <∞ for each prime p. Then we have the following problem:

Generalized Titchmarsh divisor problem: Determine the behaviour of
�

p≤x

τF(p)

as x tends to infinity.
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In the above generality, the problem is too unwieldy unless some constraint on
the sizes of Dm are imposed. Let A be an abelian variety defined over Q and for
each m ≥ 1, let A[m] be the set of torsion points of A of order dividing m. Let
Fm = Q(A[m]) and Dm = {Id}. Therefore τF(p) is the number of m ≥ 1 such
that p splits completely in Q(A[m]). In this setup the problem specializes to the
Titchmarsh divisor problem for Abelian varieties and it is analogous to the classical
case for τ(p− 1). Akbary and Ghioca [5] believe that in this case

�

p≤x

τF(p) = Li(x)
∞�

n=1

1
[Q(A[m]) : Q]

+ o
� x

log x

�
(28)

and under GRH prove a special case. In case A = E is a CM elliptic curve, they
unconditionally prove (28).

We note that Felix [154] gives an estimate for
�

p≤x, p≡a(mod k) τ((p−a)/k) and
applies it to a question related to Artin’s primitive root conjecture (see §9.7.3).

Remark. If the reader has not suffered an overdose of primitive roots after reading
this survey, (s)he is recommended to consume them at industrial strength [126].
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[123] L. Dicuangco, P. Moree and P. Solé, The lengths of Hermitian self-dual extended duadic
codes, J. Pure Appl. Algebra 209 (2007), 223–237.

[124] L. Dieulefait and J.J. Urroz, Small primitive roots and malleability of RSA moduli, J. Comb.
Number Theory 2 (2010), 171–179.

[125] P.G.L. Dirichlet, Vorlesungen über Zahlentheorie, Chelsea Publishing Co., New York, 1968.

[126] J. Dubrois and J.-G. Dumas, Efficient polynomial time algorithms computing industrial-
strength primitive roots, Inform. Process. Lett. 97 (2006), 41–45.

[127] W. Duke, Almost all reductions modulo p of an elliptic curve have a large exponent, C. R.
Acad. Sci. Paris, Ser. I 337 (2003), 689–692.

[128] F.J. Dyson and H. Falk, Period of a discrete cat mapping, Amer. Math. Monthly 99 (1992),
603–614.

[129] S. Egami, Average version of Artin’s conjecture in an algebraic number field, Tokyo J. Math.
4 (1981), 203–212.

[130] P.D.T.A. Elliott, The distribution of primitive roots, Canad. J. Math. 21 (1969), 822–841.

[131] P.D.T.A. Elliott, Mean value theorems by the method of high moments. 1970 Number Theory
(Colloq., János Bolyai Math. Soc., Debrecen, 1968), North-Holland, Amsterdam (1970), 31–
34.

[132] P.D.T.A. Elliott, On the limiting distribution of additive arithmetic functions, Acta Math.
132 (1974), 53–75.

[133] P.D.T.A. Elliott, Probabilistic number theory. I. Mean-value theorems, Grundlehren der
Mathematischen Wissenschaften 239, Springer-Verlag, New York-Berlin, 1979.

[134] P.D.T.A. Elliott, Probabilistic number theory. II. Central limit theorems, Grundlehren der
Mathematischen Wissenschaften 240, Springer-Verlag, Berlin-New York, 1980.

[135] P.D.T.A. Elliott, The least prime primitive root and Linnik’s theorem, Number theory for
the millennium, I (Urbana, IL, 2000), AK Peters, Natick, MA (2002), 393–418.

[136] P.D.T.A. Elliott and L. Murata, On the average of the least primitive root modulo p, J.
London Math. Soc. (2) 56 (1997), 435–454.

[137] P.D.T.A. Elliott and L. Murata, The least primitive root mod 2p2, Mathematika 45 (1998),
371–379.

[138] C. Elsholtz, The distribution of sequences in residue classes, Proc. Amer. Math. Soc. 130
(2002), 2247–2250.
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multiplicative orders, Math. Proc. Cambridge Philos. Soc. 146 (2009), 303–319.

[408] A. Paszkiewicz, A new prime p for which the least primitive root (mod p) and the least
primitive root (mod p2) are not equal, Math. Comp. 78 (2009), 1193–1195.

[409] A. Paszkiewicz and A. Schinzel, On the least prime primitive root modulo a prime, Math.
Comp. 71 (2002), 1307–1321.

[410] A. Paszkiewicz and A. Schinzel, Numerical calculation of the density of prime numbers with
a given least primitive root, Math. Comp. 71 (2002), 1781–1797.

[411] J. Pelikán, Contribution to “Problems,” Colloq. Math. Soc. J’anos Bolyai 10, North-
Holland, Amsterdam (1975), 1549.

[412] I. Percival and F. Vivaldi, Arithmetical properties of strongly chaotic motions, Phys. D 25
(1987), 105–130.

[413] A. Perucca, The intersection of cyclic Kummer extensions with cyclotomic extensions,
arXiv:1107.4595.

[414] K.L. Petersen, Counting cusps of subgroups of PSL2(OK), Proc. Amer. Math. Soc. 136
(2008), 2387–2393.

[415] K.L. Petersen, One-cusped congruence subgroups of Bianchi groups, Math. Ann. 338 (2007),
249–282.

[416] H. Petersson, Uber die Konstruktion zykloider Kongruenzgruppen in der rationalen Mod-
ulgruppe, J Reine Angew. Math. 250 (1971), 182–212.

[417] A. Pfister, Zur Darstellung von −1 als Summe von Quadraten in einem Körper, J. London
Math. Soc. 40 (1965), 159–165.

[418] S.S. Pillai, On the sum function connected with primitive roots, Proc. Indian Acad. Sci.,
Sect. A. 13 (1941), 526–529.

[419] S.S. Pillai, On the smallest primitive root of a prime, J. Indian Math. Soc. (N.S.) 8 (1944).
14–17.

[420] J. Pintz, A note on Romanov’s constant, Acta Math. Hungar. 112 (2006), 1–14.
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