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Abstract
Spotted tilings are presented as a new combinatorial interpretation of n-color com-

positions. Previous and new results are proven using this tool, an interpretation of

the Fibonacci numbers, and a case of Terquem’s problem. The spotted tilings allow

for MacMahon’s zig-zag graphs to be applied to n-color compositions, addressing

a question of Agarwal in the article where these compositions were introduced in

2000.

1. Background

For a given positive integer n, the compositions of n are ordered t-tuples (c1, . . . , ct)

of positive integers with c1 + · · ·+ ct = n. For instance, there are four compositions

of 3, namely (3), (2, 1), (1, 2), and (1, 1, 1). The individual ci are called parts of the

composition. Compositions are sometimes referred to as ordered partitions.

Compositions of n may be represented graphically as tilings of a 1 × n board,

where a part k corresponds to a 1 × k rectangle. This is essentially MacMahon’s

construction using nodes on a line [7]. Figure 1 shows the tilings for the compositions

of 3. Notice that each tiling has a vertical bar at the leftmost edge, possibly vertical

bars separating the rectangles corresponding to parts, and a vertical bar at the

rightmost edge.
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Figure 1: The 4 tilings representing the compositions of 3.

Agarwal [1] introduced the concept of n-colored compositions, where a part k has

one of k possible colors, denoted by a subscript 1, . . . , k. There are eight n-colored

compositions of 3, namely
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(31), (32), (33), (21, 11), (22, 11), (11, 21), (11, 22), (11, 11, 11).

Let CC(n) denote the number of n-color compositions of n, so CC(3) = 8.

These compositions, inspired by the analogous concept of n-color partitions, have

been further considered in several articles and monographs.

We introduce a combinatorial tool, spotted tilings, to provide a graphic repre-

sentation of n-colored compositions. A part ki corresponds to a 1×k rectangle with

a spot in position i. Spotted tilings for the n-color compositions of 3 are shown in

Figure 2. Notice that the bars and spots alternate, since there is one spot per part.
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Figure 2: The 8 spotted tilings for CC(3).

We will use this new tool to prove previous and new results about colored compo-

sitions (§2) and to develop an analog of MacMahon’s zig-zag graphs (§3), addressing

a question of Agarwal [1].

There are two combinatorial results we will use in the sequel. The Fibonacci

numbers are given by F0 = 0, F1 = 1 and the recurrence Fn = Fn−1 + Fn−2 for

n ≥ 2. The following theorem is proven using generating functions in [6].

Theorem 1. Let Co(n) denote the number of compositions of n whose parts are
all odd. Then Co(n) = Fn.

Proof. Proceed by induction. Certainly Co(0) = 0, as 0 cannot be written as a sum

of positive odd integers. Also, Co(1) = 1, since the single composition of 1 consists

of an odd part. Assume the claim is true for n − 1 and n − 2. The compositions

counted by Co(n) include the odd part compositions of n − 1 with an additional

part 1 included at the end, and the odd-part compositions of n−2 with the last part

increased by 2 (which results in another odd part). Since any odd part composition

of n ends in either 1 or a larger odd number, Co(n− 1) + Co(n− 2) counts all odd

part compositions of n by the induction hypothesis.

Terquem [9] considered the problem of counting subsequences of {1, . . . , n} where

the terms alternate parity. For instance, such 3-term subsequences of {1, . . . , 5} with

first term odd are {1, 2, 3}, {1, 2, 5}, {1, 4, 5}, and {3, 4, 5}. Church and Gould [4]

give a combinatorial proof of Terquem’s general problem. We give a different proof

of the special case needed below.
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Theorem 2. The number of subsequences {x1, . . . , x2j−1} of {1, ..., 2k − 1} where
the parity of xi matches the parity of i is given by

�j+k−1
2j−1

�
.

Proof. Let T (j, k) denote the number of desired subsequences. Since there are k odd

numbers in {1, ..., 2k − 1}, we have T (1, k) = k. To determine T (j, k) inductively,

there are two cases to consider. If a subsequence counted by T (j, k) does not include

the number 2k − 1, then it is among the subsequences counted by T (j, k − 1) =�j+k−2
2j−1

�
. If a subsequence counted by T (j, k) does end with the number 2k − 1,

then the second to last entry is one of the even numbers 2j − 2, . . . , 2k− 2 and the

number of possible {x1, . . . , x2j−3} are counted by T (j−1, j−1), . . . , T (j−1, k−1),

respectively. Together, this gives

T (j, k) = T (j, k − 1) + T (j − 1, k − 1) + · · · + T (j − 1, j − 1)

=

�
j + k − 2

2j − 1

�
+

�
j + k − 3

2j − 3

�
+ · · · +

�
2j − 3

2j − 3

�

=

�
j + k − 2

2j − 1

�
+

�
j + k − 2

2j − 2

�

=

�
j + k − 1

2j − 1

�

using the binomial coefficient identities known as the “hockey-stick theorem” and

Pascal’s lemma (identities 135 and 127 of [3]).

2. n-color Composition Enumerations

In this section, we use spotted tilings to give new proofs of enumeration results for

CC(n) and two special classes, CC(n, k), the number of n-color compositions with

k parts, and CCe(n), the number of n-color compositions with each part even. We

also prove a new enumeration result for CCo(n), the number of n-color compositions

with each part odd.

Theorem 3. ([1], Theorem 1b, d) The number of n-color compositions of n satisfies
the formula CC(n) = F2n and the recurrence relation CC(n) = 3 · CC(n − 1) −
CC(n− 2). The corresponding generating function is q

1−3q+q2 .

Proof. We establish CC(n) = Co(2n) by a bijection between n-color compositions

of n and (normal) compositions of 2n with all parts odd.

Consider a spotted tiling for an n-color composition of n. Recall that the bars

and spots alternate. Consider the spot signifying part ki to be positioned at i− 1
2

within the 1× k rectangle. Then the distance between a spot and an adjacent bar

has the form m +
1
2 for some integer m ≥ 0. Create a (normal) tiling of 2n by
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replacing spots with bars and doubling all distances, which are now of the form

2m + 1, odd numbers. Figure 3 shows the transition from spotted tilings counted

by CC(3) to tilings counted by Co(6).

✉ ✉ ✉✉ ✉✉ ✉✉ ✉✉ ✉✉ ✉ ✉
Figure 3: Row by row correspondence between CC(3) and Co(6).

The process is invertible because the bars in an all-odd composition of 2n al-

ternate even / odd, considering the leftmost bar to be at 0. Because 2n is even,

there are at least bars at 0, some odd position, and 2n. To create the corresponding

spotted tiling, halve all distances and replace the bars at any half-integer positions

with spots.

By Theorem 1, CC(n) = F2n. The recurrence relation for F2n is known, but

we demonstrate the recurrence in terms of spotted tilings to introduce ideas used

in subsequent proofs. We establish a bijection between the n-color compositions

counted by 3 · CC(n− 1) and by CC(n) + CC(n− 2).

Given three copies of the spotted tilings counted by CC(n − 1), perform the

following operations.

(a) To the first set, add 11 at the end of each composition.

(b) To the second set, for each composition, replace its last part kj with (k + 1)j .

(c) To the third set, for each composition,

(c1) if the last part is k1, replace it with (k + 1)k+1.

(c2) if the last part is kj with j > 1, replace it with (k − 1)j−1.

In terms of spotted tilings, operation (a) adds a box at the right hand side. Opera-

tions (b) and (c1) both extend the final rectangle by length one; (b) keeps the spots

fixed, while (c1) moves the last spot from the first position of a 1× k rectangle to

the last position of the new 1× (k + 1) rectangle. The results of (a), (b), and (c1)

are spotted tilings counted by CC(n) with no repetition—notice that (b) produces

tilings where the spot is not in the rightmost position, while tilings produced by

(a) and (c1) all have a spot in the rightmost position. Operation (c2) moves the

spot of the final rectangle one position to the left and decreases the rectangle by
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length one, producing a tiling counted by CC(n − 2). Both (c1) and (c2) can be

considered to move the last spot one position to the left, allowing “wrap around”

from the leftmost to rightmost position.

We demonstrate this with 3 ·CC(3) = CC(4)+CC(2). Since operations (a) and

(b) are less complicated, Figure 4 shows them only applied to 32, while all 8 spotted

tilings counted by CC(3) are shown under (c1) and (c2).

✉(a) ✉ ✉
✉(b) ✉

✉(c1) ✉✉(c2) ✉✉(c2) ✉✉ ✉(c1) ✉ ✉✉ ✉(c1) ✉ ✉✉ ✉(c1) ✉ ✉✉ ✉(c2) ✉ ✉✉ ✉ ✉(c1) ✉ ✉ ✉
Figure 4: For three copies of CC(3), examples of operations (a) and (b), and row

by row details of (c1) and (c2).

For the reverse direction, there are three cases for n-color compositions counted

by CC(n). If the last part is 11, remove it; this is the inverse of operation (a). If

the last part is kj for k ≥ 2 and j < k, replace it with (k − 1)j ; this is the inverse

of operation (b). If the last part is kk for k ≥ 2, replace it with (k− 1)1; this is the

inverse of operation (c1). For an n-color composition counted by CC(n − 2) with

last part kj , replace it with (k + 1)j+1; this is the inverse operation of (c2).

We have established CC(n) = 3 · CC(n − 1) − CC(n − 2). The generating

function follows from the recurrence (denominator) and initial values of the sequence

(numerator); see [10] for more details.

Theorem 4. ([1], Theorem 1a, c) The number of n-color compositions of n with
m parts satisfies the formula CC(n,m) =

�n+m−1
2m−1

�
. The corresponding generating

function is qm

(1−q)2m .

Proof. Consider the spotted tiling associated to an n-color composition of n with

m parts. The spotted tiling will include m spots and m + 1 bars, more specifically

bars at 0, 2n, and m−1 other positions. As in the previous proof, consider the spot

signifying part ki to be positioned at i − 1
2 within the 1 × k rectangle. Doubling

all distances places spots at odd positions and bars at even positions. Since spots

and bars alternate, the positions of the m spots and m − 1 internal bars create a



INTEGERS: 12B (2012/13) 6

subsequence {x1, . . . , x2m−1} of {1, . . . , 2n− 1} where the parity of xi matches the

parity of i. From Theorem 2, we know there are
�n+m−1

2m−1

�
such subsequences.

For generating functions associated with binomial coefficients, see [10].

Since CC(n) =
�

m CC(n,m), combining Theorems 3 and 4 gives

n�

m=1

�
n + m− 1

2m− 1

�
= F2n

which is equivalent to the even index case of an identity connecting Fibonacci num-

bers to diagonals in Pascal’s triangle (identity 4 in [3]).

Theorem 5. ([5], Theorems 1.2, 5.1) The number of n-color compositions of n
having only even parts satisfies the formula CCe(n) = 4 ·CCe(n− 2)−CCe(n− 4)

with initial values CCe(0) = 0 and CCe(2) = 2. The corresponding generating
function is 2q2

1−4q2+q4 .

Proof. Note that CCe(n) = 0 for all odd n. We establish a bijection between the

n-color compositions counted by CCe(n) + CCe(n− 4) and by 4 · CCe(n− 2).

Similar to the recurrence relation proof of Theorem 3, we perform the following

operations on four copies of the spotted tilings counted by CC(n− 2).

(a) To the first set, add 21 at the end.

(b) To the second set, add 22 at the end.

(c) For the third set, replace the final part kj with (k + 2)j .

(d) For the fourth set,

(d1) if the last part is k1, replace it with (k + 2)k+1,

(d2) if the last part is k2, replace it with (k + 2)k+2,

(d3) if the last part is kj with j > 2, replace it with (k − 2)j−2.

Notice that the three (d) operations each move the spot in the last rectangle

two to the left, with the convention that the rightmost position is to the left of the

leftmost position. Adding parts 2j and changing between part lengths k, k +2, and

k − 2 maintains the parity restriction. Figure 5 shows the results on four copies of

the spotted tilings counted by CCe(4).

As in the proof of Theorem 3, operations (a), (b), (c), (d1), and (d2) produce

n-color compositions counted by CCe(n) with no repetition, by inspection of the

last part. Operation (d3) produces n-color compositions counted by CCe(n− 4).

For the inverse map, there are again several cases for an n-color composition

counted by CCe(n). If the last part is 21 or 22, remove it. If the last part is kj
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✉(a) ✉ ✉
✉(b) ✉ ✉
✉(c) ✉

✉(d1) ✉✉(d2) ✉✉(d3) ✉✉(d3) ✉✉ ✉(d1) ✉ ✉✉ ✉(d2) ✉ ✉✉ ✉(d1) ✉ ✉✉ ✉(d2) ✉ ✉
Figure 5: For three copies of CCe(4), examples of operations (a), (b), and (c), and

row by row details of (d1), (d2), and (d3).

with j ≤ k − 2, replace it with (k − 2)j . If the last part is kk−1 or kk, replace it

with (k−2)1 or (k−2)2, respectively. These are inverse operations for (a), (b), (c),

(d1), and (d2), respectively. Given an n-color composition counted by CCe(n− 4),

replace the last part kj with (k + 2)j+2, the inverse of operation (d3).

We have established CCe(n) = 4·CCe(n−2)−CCe(n−4). The initial conditions

are easily checked. The sequence begins 0, 0, 2, 0, 8, 0, 30, 0, 112, 0, 418. Removing

the zeros, this is double the sequence A001353 in [8]. The generating function

follows from the recurrence relation and the initial values.

Theorem 6. The number of n-color compositions of n having only odd parts satis-
fies the recurrence CCo(n) = CCo(n−1)+2·CCo(n−2)+CCo(n−3)−CCo(n−4)

with initial values 0, 1, 1, 4. The corresponding generating function is q+q3

1−q−2q2−q3+q4 .

Proof. We establish a bijection between the n-color compositions counted by CCo(n)+

CCo(n− 4) and by CCo(n− 1) + 2 · CCo(n− 2) + CCo(n− 3).

Similar to the previous proofs, we perform the following operations on spotted

tilings counted by CCo(n− 1) + 2 · CCo(n− 2) + CCo(n− 3).

(a) Given an n-color composition counted by CCo(n− 1), add 11 at the end.

(b) For the first set of n-color composition counted by CCo(n − 2), replace the

final part kj with (k + 2)j .

(c) For the second set of n-color composition counted by CCo(n− 2),

(c1) if the last part is k1, replace it with (k + 2)k+1,
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(c2) if the last part is k2, replace it with (k + 2)k+2,

(c3) if the last part is kj with j ≥ 3, replace it with (k − 2)j−2.

(d) Given an n-color composition counted by CCo(n− 3), add 33 at the end.

As in the proof of Theorem 5, the three (c) operations move the spot in the last

rectangle two to the left, with the wrap around convention. Adding parts 11 and

33 and changing between part lengths k, k + 2, and k − 2 maintains the parity

requirement. Figure 6 shows the results on CCo(5) + 2 · CCo(4) + CCo(3).

✉(a) ✉ ✉
✉ ✉(b) ✉ ✉

✉ ✉(c1) ✉ ✉✉ ✉(c1) ✉ ✉✉ ✉(c1) ✉ ✉✉ ✉(c1) ✉ ✉✉ ✉(c2) ✉ ✉✉ ✉(c3) ✉ ✉✉ ✉ ✉ ✉(c1) ✉ ✉ ✉ ✉
✉(d) ✉ ✉

Figure 6: For n = 6, examples of operations (a), (b), and (d), and row by row

details of (c1), (c2), and (c3).

Notice that neither operations (c1) nor (c2) produces an n-color composition of

n + 2 with last part 33. As in the previous proofs, operations (a), (b), (c1), (c2),

and (d) produce n-color compositions counted by CCo(n) with no repetition, by

inspection of the last part. Operation (c3) produces n-color compositions counted

by CCo(n− 4).

For the inverse map, consider an n-color composition counted by CCo(n). If the

last part is 11 or 33, remove it. If the past part is kj with j ≤ k− 2, replace it with

(k−2)j . If the last part is kk−1 or kk, replace it with (k−2)1 or (k−2)2, respectively.

There are inverse operations for (a), (d), (b), (c1), and (c2), respectively. Given an

n-color composition counted by CCo(n−4), replace the last part kj with (k+2)j+2,

the inverse operation of (c3).

We have established CCo(n) = CCo(n − 1) + 2 · CCo(n − 2) + CCo(n − 3) −
CCo(n − 4). The initial conditions are easily checked. The sequence begins 0, 1,

1, 4, 7, 15, 32, 65, 137, 284, 591, which is A119749 in [8]. The generating function

follows from the recurrence relation and the initial values.
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3. Conjugable n-color Compositions

In his foundational work Combinatory Analysis, MacMahon introduced the zig-zag

graph of a composition as a way of defining conjugacy. A composition is broken up

with one rectangular part per row, such that the first segment of a part is directly

beneath the last segment of its predecessor; see Figure 7 for an example. MacMahon

explains, “Whereas the composition is read from left to right in successive rows from

top to bottom, the conjugate is read from top to bottom in successive columns from

left to right.” [7, Section IV, chapter 1, §129]

2

1

3

1 3 1 1

Figure 7: Mahonian zig-zag graphs showing that the conjugate of (2,1,3) is (1,3,1,1).

In the paper where Agarwal introduced n-color compositions [1], he concluded

with two questions, including “What will be the shape of MacMahon’s zig-zag graph

in the case of n-colour compositions?” The notion of spotted tilings introduced here

allows a possible answer to this question—simply carry the spots into the zig-zag

graph. But for which n-color compositions does conjugation of the spotted zig-zag

graph lead to a valid spotted tiling?

Consider the composition in Figure 7. Can (2, 1, 3) be colored so that it is

conjugable? In order for the first column to include a spot, the 2 must become

21. The second column automatically has a spot since 1 can only become 11. To

avoid another spot in the second column, the 3 must become 32 or 33, but either

possibility leaves some column without a spot. So no coloring of (2, 1, 3) gives a

conjugable n-color composition. In contrast, Figure 8 shows that (21, 11, 32, 11) is

conjugable.

21

11

32

11

✉ ✉ ✉ ✉
11 32 11 22✉ ✉ ✉ ✉

Figure 8: Spotted zig-zag graphs showing that the conjugate of (21, 11, 32, 11) is

(11, 32, 11, 22).

Definition. An n-color composition is conjugable if its zig-zag graph has exactly

one spot per column.

Our final theorem characterizes and counts conjugable n-color compositions.
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Theorem 7. (a) Conjugable n-color compositions have the form

(2
a
1 , 11, 2

b
2, (32, 2

a
1 , 11, 2

b
2)

c
)

where exponents denote repetition, a, b, c ≥ 0, and a, b may vary in each occurrence.
(b) The number of conjugable n-color compositions of n is 0 if n is even, 2(n−1)/2

if n is odd.

Proof. The analysis of conjugable n-color compositions is most easily done in terms

of the zig-zag graphs. By construction, there is one spot per row. By definition,

there is one spot per column. Since a subsequent part is positioned with its first

segment under the last segment of its predecessor, its spot must appear to the right

of the spot above it. In order to have one spot per column, it is exactly one position

to the right. The spots, therefore, lie on the diagonal.

The parts 31, 33, and kj for any k ≥ 4 cannot occur in a conjugable n-color

compositions, since each would leave at least one column without a spot. As spots

must appear on the diagonal, the allowed parts 11, 21, 22, 32 may occur within the

constraints shown in Figure 9. The description in part (a) follows.

✉ ✉ ✉ ✉✉ ✉ ✉ ✉
Figure 9: Parts 11 and 22 can only be followed by some allowed k2 while parts 21

and 32 can only be followed by some allowed k1.

The spotted zig-zag graph of a conjugable n-color composition of n with m parts

fits in an m×m square with m spots on the main diagonal and exactly m− 1 more

segments in the two adjacent diagonals to “connect the spots.” Thus n = 2m − 1

and there are no conjugable n-color compositions of even n.

To count the conjugable n-color compositions of odd n = 2m − 1, consider the

original representation as a tiling of a 1× n board. Spots on the main diagonal of

the zig-zag graph here means that the first, third, . . . , (2m−1)-st positions contain

spots, leaving m− 1 gaps where there are two choices for the position of a vertical

bar; see Figure 10. Thus there are 2m−1 = 2(n−1)/2 such compositions.

③ ③ ③
✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

Figure 10: Between adjacent spots, there are two choices for the position of a vertical

bar, so there are 4 conjugable n-color compositions of 5.
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In conclusion, spotted tilings are a combinatorial interpretation of n-color com-

positions in the spirit of MacMahon that allow for bijective proofs of various enu-

meration results and an analog of the zig-zag graph and conjugacy. The interested

reader will want to compare the spotted tilings introduced here to the combinatorial

interpretation of n-color compositions using lattice paths given in [2].

Acknowledgments. Thanks to the organizers for putting together this fifth Inte-
gers conference and to the anonymous referee for helpful comments.
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