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Abstract

We consider the second of Mullin’s sequences of prime numbers related to Euclid’s
proof that there are infinitely many primes. We show in particular that it omits
infinitely many primes, confirming a conjecture of Cox and van der Poorten.

1. Introduction

In [10], Mullin constructed two sequences of prime numbers related to Euclid’s proof
that there are infinitely many primes. For the first sequence, say {pn}∞n=1, we take
p1 = 2 and define pn+1 to be the smallest prime factor of 1 + p1 · · · pn. The second
sequence, {Pn}∞n=1, is defined similarly, except that we replace the words “smallest
prime factor” by “largest prime factor”. These are sequences A000945 and A000946
in the OEIS [13], and the first few terms of each are shown below.

Table 1: First ten terms of Mullin’s sequences
n pn Pn

1 2 2
2 3 3
3 7 7
4 43 43
5 13 139
6 53 50207
7 5 340999
8 6221671 2365347734339
9 38709183810571 4680225641471129

10 139 1368845206580129

Mullin then asked whether every prime is contained in each of these sequences,
and if not, whether they are recursive, i.e., whether there is an algorithm to decide

1The author was supported by an EPSRC fellowship.
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if a given prime occurs or not.2 Almost nothing related to this is known for the first
sequence, though Shanks [14] conjectured on probabilistic grounds that it contains
every prime; we briefly discuss this conjecture and some variants in Section 2 below.
Concerning the second sequence, Cox and van der Poorten [3] showed that, apart
from the first four terms 2, 3, 7 and 43, it omits all the primes less than 53; it is
straightforward to extend this to the remaining primes less than 79 by applying their
method using the most recent computations of Pn, due of Wagstaff [15]. In response
to Mullin’s questions, Cox and van der Poorten conjectured that infinitely many
primes are omitted, and that their method would always work to decide whether
a given prime occurs; moreover, they showed that at least one of their conjectures
is true. The main point of this paper is to prove the first of these conjectures.
Precisely, we show the following.

Theorem 1. The sequence {Pn}∞n=1 omits infinitely many primes. If {Qn}∞n=1

denotes the sequence of omitted primes in increasing order, then

lim sup
n→∞

log Qn+1

log(Q1 · · ·Qn)
≤ 1

4
√

e− 1
= 0.1787 . . . .

We note that although our method of proof allows us to bound each omitted
prime Qn in terms of the previous ones, it is not constructive; in particular, Mullin’s
second question remains open (see Theorem 2 below, however).

The number 1
4
√

e−1
above is related to the best known bound O

�
p

1
4
√

e
+o(1)

�
for

the least quadratic non-residue (mod p). This was first shown by Burgess [1], based
on an argument of Vinogradov; apart from refinements of the o(1), it has not been
improved upon in over 50 years. However, if the Generalized Riemann Hypothesis
for quadratic Dirichlet L-functions is true then one can show the much stronger
bound Qn+1 = O

�
log2(Q1 · · ·Qn)

�
, from which it follows that

#{n : Qn ≤ x}�
√

x

log x

for large x. Even this seems far from the truth; indeed, it is likely that the set
of primes that occur in {Pn}∞n=1 has density 0. While we have not been able to
prove that unconditionally, by refining Cox and van der Poorten’s argument on the
relationship between their conjectures, we can show the following.

Theorem 2. If {Pn}∞n=1 is not recursive then it has logarithmic density 0 in the
primes, i.e.,

lim
x→∞

�
p≤x

p∈{P1,P2,...}

1
p

�
p≤x

p prime

1
p

= 0.

2Mullin also asked whether the second sequence might be monotonic (and hence recursive);
this was answered negatively by Naur [11], who was the first to compute it beyond the 9th term.
However, it remains an open question whether there are infinitely many n such that Pn > Pn+1.
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2. Variants

Before embarking on the proofs of Theorems 1 and 2, we set our results in context
by comparing to a few variants of the sequence {Pn}∞n=1.

1. As mentioned above, very little is known about Mullin’s first sequence {pn}∞n=1.
Shanks reasoned that as n increases, the numbers tn = p1 · · · pn should vary
randomly among the invertible residues classes (mod p) for any fixed prime
p, until p occurs in the sequence, after which point tn ≡ 0 (mod p). If p does
not occur then this is violated, since tn is always invertible (mod p) but falls
into the residue class of −1 at most finitely many times. As no one has found
any reason to suggest that tn does not vary randomly (mod p), this is cer-
tainly compelling. However, there is reason to tread cautiously, first because
Kurokawa and Satoh [7] have shown that an analogue of this conjecture for
the Euclidean domains Fp[x] is false in general, and second because of what
happens in the next variant that we consider.

2. In the second variant, instead of just introducing one new prime at each step,
we add in all prime divisors of 1 plus the product of the previously constructed
primes. In symbols, we set S0 = ∅ and define Sn recursively by

Sn+1 = Sn ∪
�

p : p prime and p

���
�
1 +

�

s∈Sn

s

��
.

This is related to Sylvester’s sequence {sn}∞n=1, defined by sn = 1 +
�n−1

i=1 si,
or equivalently, s0 = 2, sn+1 = 1+sn(sn−1). More precisely, there is empirical
evidence to suggest that sn is always squarefree, and if that is the case then

�

p∈Sn

p =
n−1�

i=0

si.

In particular, each prime that we construct this way divides some Sylvester
number. One could try applying the same sort reasoning as in Shanks’ conjec-
ture for this sequence, but it turns out that there is a conspiracy preventing
this from working, since sn can be described by a one-step recurrence. In fact,
Odoni [12] showed that the set of primes dividing a Sylvester number has den-
sity 0. Thus, perhaps counterintuitively, the greedy algorithm of adding in all
prime divisors likely yields a very thin subset of the primes.

3. Pomerance considered the following variant (unpublished, but see [4, §1.1.3]).
Let r1 = 2, and define rn+1 recursively to be the smallest prime number
which is not one of r1, . . . , rn and divides a number of the form d + 1, where
d|r1 · · · rn. This is in some sense even greedier than the previous variant, but
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the fact that we can choose proper divisors d of r1 · · · rn prevents the numbers
from growing out of control. Thus, Pomerance showed that every prime does
indeed occur in this sequence, and in fact rn is just the nth prime number for
n ≥ 5.

4. Each variant has an analogue with the +1 in the definition replaced by−1. For
instance, Selfridge (unpublished, but see [5]) considered the sequence { �Pn}∞n=1

where �P1 = 3 and �Pn+1 is the largest prime factor of �P1 · · · �Pn−1. He showed
that it omits some primes, analogous to the result of Cox and van der Poorten
for {Pn}∞n=1. Likewise, with some small modifications to the proof, it is not
hard to see that Theorem 1 remains true with {Pn}∞n=1 replaced by { �Pn}∞n=1.

3. Proofs

We begin by reviewing the method of [3]. For a positive integer n, suppose that
1 + P1 · · ·Pn has the factorization

1 + P1 · · ·Pn = q
k1
1 · · · qkr

r , (∗)

where q1 < . . . < qr are prime and qr = Pn+1. Observe that the left-hand side is
≡ 3 (mod 4), so that �

−4
q1

�k1

· · ·
�
−4
qr

�kr

= −1,

where
�

a
b

�
denotes the Kronecker symbol. Similarly, if d is a fundamental discrimi-

nant dividing P1 · · ·Pn then the left-hand side is ≡ 1 (mod d), so that
�

d

q1

�k1

· · ·
�

d

qr

�kr

= 1.

Cox and van der Poorten considered values of d for which |d| is one of the known Pi,
thus obtaining a system of equations which they attempted to solve by linear algebra
over F2. As more of the Pi become known, one adds more and more constraints
that must be satisfied by the small primes q which have not yet occurred, and one
can hope eventually to reach an inconsistent system. There is no known reason to
believe that the equations for the various Pi are related, and this motivates their
conjectures.

An equivalent formulation of their method is to look for a fundamental discrim-
inant d composed of known Pi such that

�
d
q

�
=

�−4
q

�
for the first several primes q

which are not known to occur. This is the approach that we will take, as outlined
in the following lemmas.

Lemma 3. Let χ (mod q) be a non-principal quadratic character, not necessarily
primitive. Then there is a prime number n�ε q

1
4
√

e
+ε such that χ(n) = −1.
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Proof. Let n be the smallest positive integer such that χ(n) = −1. It is clear that n

must be prime, so it suffices to prove the upper bound. This is essentially a special
case of [8, Theorem 1], except for the technical point that q need not be cubefree.

To circumvent that, we factor χ = χ0χ1 where χ0 (mod q0) is trivial and
χ1 (mod q1) is a primitive quadratic character. Note that if we replace q0 by
q�0 =

�
p|q0
p�q1

p and χ0 by the trivial character χ�0 (mod q�0), then χ� = χ�0χ1 satisfies

χ�(m) = χ(m) for every m. Thus, we may assume without loss of generality that
q0 is squarefree and (q0, q1) = 1.

Moreover, ±q1 is a fundamental discriminant, so in fact q = q0q1 is cubefree
except possibly for a factor of 8. Even if 8|q, one can see that Burgess’ bounds [2,
Theorem 2], on which [8, Theorem 1] is based, continue to hold at the expense of a
worse implied constant. (See [6, (12.56)] for a precise statement of this type.) The
result follows.

Lemma 4. Let q1, . . . , qr be pairwise relatively prime positive integers. For each
i = 1, . . . , r, let χi (mod qi) be a non-principal quadratic character, not necessarily
primitive, and let �i ∈ {±1}. Then there is a squarefree positive integer n with
at most r prime factors, each �ε (q1 · · · qr)

1
4
√

e
+ε, such that χi(n) = �i for all

i = 1, . . . , r.

Proof. Let ψi be the principal character (mod qi) for i = 1, . . . , r, and set q =
q1 · · · qr. For each non-empty subset S ⊂ {1, . . . , r} we define a character χS (mod q)
by

χS(n) =
r�

i=1

�
χi(n) if i ∈ S,

ψi(n) if i /∈ S.

Note that χS must be non-trivial since the qi are pairwise relatively prime. By
Lemma 1, there is a prime nS �ε q

1
4
√

e
+ε such that χS(nS) = −1. Further, we as-

sociate to S two vectors in Fr
2. The first is the characteristic vector vS = (a1, . . . , ar),

defined by

ai =

�
1 if i ∈ S,

0 if i /∈ S.

The second is the unique vector wS = (b1, . . . , br) such that χi(nS) = (−1)bi for
i = 1, . . . , r. These vectors have scalar product vS · wS = 1 since χS(nS) = −1.

We claim that
�
wS : ∅ �= S ⊂ {1, . . . , r}

�
spans Fr

2. If not then there would be
a non-zero linear functional which vanishes at each such wS , i.e., a non-zero v ∈ Fr

2

with v · wS = 0 for all S �= ∅. However, this is impossible since the vS exhaust all
non-zero vectors in Fr

2.
Therefore, there is a set T of non-empty subsets of {1, . . . , r} such that {wS :

S ∈ T} is a basis for Fr
2. It follows that the numbers nS for S ∈ T are distinct
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primes, and as n ranges over the divisors of
�

S∈T nS , (χ1(n), . . . ,χr(n)) ranges
over all elements of {±1}r.

3.1. Proof of Theorem 1

Let Q1, . . . , Qr be the first r omitted primes. (We allow r = 0 to start the argument,
with the understanding that Q1 · · ·Qr = 1 in that case.) Suppose that all other
primes up to some number x ≥ 3 eventually occur, and let p = Pn+1 ≤ x be the
last to occur. Then except for Q1, . . . , Qr, all primes below p must occur before p,
so (∗) takes the form

1 + P1 · · ·Pn = Q
k1
1 · · ·Qkr

r · pk

for some k, k1, . . . , kr ∈ Z≥0. Now, applying Lemma 2 with the characters
�
−4
·

�
,

�
·
p

�
and

�
·

Q1

�
, . . . ,

�
·

Qr

�
,

we can find a squarefree positive integer d ≡ 1 (mod 4) such that
�

d

p

�
=

�
−4
p

�
,

�
d

Qi

�
=

�
−4
Qi

�
for i = 1, . . . , r,

and with all prime factors of d bounded by Oε

�
(pQ1 · · ·Qr)

1
4
√

e
+ε

�
. Since p ≤ x

and 1
4
√

e
< 1, this bound must fall below x for large enough x, and in fact it is not

hard to see that there is such an x�ε (Q1 · · ·Qr)
1

4
√

e−1+ε. This is a contradiction,
and thus there must be another omitted prime Qr+1 �ε (Q1 · · ·Qr)

1
4
√

e−1+ε.

The proof of Theorem 2 is based on the following generalization of the method
of Cox and van der Poorten. For each i = 1, 2, . . ., let gi be the smallest positive
primitive root (mod P 2

i ), and let li : (Z/P 2
i Z)× → Z/Pi(Pi − 1)Z be the base-gi

logarithm. Suppose that we have computed P1, . . . , PN . Note that if n ≥ N then for
any i ≤ N , the left-hand side of (∗) is ≡ 1 (mod Pi) but �≡ 1 (mod P 2

i ) since the P ’s
are distinct. Thus, k1li(q1) + . . . + krli(qr) ≡ 0 (mod Pi − 1), but is non-zero (mod
Pi). In other words, there is a vector bi ∈ Fr

Pi
such that bi · (k1, . . . , kr) �= 0 ∈ FPi .

On the other hand, we can construct other constraints (mod Pi) by considering (∗)
modulo any Pj for which Pj ≡ 1 (mod Pi) (if there are any). If Pj is such a prime
then k1lj(q1) + . . . + krlj(qr) ≡ 0 (mod Pi), i.e., there is a vector vij ∈ Fr

Pi
such

that vij · (k1, . . . , kr) = 0 ∈ FPi .
Thus, we can try to prove that qr is omitted by finding a linear combination of

the vij which yields bi. For i = 1, this is equivalent to Cox and van der Poorten’s
method. If that fails to exclude qr then we can try i = 2, and so on. Note that
from a practical standpoint, one will accumulate equations modulo P1 = 2 far more
quickly than for the other primes. Thus, the greatest chance of success is with i = 1,
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so this is unlikely to yield any improvement over their method in practice. However,
as our proof will show, the other primes become useful if there is a conspiracy which
makes their method fail.

Lemma 5. Let n be a squarefree positive integer, q an integer which is relatively
prime to n and not a perfect pth power for any prime p|n, and d a divisor of n.
Then the field L = Q( d

√
q, e2πi/n) is normal over Q and has degree [L : Q] = dϕ(n).

Further, a rational prime p not dividing the discriminant of L splits completely in
L if and only if p ≡ 1 (mod n) and ∃x ∈ Z such that xd ≡ q (mod p).

Proof (adapted from [9], Lemmas 3.1 and 3.2). First note that L is the splitting
field of (xd− q)(xn− 1), so it is normal over Q. Set ζn = e2πi/n, and let K = Q(ζn)
be the corresponding cyclotomic field. Then K has degree ϕ(n) over Q, so to
establish the formula for [L : Q] = [L : K][K : Q], it suffices to show that xd − q is
irreducible over K.

To that end, we first show that p
√

q /∈ K for any prime divisor p|d. If p is odd
then Q( p

√
q) ⊂ R is not normal over Q since it has non-real conjugates. On the

other hand, every subfield of K is normal over Q since K is an abelian extension,
and thus p

√
q /∈ K. This argument fails if p = 2, but in that case it follows from

class field theory that the quadratic subfields of K are exactly those of the form
Q(
√

D) for fundamental discriminants D|n. Since (q, n) = 1, Q(√q) is not among
them, so the claim still holds.

Next, suppose that f ∈ K[x] is a monic irreducible factor of xd − q, of degree
d� < d. Note that over L we have the factorization

x
d − q =

d�

j=1

�
x− ζ

j
d

d
√

q
�
,

where ζd = ζ
n/d
n is a primitive dth root of unity. Thus, the constant term of f

must take the form (−1)d�ζk
nqd�/d for some integer k. Hence qd�/d ∈ K, and by

the Euclidean algorithm we can improve this to q(d�,d)/d ∈ K. However, since
0 �= d� < d, there is a prime p

�� d
(d�,d) . This implies that p

√
q ∈ K, in contradiction to

the above, and thus xd − q is irreducible over K, as claimed.
For the final statement, it is well-known that a rational prime p splits completely

in K = Q(ζn) if and only if p ≡ 1 (mod n), and this is a necessary condition for p

to split completely in L ⊃ K. If p ≡ 1 (mod n), let p be any of the ϕ(n) primes
of K dividing poK , where oK is the ring of integers of K. If p does not divide the
discriminant of L then p splits completely in L if and only if xd − q has d roots in
the residue field oK/p ∼= Fp, which in turn happens if and only if q has a dth root
(mod p).

Lemma 6. Let m be a squarefree positive integer and q an integer which is relatively
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prime to m and not a perfect pth power for any prime p|m. Then the set of primes
p for which xm ≡ q (mod p) is solvable has natural density ϕ(m)

m .

Proof. Note that the number of solutions of xm ≡ q (mod p) is the same as that of
x(m,p−1) ≡ q (mod p). For large y > 0, we thus want to estimate the fraction

1
π(y)

�

p≤y

�
1 if x(m,p−1) ≡ q (mod p) is solvable,
0 otherwise

=
�

d|m

1
π(y)

�

p≤y
(m,p−1)=d

�
1 if xd ≡ q (mod p) is solvable,
0 otherwise

=
�

d|m

�

e|m
d

µ(e)
1

π(y)

�

p≤y
p≡1 (mod de)

�
1 if xd ≡ q (mod p) is solvable,
0 otherwise

=
�

n|m

�

d|n

µ

�
n

d

� 1
π(y)

�

p≤y
p≡1 (mod n)

�
1 if xd ≡ q (mod p) is solvable,
0 otherwise.

By Lemma 3 and the Chebotarev Density Theorem, the inner sum over p divided by
π(y) tends to 1

dϕ(n) as y →∞. (Note that the earlier Kronecker-Frobenius Density
Theorem would be enough here if we instead considered the logarithmic density.)
Thus, the set we are interested in has density

�

n|m

�

d|n

µ(n/d)
dϕ(n)

=
�

n|m

µ(n)
ϕ(n)

�

d|n

µ(d)
d

=
�

n|m

µ(n)
n

=
ϕ(m)

m
.

3.2. Proof of Theorem 2

Since {Pj}∞j=1 is recursively enumerable, the only way that it can fail to be recursive
is if there is some Qr for which there is no algorithm to prove that it does not occur
among the Pj . In particular, the general strategy described above must fail to
exclude Qr, no matter how large we take N .

Note that for large enough N , (∗) will take the form

1 + P1 · · ·Pn = Q
k1
1 · · ·Qkr

r

for n ≥ N . For i = 1, . . . , N , let bi, vij ∈ Fr
Pi

be as described above. Although we
have restricted to i ≤ N , we are free to consider arbitrarily large values of j in this
construction by taking n ≥ j in (∗), so for each i there are potentially infinitely
many suitable j. In order to avoid eventually concluding that Qr is omitted, bi
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must not be a linear combination of the vij ; in particular, the vij span a proper
subspace of Fr

Pi
, so there is a non-zero vector wi ∈ Fr

Pi
such that vij · wi = 0 for

every j such that Pj ≡ 1 (mod Pi). By the Chinese Remainder Theorem, there are
non-negative integers a1, . . . , ar < P1 · · ·PN such that (a1, . . . , ar) ≡ wi (mod Pi)
for i = 1, . . . , N . Set q = Q

a1
1 · · ·Qar

r . Then by construction, q is not a perfect Pith
power for any i ≤ N , but it is a Pith power residue (mod Pj) for all j such that
Pj ≡ 1 (mod Pi). Note also that q is automatically a Pith power residue (mod Pj)
if Pj �≡ 1 (mod Pi).

It follows that the entire sequence {Pj : j = 1, 2, . . .} is a subset of the primes
modulo which q is an mth power residue, where m = P1 · · ·PN . By Lemma 4, that
set has density

ϕ(m)
m

=
N�

i=1

�
1− 1

Pi

�
.

Taking N arbitrarily large, we have

lim sup
x→∞

#{j : Pj ≤ x}
π(x)

≤
∞�

i=1

�
1− 1

Pi

�
,

with the understanding that the right-hand side is 0 if the product diverges. In
that case, {Pj}∞j=1 has natural density 0, which in turn implies that the logarithmic
density is 0. On the other hand, if the product converges then so does

�∞
i=1

1
Pi

,
which also implies that the logarithmic density is 0.

Finally, we remark that while it does not necessarily follow that {Pj}∞j=1 has a
natural density, the last inequality shows that its upper density is strictly less than
1; in fact, using just the values in Table 1, we see that the upper density is at most
0.277056.
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