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Abstract
partizan euclid is a game based on the Euclidean Algorithm. The outcome
of any position (p, q) is determined by a single path of the game tree; this path
has connections to the furthest integer continued fraction of p/q. We convert the
question of ‘Who wins?’ to a word problem, then give a list of reductions that
reduces the word/position to one of 9 positions.

1. Introduction

Suggested by ‘Euclid’[3] and Richard K. Guy, the game of partizan euclid is
played by two players, Left and Right, and starts with a pair of positive integers
(p, q) with p > q. Let p = kq+ t where 0 ≤ t < q. If q | p (i.e. t = 0) then the game
is over; otherwise, Left moves to (q, t) and Right moves to (q, q − t). The game
may seem trivial as there is only one move available for each player. However, as
we shall show, answering the question ‘Who wins?’ reveals some of the interesting
structure of the game. We would like to answer the question of who wins in the
disjunctive sum of this game, but this appears to be difficult. See the last section
for a discussion of that problem.

In the (impartial) game euclid, which is also played with (p, q), a pair of positive
integers, a player is allowed to remove any multiple of the smaller from the larger
provided the remainder is positive. Lengyel [7] reports that Schwartz first found that
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euclid is the sequential sum [10] of nim-heaps: given (p, q), suppose the normal
continued fraction of p

q is [a1, a2, . . . , an] (an > 1 except if Fibonacci numbers are
involved) then the euclid position (p, q) corresponds to playing the sequential sum
of nim with nim-heaps a1, a2, . . . , an. euclid has attracted much attention and has
been generalized, see [4, 5] for example. partizan euclid is related to nearest and
farthest integer continued fractions (NICF and FICF) (see [8]).

In the case of both NICFs and FICFs we write rational numbers as a sum or
difference of an integer and a rational less than 1. For example, the FICF for 11

8 is
obtained by rewriting, noting that

• 11
8 = 2− 1

8/5 since 2 is further away from 11
8 than 1;

• 8
5 = 1 + 1

5/3 since 1 is further away than 2;

• 5
3 = 1 + 1

3/2 since 1 is further away than 2;

• and 3
2 = 2− 1

2/1 = 1 + 1
2/1 since 1 and 2 are equally distant.

We are not interested in the continued fraction itself but in noting that during
the calculation (i) ‘integer subtract fraction’ corresponds to a move by Right and
(ii) ‘fraction subtract integer’ corresponds to a Left move. We’ll use the word rlle
to represent this where e is the common move to (2, 1). Section 2 reports on the
structure of the game tree and shows there is one path, the path obtained from the
FICF algorithm, that determines the whole game tree.

For example, in Figure 1 the path formed by the moves (edges)

(11, 8)
Right→ (8, 5)

Left→ (5, 3)
Left→ (3, 2)

is the important path. Why is it important? Non-trivial parts of the tree that are
not on that path are isomorphic to parts rooted on the path; ‘(8, 3)’ is isomorphic
to ‘(5, 3)’, ‘(5, 2)’ is isomorphic to ‘(3, 2)’, and ‘(3, 1)’ is isomorphic to ‘(2, 1)’. All
the information needed to determine the outcome and value of (11, 8) is found on
this path.

A game tree (position) is represented as a word from the alphabet r, l ending
in e. In Lemma 13, we find reduction rules that preserve the outcome class of the
word, moreover, any word reduces to one of just 9 words each with length at most
4. This can be accomplished in time linear in the length of the corresponding FICF.
Unfortunately, these reductions most of the time do not preserve the value.

We will denote a game position as E(p, q). Also, we will use p%q for p mod q.

We try to present a sufficient amount of game theory to make the paper self-
contained (with the exception of the last two sections). For terms not defined in
the paper we follow [1]. A position, say h, is defined in terms of its options as
follows: h = {hL|hR}. For example, where t = p%q, E(p, q) = {E(q, t)|E(q, q− t)}.
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Figure 1: Some of the game tree of (11, 8)

The outcome of a position is Left, Right, Next or Previous depending on (under
perfect play), respectively, whether Left can win going first and second, Right can
win going first and second, the next player to move wins regardless if this Left or
Right, the next player cannot win regardless if this Left or Right. We phrase this
more formally.

Lemma 1. Let h be a position. The outcome of h is determined by the outcomes
of its options. Specifically:

• o(h) = L iff ∃hL, o(hL) ∈ {L,P} and ∀hR, o(hR) ∈ {L,N};

• o(h) = P iff ∀hL, o(hL) ∈ {N ,R} and ∀hR, o(hR) ∈ {L,N};

• o(h) = N iff ∃hL, o(hL) ∈ {L,P} and ∃hR, o(hr) ∈ {P ,R};

• o(h) = R iff ∀hL, o(hL) ∈ {N ,R} and ∃hR, o(hr) ∈ {P ,R}.

Let g = E(p, q). Since there is at most one option for each player we will abuse
notation and write o(g) = o({gL|gR}) as {o(gL)|o(gR)}. For example, {N |P} = R.

2. Game Tree Structure

Lemmas 2 and 3 each show that for every position there are infinitely many positions
with the same game tree. We call positions equivalent if they have the same game
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tree.

Lemma 2. For all k, E(kp, kq) = E(p, q).

Proof. Recall that q | p if and only if kq | kp. Thus, E(p, q) = {·|·} if and only if
E(kp, kq) = {·|·}. Let t = p%q, then by induction E(p, q) = {E(q, t)|E(q, q − t)} =
{E(kq, kt)|E(kq, kq − kt)} = E(kp, kq).

Note that if h = E(n,m) is a follower of a position g = E(p, q) with gcd(p, q) = 1,
then gcd(n,m) = 1. In the rest of the paper we will assume that every position has
gcd(p, q) = 1 and thus p%q = 0 if and only if q = 1.

Lemma 3. If p > 2q then E(p, q) = E(p− q, q).

Proof. Let p = kq + t, 0 ≤ t < q and k ≥ 2. Then p− q = (k − 1)q + t, 0 ≤ t < q
and k − 1 ≥ 1. Consider the options of both positions:

E(p, q) = {E(q, t)|E(q, q − t)}
E(p− q, q) = {E(q, t)|E(q, q − t)}.

Since they have identical options the two positions are equivalent.

A position E(p, q) will be called standard if q < p < 2q. All positions E(p, q) with
q > 2 are equivalent to some standard position (which is reachable with repeated
applications of Lemma 3). Notably E(2, 1) is not standard and positions of the form
E(k, 1) are neither standard nor equivalent to some standard position. A follower
of a standard position may not be standard. For example, E(3, 2) has only one
proper follower, E(2, 1), which is not standard.

Lemma 4. Let g = E(p, q) and t = p%q. If t (= 0 then g has exactly one standard
option except when q = 2t (i.e. E(3, 2)). Moreover;

• if 2t > q then exactly gL is standard,

• if 0 < 2t < q then exactly gR is standard.

Proof. As t > 0, gL = E(q, t) and gR = E(q, q − t). Recall by the definition of
standard; that t > q

2 if and only if gL is standard and t < q
2 if and only if gR

is standard. Otherwise, 2t = q, implying that p = 3t and subsequently that g =
E(3, 2); fromE(3, 2) both players have the optionE(2, 1), which is not standard.

There is a unique standard position with a given left or right option.

Lemma 5. Let g = E(p, q) and 0 < t < q. If g is standard then:

• If gL = E(q, t) then g = E(q + t, q).
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• If gR = E(q, q − t) then g = E(q + t, q).

Proof. If gL = E(q, t) then p = kq + t; as g is standard, k = 1. If gR = E(q, q − t)
then p = kq + (t− q) = (k − 1)q + t; as g is standard, k = 2.

The essential game tree structure is given by Theorem 6.

Theorem 6. Let g = E(p, q) and t = p%q.

• If t = 0 then g = {·|·}.

• If 2t = q then gL = gR.

• If 2t > q then gLL = gR.

• If 0 < 2t < q then gL = gRL.

Proof. If t = 0 then the game is over and g = {·|·}. Thus we suppose t > 0 and
hence gL = E(q, t) and gR = E(q, q − t).

Suppose 2t = q; then gL = E(q, t) = E(q, q−2t+t) = E(q, q−t) = gR. Moreover,
q − t | q, so E(q, t) = E(q, q − t) = 0. (For the purists, g = {0|0} = ∗.)

Suppose 2t > q; then q > 2(q− t) and t > q− t so gR = E(q, q− t) = E(q− (q−
t), q − t) = E(t, q − t) by Lemma 3, and gLL = E(q, t)L = E(t, q − t), giving

gR = E(t, q − t) = gLL.

Suppose 2t < q; then gL = E(q, t) = E(q − t, t) by Lemma 3. Since gR =
E(q, q − t) we have that gRL = E(q − t, t), giving gRL = gL.

Corollary 7. Let p > q with p = kq + t, 0 < t < q and let g = E(p, q).

• If 2t > q then g = {gL|gLL}.

• If 2t < q then g = {gRL|gR}.

Proof. This is a simplification of Theorem 6.

We note the similarity of Lemma 4 and Corollary 7. In Corollary 7, the two
options are the standard option and its left option. The case 2t > q is when the
lower integer is the ‘farthest’ integer when calculating the FICF and 2t < q is when
the higher integer is the ‘farthest’.

This motivates our next definition, the signature of a position, in which we
highlight the important option at each stage. Recall that when we refer to E(p, q)
we are assuming that gcd(p, q) = 1.
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Definition 8. Let g = E(p, q). The signature of g, denoted Sg, is defined as follows.
If q = 1 then Sg = λ, the empty word. If q = 2 then Sg = e. Otherwise, let h be
the standard option from g. If gL = h then Sg = lSh. If gR = h then Sg = rSh.

The position g and the standard positions that are successively the standard
option (as per Lemma 4) starting from g are the spine of g.

For example, if g = E(12, 7) then the signature of g is lrle and the spine of
g is {E(12, 7), E(7, 5), E(5, 3), E(3, 2)}. Often, we will write the signature with
superscripts; for example, S = lllrrlllre is the same as S = l3r2l3e.

If two positions have the same signature then they have the same game tree. We
use signatures liberally to represent positions. Furthermore, we use αf to denote
the position g where Sg = αSf .

The position E(3, 2) is the unique standard position with signature e. This
position is at the bottom of every spine for every position other than E(k, 1) and
E(2k + 1, 2) for k ≥ 2.

Theorem 9. Let g be a partizan euclid position. Every follower of g not of the
form E(k, 1) is equivalent to some position on the spine of g.

Proof. A position is on its spine, so we only need consider proper followers. If the
length of the signature is 0 then there are no proper followers. If the length of
the signature is 1 then Sg = e and g = E(3, 2) where the only proper follower is
E(2, 1). We proceed by induction on the length of signature. If the length of the
signature is at least 2 then the standard option is on the spine; the non-standard
option is (by Theorem 6) either gL = gRL or gR = gLL, which is the left option of
the standard option and is by induction on the spine of the standard option or of
the form E(k, 1). As the spine of the standard option is part of the spine of g, this
completes the proof.

Corollary 10. Consider the position g, and let k represent an unfixed non-negative
integer.

We can write Sg as either rklαe or rke; Left’s move has signature αe or λ,
respectively.

We can also write Sg as either rαe, lrklαe, or lrke; Right’s move has signature
αe, αe, or λ, respectively.

Proof. If Sg is rklαe or rke, then SgL is αe or λ, respectively, because gL = gRL =

gRRL = gRRRL = · · · = gR
kL.

If Sg = rαe then SgR = αe. Otherwise, gR = gLL so SgR is the signature of the
position resulting from two Left moves namely αe or λ, as seen by the first part.

In the examples below, we repeatedly use Theorem 6, but using Corollary 10 one
can easily jump from the leftmost term in a line of equalities to the rightmost. Let
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g = llrle then

e = {eL|eR} = {λ|λ},
le = {leL|leR} = {e|leLL} = {e|eL} = {e|λ},
rle = {rleL|rleR} = {rleRL|le} = {leL|le} = {e|le},
lrle = {lrleL|lrleR} = {rle|lrleLL} = {rle|rleL} = {rle|rleRL} = {leL|e} = {rle|e},
llrle = {llrleL|llrleR} = {lrle|llrleLL} = {lrle|lrleL} = {lrle|rle}.

3. Reducing the Signature

The paired outcome of a position g (or signature Sg) is the pair (o(gL), o(g)), denoted
by po(g) or po(Sg). For example, if Sg = e, then po(g) = po(e) = (P ,N ). Note
that po(λ) is not defined.

The paired outcome of a position depends upon which option is standard and
the paired outcome of that option.

Lemma 11. If Sg = lSh then po(g) = (o(h), {o(h)|o(hL)}). If Sg = rSh then
po(g) = (o(hL), {o(hL)|o(h)}).

Proof. Follows immediately from Theorem 6.

That is, the paired outcome of a position with a standard option is determined
by the paired outcome of the standard option. We use l and r to denote functions
on paired outcomes; we write l ◦ po(Sg) to mean po(l ◦ Sg) and r ◦ po(Sg) to mean
po(r ◦ Sg).

There are 4 × 4 = 16 ordered pairs of outcome classes. However, as stated
in Lemma 1, there are relationships between the outcome of a position and the
outcome of its options; there are only 8 ordered pairs that are paired outcomes of
positions.

Figure 2 has a vertex for each of the 8 paired outcomes. The directed edges
labelled l and r from a paired outcome, say x, lead to l ◦ x and r ◦ x, respectively.

The outcome of a position is given by the paired outcome of the signature.
Provided we know the paired outcome of some suffix of the signature, we can find
the paired outcome of the next larger suffix using Figure 2 and eventually the desired
paired outcome. As e is the suffix of every non-empty signature, we only need to
know that po(e) = po(E(3, 2)) = (P ,N ) is where we start and to read the signature
from the right starting after e.

We have now described a relatively efficient method to determine the outcome of
a position given its signature, but we give a better way to determine the outcome
than a walk through the graph for each letter in the signature.
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Figure 2: Paired outcome of signatures.

Just as l and r are functions on paired outcomes, we use words (denoted by
Greek letters) from {l, r}∗ such as α = lrr as functions on paired outcomes in the
natural way where α ◦ x = l ◦ r ◦ r ◦ x. For any such β, β ◦ po(Sh) = po(αSh).

We give reduction rules by which we can simplify a word (signature) that pre-
serves outcome, in the sense that if two positions have the same reduced signature
then they have the same outcome. The main goal of this section is to prove Theorem
15, in which we give a short list of words to which any signature will reduce.

Lemma 12. If α ∈ {l, r}∗ then α ◦ (L,L) = (L,L) and α ◦ (R,R) = (R,R).

Proof. Immediate from Figure 2.

Lemma 13. Let x be a paired outcome.

1. l3 ◦ x = x;

2. r2 ◦ x = r ◦ x;

3. αrlr ◦ x = rlr ◦ x;

4. (rl2)2r ◦ x = r ◦ x;

5. rllr ◦ (P ,N ) = l ◦ (P ,N );

6. αrll ◦ (P ,N ) = rll ◦ (P ,N );

7. rl ◦ (P ,N ) = l ◦ (P ,N );
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Proof. In this proof we make extensive use of Figure 2. The most common use is
to find a vertex with the desired paired outcome then look up the paired outcomes
reached by the directed edges. For the first 4 rules, we need to show that these
equation holds for all paired outcomes x.

Rule 1: we apply l to each x three times to observe that we return to the x with
which we started.

Rule 2: following two edges marked r and, regardless, the second edge is a loop.

Rule 3: following three edges marked r, l and r results in (L,L) or (R,R) so the
first part of the signature it is irrelevant.

Rule 4: following the walk with edges marked rllrllr either (i) goes once around
the 6-cycle in Figure 2 ending at the starting vertex; (ii) or if the starting vertex is
(L,L) or (R,R) then remains at (L,L) or (R,R) respectively; (iii) starts at (L,N )
or (R,P) then the first r-edge goes to (L,L), (R,R) respectively. In all cases the
effect of following the last r edge in the walk is the same as following the first.

Rule 5: obvious from the figure.

Rule 6: from (P ,N ) the walk l, l, r ends at (R,R) and any further edges does
not change the paired outcome.

Rule 7: obvious from the figure.

Lemma 14. If x is a paired outcome and γ ◦x = δ ◦x, then po(αγβe) = po(αδβe).

Proof. po(αγβe) = αγ ◦ po(βe) = αδ ◦ po(βe) = po(αδβe).

In applying Lemma 14 to reduce a word, we make reference to particular rules
from 13.

We call a word irreducible if none of the reduction rules are applicable. Reduction
rules may be applied in any order to the signature of a position, say g, to derive
an irreducible word; the irreducible word corresponds to some other position, say
h. The outcome of g is the same as the outcome of h, as they have the same paired
outcome, which is a stronger condition. As there are a finite number of irreducible
words, we will be able to compute and store the outcomes of those positions.

Theorem 15. There are 9 irreducible words: λ, e, re, le, lle, lre, rlre, llre, and
rlle.

For the proof of Theorem 15 we need the following Lemma:

Lemma 16. A word containing 4 rs is reducible.

Proof. Suppose α is an irreducible word containing 4 rs. By Rule 2, each pair of
consecutive rs is separated by at least one l. By Rule 3, each pair of rs except
possibly the leftmost, is separated by more than one l. By Rule 1, each pair of rs
is separated by at most 2 ls. That is, the rightmost 3 rs form the pattern rllrllr,
which contradicts the assumption that α is irreducible by Rule 4.
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Sg o(g) g
λ P E(2, 1)
e N E(3, 2)
re L E(4, 3)
le R E(5, 3)
lle P E(8, 5)
lre N E(7, 4)
rlre L E(10, 7)
rlle R E(11, 8)
llre P E(11, 7)

Table 1: Irreducible signatures with corresponding positions and outcomes

Proof of Theorem 15. The irreducible words that do not end in e are easy to list
and count with the help of Lemma 16; such words have at most 3 rs. In what
follows, α and β are one of either λ, l, or ll.

Words with 3 rs are of the form rlrllrβ, of which there are 3.

Words with 2 rs are of the form αrllrβ or rlrβ, of which there are 12.

Words with 1 r are of the form αrβ, of which there are 9.

Words with no r are of the form α, of which there are 3.

There are a total of 27 such words. The only irreducible signatures are among
the set containing these strings but with a trailing e appended, and the empty word.

We show that 19 of the 27 strings reduce to the remaining 8: e, le, lle, re, lre,
llre, rlle and rlre.

• The 7 strings of the form γrlle where γ is non-empty reduce by Rule 6 to rlle.

• The 4 words of the form γrllrle reduce to γrllle and then to γre by Rules 7
and 1, respectively, leaving re, lre, llre, and rlre.

• The 4 words of the form γrllre reduce to γle by Rule 5, leaving the 3 strings
with no r (note llle = e) and rlle.

• The 4 words of the form γrle reduce to γle by Rule 7, leaving the 3 strings
with no r (note llle = e) and rlle.

We note that of the none of the reductions apply to the 9 claimed irreducible
words (8 from above and λ).

3.1. Algorithm

We present an algorithm that efficiently determines the outcome of a partizan
euclid position.

Step 0: Let S be the signature of E(p, q). Let S′ be the empty string.
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Step 1: If S is non-empty, remove the first letter of S and add it to the end of S′;
go to Step 2. Otherwise, go to Step 3.

Step 2: • If you added l to S′, use Rule 1 on the suffix of S′ if applicable. Go to
Step 1.

• If you added r to S′, use Rule 2, 3 or 4 on the suffix of S′ if applicable;
at most one will apply. Go to Step 1.

• If you added e to S′, use Rule 5, 6 or 7 on the suffix of S′ if applicable,
at most one will apply. If you applied Rule 5 or 7, then use Rule 1 if
applicable. Go to Step 3.

Step 3: The outcome of E(p, q) is the outcome of S′ given in Table 1.

Reductions occur at the end of the word and the application of a reduction does
not cause another reduction, except possibly in Step 2: part 3, with an lll reduction.
As such, Step 2 finishes in constant time (as do Steps 1 and 3). Step 1 takes about
as long as the Euclidean algorithm. Steps 1 and 2 have to be performed at most p
times; Steps 0 and 3 are each performed once.

By Lemma 16, S′ reaches a length of at most 8, as demonstrated by llrllrll.
That is, if at any point the length of S′ is 9, then it will be irreducible in the next
step. In the algorithm as given above, S is computed in full at the beginning, for
ease of description. However, we can easily modify our algorithm to be an on-line
algorithm by computing the next letter of S as we need it to add to S′. In that
case, to run the algorithm we store at most 3 integers no larger than p and a string
of length at most 9.

4. Outcome Observations

There are several interesting observations that can be made about the outcomes
which may be useful in actual play.

Observation 1. If Sg = rβe then o(g) ∈ {L,R}.

All signatures in Table 1 starting with r are in L or R. The reductions (from
Lemma 13) change signatures starting with r to shorter signatures starting with r
or to le, which is in R.

Observation 2. Let g = E(p, q) be a standard position. If o(g) ∈ {N ,P}, then
2p
3 ≥ q > p

2 .

If o(g) ∈ {N ,P}, then Sg is λ (in which case g is not standard), e (in which case
2p
3 = q), or starts with l. As g is standard, if t = p%q, then t = p − q and q > p

2 .
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For the signature to start with l, we need 2t > q, which is 2(p − q) > q or 2p
3 > q;

combining this with q > p
2 gives the result.

Lemma 13 can be restated in terms of positions in the game.

Observation 3. If a and b are integers with a > b > 0 then

(1) o(E(a+ b, a)) = o(E(5a+ 3b, 3a+ 2b)); and

(2) if o(E(2a+ b, a+ b)) = P and a > 2b then E(2a+ 3b, a+ 2b) = P .

For (1) let E(a+b, a) = αe and consider E(5a+3b, 3a+2b). First suppose a > b;
the consecutive left options E(3a+2b, 2a+ b), E(2a+ b, a+ b), and E(a+ b, a) are
standard and are on the spine so E(5a+ 3b, 3a+ 2b) = lllαe. By Rule 1 o(E(5a+
3b, 3a+ 2b)) = o(E(a + b, a)). Now suppose a < b; from E(5a+ 3b, 3a+ 2b), both
E(3a+2b, 2a+b),E(2a+b, a+b) are still on the spine and nowE(a+b, b) is too. Since
E(a+b, a) = P then by Theorem 6 o(E(a+b, b)L) = P thus o(E(2a+b, a+b)) = L.
Now o(E(3a + 2b, 2a + b)L) = o(E(2a + b, a + b)) = L and again by Theorem 6
o(E(3a+2b, 2a+ b)R) = o(E(a+ b, a)) = P thus o(E(3a+2b, 2a+ b)) = N . Finally
o(E(5a + 3b, 3a + 2b)L) = o(E(3a + 2b, 2a + b)) = N and again by Theorem 6
o(E(5a+3b, 3a+2b)R) = o(E(2a+b, a+b)) = L and thus o(E(5a+3b, 3a+2b)) = P .

For (2) Since a > 2b then E(2a + b, a + b) = lrαe where the left option is
E(a + b, a) and its right option is E(a, a − b) are both standard and on the spine.
The left option of E(2a + 3b, a + 2b) is E(a + 2b, a + b) and its right option is
E(a + b, a) again both on the spine. Thus E(2a + 3b, a+ 2b) = lrrαe. Therefore,
from Lemma 13 o(E(2a+ 3b, a+ 2b)) = o(E(2a+ b, a+ b)).

5. Open Questions

Our main work is describing the structure of postitions of partizan euclid and
giving an efficient algorithm for determining the outcome. Thus we arrive at one
main open question.

Question 1. Is there an efficient method to play disjunctive sums of partizan
euclid positions?

For some families of positions (signatures) we can give the value easily. Ob-
servations 4 and 5 happen to correspond to the extreme cases of the Euclidean
algorithm.

Observation 4. Positions of the form E(k+1, k) have value ∗+(k−2)↑∗ for k ≥ 2.

The signature rke corresponds to E(k + 1, k). When k ≥ 2 the Left option is to
E(k, 1) which is equal to 0, and the Right option is to E(k, k − 1).



INTEGERS: 12B (2012/13) 13

Observation 5. Let fn be the nth Fibonacci number where f0 = 0 and f1 =
1. The position E(fk, fk−1) has the signature lke and the value is periodic in k;
E(f3k, f3k−1) = ↑, E(f3k+1, f3k) = ∗, and E(f3k+2, f3k+1) = 0. Starting with
E(2, 1) = 0, E(3, 2) = ∗, and E(5, 3) = ↑, an easy induction gives the result.

It seems unlikely that we would find a heuristic method to play a sum; we expect
a solution would require first computing the values of the summands and a method
to play on a sum of such values (see [1] for more on values). Values are harder to
calculate and there are few easy reductions of the signature that allow short cuts.
However, we present a general rule that we have found.

Note from Corollary 10 that a Left move from a position whose signature has at
least one l in it, removes exactly one l; and a Right move from a position whose
signature has at least two ls in it, removes exactly one r or exactly two ls.

Observation 6. Let two positions g and h have signatures αlralβe and αlrblγe
respectively. If ralβe = rblγe and βe = γe then g = h.

To see this, if α = λ, then gL = ralβe = rblγe = hL and gR = gLL = βe = γe =
hLL = hR. If α = l, then gL = lralβe = lrblγe = hL and gR = βe = γe = hR. If
α = r, then gL = ralβe = rblγe = hL and gR = lralβe = lrblγe = hR.

As there are many non-trivial P positions in partizan euclid, and all P posi-
tions have value 0, we think it is reasonable to expect many other values to occur
repeatedly, perhaps with similar patterns to that of the P positions.

Question 2. Which signature reductions preserve value in which instances?

Canonical forms become messy with even small values of p and q. Atomic weights
(see [1]) are an approximation to the value of a position. The atomic weights of
Table 5 were generated by CGSuite [9]. (In version 1.0 of CGSuite partizan euclid
is used as an example and tables of both canonical forms and atomic weights can
be generated easily.)

q = 11 12 13 14 15 16 17 18 19 20
p = 10 {6|2} 3/2 2 0 −1 0 2 0 0 0
11 {7|2} 0 −3 0 4 3 0 −4 0
12 {8|2} {2|2} 1 0 −3 −1 −1 0
13 {9|2} 0 2 3 0 5 4
14 {10|2} {3|2} −3 0 0 2
15 {11|2} 0 3/2 0 0

Table 2: E(q, p), q = 11, . . . , 20, p = 10, . . . , 15.

The mean values of atomic weights show some regularity on a large scale, see
Figure 3, where the figure is cutoff above 25, removing the points corresponding to
E(k + 1, k) for k > 27.
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Figure 3: Graph showing mean atomic weights of positions against ratio of p to q.
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In addition to the variation of the means of atomic weights of positions there is
great complexity among the atomic weights, which include positions such as {6|9 1

2},
3, 8⇑∗, and {7||6|5}.

Question 3. Is there an efficient way to determine the atomic weight of a position
from its signature?
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