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Abstract

Two permutations (x1, . . . , xw) and (y1, . . . , yw) are weakly similar if xi < xi+1

if and only if yi < yi+1 for all 1 6 i 6 w. Let π be a permutation of the set
[n] = {1, 2, . . . , n} and let wt(π) denote the largest integer w such that π contains
a pair of disjoint weakly similar sub-permutations (called weak twins) of length
w. Finally, let wt(n) denote the minimum of wt(π) over all permutations π of [n].
Clearly, wt(n) ≤ n/2. In this paper we show that n

12 ≤ wt(n) ≤ n
2 − Ω(n1/3). We

also study a variant of this problem. Let us say that (π(i1), ..., π(ij)), i1 < · · · < ij , is
an alternating (or up-and-down) sub-permutation of π if π(i1) > π(i2) < π(i3) > ...
or π(i1) < π(i2) > π(i3) < .... Let Πn be a random permutation selected uniformly
from all n! permutations of [n]. Stanley has shown that the length of a longest
alternating permutation in Πn is asymptotically almost surely (a.a.s.) close to
2n/3. We study the maximum length α(n) of a pair of disjoint alternating sub-
permutations in Πn and show that there are two constants 1/3 < c1 < c2 < 1/2
such that a.a.s. c1n ≤ α(n) ≤ c2n. In addition, we show that the alternating shape
is the most popular among all permutations of a given length.
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1. Introduction

Looking for twin objects in mathematical structures has a long and rich tradition

going back to ancient geometric dissection problems and culminating in the famous

Banach-Tarski Paradox (see [18]). From that research we know, for instance, that

two very different looking objects, like the Sun and an apple, or the square and the

circle, can be split into finitely many pairwise identical pieces. A general problem

is to partition a given structure (or structures) into possibly few pairwise simi-

lar substructures. A related issue is to find, in a given structure, a pair of twin

substructures, as large as possible.

Despite such ‘continuous’ origins, questions of that sort can be studied in diverse

discrete contexts, with various types of similarity specified between the objects. For

instance, Chung, Graham, Erdős, Ulam, and Yao [5] studied edge decompositions

of pairs of graphs into pairwise isomorphic subgraphs (see also [6], [12]), while

Erdős, Pach, and Pyber [8] looked for twins in a single graph (defined as a pair

of edge disjoint isomorphic subgraphs). Axenovich, Person, and Puzynina ([2], [3])

investigated twins in words, and Gawron [11], inspired by their work, initiated

exploration of twins in permutations (defined as a pair of disjoint order-isomorphic

sub-permutations).

Let us dwell on this last problem for a while. By a permutation we mean any finite

sequence of distinct positive integers. Let t(n) be the maximum number k such that

every permutation of length n has a pair of twins, each of length k. By a probabilistic

argument, Gawron [11] proved that t(n) = O(n2/3) and made a conjecture that this

is best possible, that is, t(n) = Θ(n2/3). We confirmed this conjecture in [7] (up to

a logarithmic factor) for a random permutation. A refinement of our result (getting

rid of the logarithmic factor) was then obtained by Bukh and Rudenko [4]. In the

deterministic case, the t(n) > Ω(
√
n) follows immediately from the famous result of

Erdős and Szekeres [9] on monotone subsequences in permutations. Currently, the

best lower bound t(n) = Ω(n3/5) is due to Bukh and Rudenko [4].

In this paper we consider a weaker type of similarity of permutations than order-

isomorphism in which we only look at the relations between neighboring elements.

We say that two permutations (x1, . . . , xw) and (y1, . . . , yw) are weakly similar if

xi < xi+1 if and only if yi < yi+1 for all 1 6 i 6 w.

This notion can be equivalently defined in terms of shapes. For our purposes,

the shape of a permutation π = (x1, . . . , xw) is defined as a binary sequence s(π) =

(s1, . . . , sw−1) with elements from the set {+,−}, where si = + if and only if xi <

xi+1, i = 1, . . . , w−1. For instance, s(6, 1, 4, 3, 7, 9, 8, 2, 5) = (−,+,−,+,+,−,−,+).

Then, permutations πx = (x1, . . . , xw) and πy = (y1, . . . , yw) are weakly similar if

s(πx) = s(πy).

Let [n] = {1, 2, . . . , n} and let π be a permutation of [n], called also an n-

permutation. Two weakly similar disjoint sub-permutations of π are called weak
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twins and the length of the twins is defined as the number of elements in just one

of the sub-permutations. For example, in permutation

(6, 1 , 4 , 3, 7 , 9, 8 , 2 , 5 ),

the blue (1, 4, 2) and red (7, 8, 5) subsequences form weak twins of length 3 (with a

common shape (+,−)).

Let wt(π) denote the largest integer w such that π contains weak twins of length

w. Further, let wt(n) denote the minimum of wt(π) over all n-permutations π. In

other words, wt(n) is the largest integer w such that every n-permutation contains

weak twins of length w. Our aim is to estimate this function which, unlike its

stronger version t(n), turns out to be linear in n.

Theorem 1. For n large enough,

n

12
≤ wt(n) ≤ n

2
− Ω(n1/3). (1)

Turning to our second result, note that given a sequence s(n) of length n−1, it is

quite nontrivial to determine the number N(s(n)) of n-element permutations with

the shape s(n). Of course, there is just one permutation with a given monotone

shape, (+, . . . ,+) and (−, . . . ,−). But already for the alternating shapes, a
(n)
+ =

(+,−,+, . . . ) and a
(n)
− = (−,+,−, . . . ), this is so called André’s problem [1], which

was solved asymptotically in the 19th century and exactly, in terms of a finite sum

of Stirling numbers, only in the 21th century [15] (see also [16]).

The asymptotic formula of André says that, setting An := N(a
(n)
+ ) = N(a

(n)
− ),

An ∼ 2(2/π)n+1n!.

In other words, the probability that a random n-permutation Πn is alternating

(either way) is only ∼ 4(2/π)n+1. On the other hand, by the result of Stanley [17],

we know that a.a.s. a random n-permutation contains an alternating subsequence

of length at least ∼ 2n/3, yielding alternating twins of length at least ∼ n/3 (just

split in half a longest alternating sub-permutation in Πn). In Theorem 2 we show,

however, that a.a.s. one can get substantially longer alternating twins; on the other

hand, they are much shorter than n/2, the absolute upper bound.

To state this result, let α(π) be the largest integer w such that π contains weak

twins of length w with an alternating shape, a
(w)
+ or a

(w)
− . We will call them alter-

nating twins. Further, set αn := α(Πn), where Πn is a random n-permutation.

Theorem 2. A.a.s.(
1

3
+

1

60
+ o(1)

)
n ≤ αn ≤

(
1

2
− 1

120
+ o(1)

)
n. (2)
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We end this paper by proving that, in fact, permutations with alternating shapes

are the most popular ones. This result, not directly related to our main theorems,

may be of independent interest.

Proposition 1. For every n and every shape s(n) of length n−1, we have N(s(n)) ≤
An.

The proof of Proposition 1 can be found in Section 3.

Note. We believe that Ron Graham would like the topic of this paper. Not only was

he among those who planted the idea of twins into the combinatorial soil, but he also

wrote several papers devoted to permutations, both with and without connections to

juggling (see, for example, http://www.math.ucsd.edu/~ronspubs/ for the entire

collection of Ron’s publications).

2. Proofs of Theorems 1 and 2

2.1. Extremal Points

In our proofs a decisive role is played by local extremes. We call the element i

maximal in π if i = 1 and π(1) > π(2), or i = n and π(n− 1) < π(n), or 1 < i < n

and π(i− 1) < π(i) > π(i+ 1). By swapping all signs < and > around, we obtain

the notion of a minimal point i in π. Maximal and minimal points alternate and

are jointly referred to as extremal. The points 1 and n are always extremal. Clearly,

all extremal points of π form an alternating sequence in π. In fact, as shown by

Bóna (see [16], and [13] for a proof), it is the longest one.

Let E = {j1, . . . , jk} be the set of all extremal points in π. These points divide

the whole range [n] into monotone segments

πi = (π(ji), π(ji + 1), . . . , π(ji+1)), i = 1, . . . , k − 1, (3)

which, however, share their endpoints. For a true partition, we define

π̄i = (π(ji), π(ji + 1), . . . , π(ji+1 − 1)), i = 1, . . . , k − 2,

and leave the last one unchanged, that is, π̄k−1 = πk−1.

2.2. Weak Twins

Proof of Theorem 1, lower bound. As the extremal points themselves form an al-

ternating sub-sequence E of π, by splitting it evenly, we obtain a pair of weak

twins of length bk/2c. Thus, we may assume that k − 1 ≤ n/6, since otherwise

bk/2c ≥ k/2− 1/2 ≥ n/12 and we are done.
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Let Q1, . . . , Q` be those segments among π̄1, . . . , π̄k−1 which contain at least 4

elements each. It is easy to check that

|Q1|+ · · ·+ |Q`| ≥
1

2
n.

Indeed, otherwise we would have

n =

k−1∑
i=1

|π̄i| < 3(k − 1) +
1

2
n ≤ n,

a contradiction. All we need now is the following proposition.

Proposition 2. One can find weak twins in Q1 ∪ · · · ∪Q` of length at least

1

2

∑̀
i=1

|Qi| − `.

Before proving the proposition, let us finish the proof of the lower bound in (1).

By Proposition 2, there is in π a pair of weak twins of length

1

2

∑̀
i=1

|Qi| − ` ≥
1

4
n− (k − 1) ≥ 1

4
n− 1

6
n =

n

12
.

Proof of Proposition 2. We begin with the following observation. We say that weak

twins (A,B), whereA = (π(i1), . . . , π(ik)), i1 < · · · < ik, andB = (π(j1), . . . , π(jk)),

j1 < · · · < jk, are aligned upward, respectively, downward if the two right-most ele-

ments of A and the two right-most elements of B interwind and form a monotone

sub-sequence, that is, jk−1 < ik−1 < jk < ik and π(jk−1) < π(ik−1) < π(jk) <

π(ik), or, respectively, π(jk−1) > π(ik−1) > π(jk) > π(ik).

Claim 1. Let (A,B) be aligned weak twins in π and let Q = (π(m1), . . . , π(ms)),

s ≥ 4, be a monotone sub-sequence of π completely to the right of (A,B), that is,

m1 > ik. Then one can extend (A,B) to a new pair of aligned weak twins (A′, B′)

which contains all elements of A,B and Q except for at most 2 elements. The lost

elements are either all from Q (the first or the last or both) or one from Q (the last

one) and one from A (the last one).

Proposition 2 follows quickly from the above claim. Indeed, by its repeated

applications, beginning with selecting a pair of aligned weak twins (A1, B1) within

Q1 (here we lose one element in the case when |Q1| is odd), we recursively construct

the desired object losing along the way at most 1 + 2(`− 1) < 2` elements.
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Figure 1: Extending twins in the proof of Claim 1 with increasing Q.

Proof of Claim 1. Without loss of generality, assume that the weak twins (A,B)

are aligned upward. However, with respect to Q, we have to consider both cases of

its monotonicity. We first assume that Q is increasing.

We are going to examine 4 cases of how the two bottom values in Q position

themselves with respect to the two top ones in (A,B) (see Figure 1). Set a = π(ik),

ā = π(ik−1), b = π(jk), b̄ = π(jk−1), and qi = π(mj), j = 1, 2, . . . , s. Recall that

b̄ < ā < b < a.

Case 1: q1 < b, q2 < a. We extend A and B as follows:

A′ = A, q2, q4, . . . , B′ = B, q1, q3, . . . .

If s is odd, the point qs is not used (we say it is lost). Note that due to the order

of q1, q2, q3, q4, the new pair (A′, B′) is indeed aligned.
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qs
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Figure 2: Extending twins in the proof of Claim 1 with decreasing Q.

Case 2: q1 < b < a < q2. Here we set

A′ = A, q3, q5, . . . , B′ = B, q2, q4, . . . .

We definitely lose q1 and, if s is even, we also lose qs. For s = 4 or s = 5, the last

4 points of (A′, B′) are thus b, a, q2, q3, which are aligned upward. If s ≥ 6, then

(A′, B′) is aligned as well.

Case 3: q1 > b, q2 > a. This case is very similar to Case 1, so we omit the details.

Case 4: b < q1 < q2 < a. This is the only case when we lose a point of (A,B). Let

A− denote the sub-sequence A without the last element, a. We set

A′ = A−, q1, q3, . . . , B′ = B, q2, q4, . . . .

Besides a, we may also lose qs, provided s is even. Observe that for s = 4, b, q1, q2, q3
are aligned upward. This exhaust the case when Q is increasing.

For decreasing Q, there are also 4 cases to examine. However, three of them,

namely, (i) a > q1, b > q2, (ii) q1 > a > b > q2, and (iii) q1 > a, q2 > b are

very similar to those for increasing Q, so we leave them for the reader. The only

somewhat different case is when (iv) a > q1 > q2 > b (see Figure 2). Then, denoting

by B− the sub-sequence B without its last element, b, we set

A′ = A, q2, q4, . . . , B′ = B−, q1, q3, . . . .

Besides b, we may also lose qs, provided s is even. Finally, observe that for s = 4,

a, q1, q2, q3 are aligned downward, though with the roles of A′ and B′ switched

(which does not really matter to us; formally we should swap A′ and B′ around).

Proof of Theorem 1, upper bound. We are going to construct a permutation π on

[n], n large enough, with no weak twins longer than n/2 − cn1/3 for some c > 0.
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This permutation will consist of k′ ≤ k := dn1/3e consecutive increasing segments

P1, . . . , Pk′ with maxPi+1 < minPi, of diminishing lengths which have to be chosen

carefully. For i = 1, . . . , k, set

xi = 2k2 − 2(i− 1)k − 1.

Note that for all i = 1, . . . , k, xi > 0 and xi is an odd integer. Moreover,

k∑
i=1

xi = 2k3 − 2k

(
k

2

)
− k = k3 + k2 − k > n.

Let k′ = min{j :
∑j

i=1 xi ≥ n}. Then we set |Pi| = xi, i = 1, . . . , k′ − 1, and

|Pk′ | = n−
∑k′−1

i=1 xi. Since
∑k

i=1 xi = n+O(k2), with a big margin we have, say,

k′ ≥ 0.99k. Also, what is crucial here, for all i = 1, . . . , k′−1, we have xi−xi+1 ≥ 2k,

in fact, with equality except for i = k′ − 1.

So, we define π = (P1, . . . , Pk′) in the following manner. We set

π(1) = n− x1 + 1, π(2) = n− x1 + 2, . . . , π(x1) = n and A1 = (π(1), . . . , π(x1)).

Then we dip down and set

π(x1 + 1) = n− x1 − x2 + 1, π(x1 + 2) = n− x1 − x2 + 2, . . . , π(x1 + x2) = n− x1

and

A2 = (π(x1 + 1), . . . , π(x1 + x2)),

and so on, and so forth.

We now state a proposition from which the desired bound follows quickly.

Proposition 3. Let (A,B) be weak twins in the permutation π defined above of

length |A| = |B| ≥ n/2− k/3. Then, for all 1 ≤ i < k′, we have |A∩Pi| = |B ∩Pi|.

Before proving the proposition, let us finish the proof of the upper bound in

Theorem 1. Suppose there is in π a pair of weak twins of length at least n/2− k/2.

Since for all 1 ≤ i < k′, |Pi| is odd, in view of Proposition 3, at least one point of

each such Pi is missing from (A,B). Hence,

|A| = |B| ≤ n/2− (k′ − 1)/2 ≤ n/2− (0.99k − 1)/2 < n/2− k/3,

a contradiction.

Proof of Proposition 3. We proceed by (strong) induction on i = 1, . . . , k′ − 1. Let

us start with the base case i = 1. Since at most 2k/3 points of π are not in A ∪B,

while |P1| > 2k/3, without loss of generality, A ∩ P1 6= ∅. It suffices to prove that

also B ∩ P1 6= ∅, since then, due to the fact that the rest of π lies totally below P1,
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A and B must have the same number of elements in P1. Suppose to the contrary

that B ∩ P1 = ∅. But then

|A ∩ P1| ≥ |P1| −
2

3
k > |P2| > |P3| > · · · ,

so A begins with a longer increasing segment than B does, a contradiction with the

notion of weak twins.

For the induction step, which is similar to the base step, assume that |A∩Pj | =
|B ∩ Bj |, for j = 1, . . . , i ≤ k′ − 2. If |A ∩ Pi+1| = |B ∩ Bi+1| = 0, then we are

done. Without loss of generality, assume that |A ∩ Pi+1| > 0. As before, it suffices

to show that also |B ∩ Pi+1| > 0. Suppose otherwise. Then, since at most 2k/3

points of π are not in A ∪B, we have

|A ∩ Pi+1| ≥ |Pi+1| −
2

3
k > |Pi+2| > · · · .

This means, however, that A and B will differ in the length of the first increasing

segment commencing to the right of the point
∑i

j=1 xj . This yields a contradiction

with (A,B) being weak twins and completes the proof.

2.3. Alternating Weak Twins

Recall that the extremal points of π form an alternating sub-sequence. In the

proof of the lower bound in Theorem 2, we are going to use this fact and then

reiterate it for the sub-permutation π′ obtained from π by removing all the extremal

points of π. As a crucial tool we invoke the Azuma-Hoeffding inequality for random

permutations (see, for example, Lemma 11 in [10] or Section 3.2 in [14]).

Theorem 3. Let h(π) be a function of n-permutations such that if permutation π2
is obtained from permutation π1 by swapping two elements, then |h(π1)−h(π2)| ≤ 1.

Then, for every η > 0,

P(|h(Πn)− E[h(Πn)]| ≥ η) ≤ 2 exp(−η2/(2n)).

Proof of Theorem 2, lower bound. We are going to show that extremal points are

evenly distributed in both ‘halves’ of Πn. For mere convenience, we assume that n

is even.

Let X1 and X2 be the numbers of extremal points in Πn among, respectively,

{1, . . . , n/2} and {n/2 + 1, . . . , n}. Note that the probability that a given point i,

2 ≤ i ≤ n− 1, is extremal is 2× 1
3 = 2

3 . Thus,

E(X1) = E(X2) = 1 +
(n

2
− 1
)
× 2

3
=
n+ 1

3
.

Now we apply Theorem 3 to show that this expectation is highly concentrated

about its mean. To verify the Lipschitz assumption, note that if π2 is obtained
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π(i)

π(i+ 1)

π(i+ 2)

π(i+ 3)

π(i+ 4)

π(i+ 5)

(a)

π(i)

π(i+ 1)

π(i+ 2)

π(i+ 3)

π(i+ 4)

π(i+ 5)

(b)

π(i)

π(i+ 1)

π(i+ 2)

π(i+ 3)

π(i+ 4)

π(i+ 5)

(c)

π(i)

π(i+ 1)

π(i+ 2)

π(i+ 3)

π(i+ 4)

π(i+ 5)

(d)

Figure 3: Lucky sixes. The blue points appear in π′ as consecutive ones.

from a permutation π1 by swapping any two of its elements, then trivially |Xj(π1)−
Xj(π2)| ≤ 6, j = 1, 2. (A detailed analysis shows that 6 can be replaced by 4 which

is optimal.) Consequently, Theorem 3 applied with h(π) = Xj(π)/6 and η = n3/5

implies

P(|Xj(Πn)− E[Xj(Πn)]| ≥ n3/5) = o(1)

implying that a.a.s. Xj = (1 + o(1))n
3 , j = 1, 2.

It is quite hard to characterize the extremal points of π′. Unable to do so, we

instead identify a 6-point configuration in π which contains an extremal point of

π′. A 6-tuple {i, i+ 1, i+ 2, i+ 3, i+ 4, i+ 5}, 1 ≤ i ≤ n− 5, is called a lucky six if

π(i) < π(i+ 1) < π(i+ 2) < π(i+ 3) > π(i+ 4) > π(i+ 5) and π(i+ 2) > π(i+ 4),

or when all signs < and > are swapped. It should be clear that in a lucky six

i + 3 is an extremal point of π and, most importantly, i + 2 is an extremal point

in π′. Of course, the same property is enjoyed by the symmetrical structures where

π(i) < π(i+ 1) < π(i+ 2) > π(i+ 3) > π(i+ 4) > π(i+ 5) and π(i+ 1) < π(i+ 3)

(and, again, with signs < and > swapped). So, we also call them lucky sixes. See

Figure 3 for all 4 types of lucky sixes.

Let Y1 and Y2 be the numbers of lucky sixes {i, i + 1, i + 2, i + 3, i + 4, i + 5}
in Πn for, respectively, 1 ≤ i ≤ n/2 − 3 and n/2 − 1 ≤ i ≤ n − 5. Note that the

probability that a given 6-tuple is a lucky six is

4×
(
4
2

)
6!

=
1

30
.
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Indeed, considering, for instance, the number of ways to label by 1, . . . , 6, the lucky

six in Figure 3(a), there is no question that 6 must be at the top, while 5 to its left.

The remaining 4 values can be, however, distributed freely between the two pairs,

i, i+ 1 and i+ 4, i+ 5. This explains
(
4
2

)
. Thus,

E(Y1) = E(Y2) ∼ n

60
.

Again, a standard application of the Azuma inequality (Theorem 3) yields that

a.a.s. Yj = (1 + o(1)) n
60 , j = 1, 2.

Let Aj , j = 1, 2, be the alternating sub-sequences in, respectively, {1, . . . , n/2}
and {n/2 + 1, . . . , n}, consisting of the extremal points of Πn. Further, let Bj , j =

1, 2, be alternating sub-sequences in, respectively, {1, . . . , n/2} and {n/2+1, . . . , n},
consisting of the extremal points of Π′n. By losing at most one point each, one can

concatenate Aj with B3−j , j = 1, 2, obtaining the desired pair of alternating twins.

Noting that |Aj ∪B3−j | ∼ n
3 + n

60 completes the proof of the lower bound in (2).

Proof of Theorem 2, upper bound. For the proof of the upper bound we need to

consider two kinds of special 5-tuples. A 5-tuple {i, i+ 1, i+ 2, i+ 3, i+ 4} is called

cornered if either the first or the last four consecutive points form a monotone sub-

sequence but all five do not (see Figure 4). A 5-tuple {i, i + 1, i + 2, i + 3, i + 4}
is called crooked if the three middle points form a monotone sub-sequence but no

four points do (see Figure 5). Given a permutation π, let e(π) be the number

of extremal points in π, and let co(π) and cr(π) be, respectively, the number of

cornered 5-tuples and the number of crooked 5-tuples in π. The following crucial

lemma sets an upper bound on the number of elements in two disjoint alternating

sub-sequences of π in terms of the three defined above parameters.

Lemma 1. Let A and B be two disjoint alternating sub-sequences in a permutation

π of [n]. Then

|A|+ |B| ≤ e(π) + co(π) + cr(π). (4)

Deferring the proof of Lemma 1 for later, we now deduce from it the upper bound

in (2). Let L count the cornered 5-tuples in the random permutation Πn and let

Z count the crooked 5-tuples in Πn. Note that the probability that a given 5-tuple

is cornered is 4×
(
4
3

)
/5! = 8

60 and so, E(L) = 8
60 × (n− 4). Note also the that the

probability that a given 5-tuple is crooked is 2 × 11
5! = 11

60 (see Figure 6) and so,

E(W ) = 11
60 × (n − 4). Another application of the Azuma inequality (Theorem 3)

yields that a.a.s. L = (1 + o(1)) 8n
60 , while Z = (1 + o(1)) 11n

60 . Plugging into (4), we

finally obtain that

αn ≤
1

2
(1 + o(1))

(
2

3
+

8

60
+

11

60

)
n =

(
1

2
− 1

120
+ o(1)

)
n.
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π(i)

π(i+ 1)

π(i+ 2)

π(i+ 3)

π(i+ 4) π(i)

π(i+ 1)

π(i+ 2)

π(i+ 3)

π(i+ 4)

π(i)

π(i+ 1)

π(i+ 2)

π(i+ 3)

π(i+ 4) π(i)

π(i+ 1)

π(i+ 2)

π(i+ 3)

π(i+ 4)

Figure 4: Cornered 5-tuples.

π(i)

π(i+ 1)

π(i+ 2)

π(i+ 3)

π(i+ 4) π(i)

π(i+ 1)

π(i+ 2)

π(i+ 3)

π(i+ 4)

Figure 5: Crooked 5-tuples.

It remains to prove Lemma 1.

Proof of Lemma 1. Let A and B be given as in the lemma. Let E be the set

of extremal points in π and F the set of points neighboring the extremal points

but not extremal themselves. We are going to construct an injective mapping

φ : A ∪B → E ∪ F . Then, noting that |F | = co(π) + cr(π), completes the proof.

Let j1, . . . , jk be all extremal points in π. These points divide the whole range

[n] into monotone segments defined in (3) which we now express in terms of the

numbers of their inner points `i:

πi = (π(ji), π(ji + 1), . . . , π(ji + `i), π(ji+1))

i = 1, . . . , k− 1. Note that `i can equal 0. Before constructing the desired mapping

φ, let us examine the distribution of the set A∪B among the segments πi. Our first

observation is that each segment contains at most two elements of A and at most

two elements of B. Moreover, if πi contains exactly two elements of A, then one of

them is a minimal element of A and the other – a maximal element of A, and the



INTEGERS: 21A (2021) 13

π(1) = 5

π(4) = 4

(a)

π(2) = 1

π(4) = 5

(b)

π(2) = 2

π(4) = 5

π(5) = 1

(c)

Figure 6: (a) If π(1) = 5, then π(4) = 4 and the remaining number of choices is
(
3
2

)
.

(b) If π(4) = 5 and π(2) = 1, then we have 3! choices. (c) Finally, if π(4) = 5 and
π(5) = 1, then there are 2! remaining choices.

same is true for B. But most crucial is the following property concerning a pair of

consecutive segments πi and πi+1. If ji+1 is maximal, respectively, minimal in π,

then there is in total at most one maximal, resp., minimal element of A on these

segments.

Knowing all this, it is easy to see that the following construction is, indeed, an

injection. If πi is increasing, then to the maximal elements of A ∪ B lying on πi,

assign the top-most two elements of πi, that is, to π(ji + `i), π(ji+1), in any feasible

fashion. While to the minimal elements of A ∪B lying on πi assign the two down-

most elements of πi, that is, to π(ji), π(ji + 1). If πi is decreasing, we proceed

similarly, but with the pairs π(ji + `i), π(ji+1) and π(ji), π(ji + 1) swapped.

3. Proof of Proposition 1

Given a sequence s = (s1, . . . , sr) with si ∈ {+,−} and a linearly ordered set S

of size |S| = r + 1, denote by NS(s) the set of all permutations π of S with the

shape s(π) = s. If S = [r + 1], then we abbreviate N (s) := N[r+1](s). Further,

let NS(s) = |NS(s)|. Observe that NS(s) does not depend on S, so we skip the

subscript S altogether here.

The complement of a sequence s = (s1, . . . , sr) is naturally defined as the se-

quence s̄ = (s̄1, . . . , s̄r), where {si, s̄i} = {+,−} for each i. In other words, one

replaces each + in s with −, and vice versa. It is easy to see that N(s) = N(s̄).

Recall that An = N(a
(n)
+ ) = N(a

(n)
− ). Our proof of Proposition 1 is by induction

on n and, in its final accord, utilizes the following known identity involving the

sequence An (see, for example, [16]):

n∑
k=0

(
n

k

)
AkAn−k = 2An+1. (5)
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What is more, our proof is also inspired by the idea behind the proof of (5),

which is to build a permutation of [n + 1] beginning with positioning the element

n+ 1, and then separately counting the completions to the left and to the right of

it. Also, as the R-H-S of (5) is a double of what we want, we are doomed to count

in permutations with the complementary shape as well.

Proof of Proposition 1. For n ≤ 3, the proposition follows by inspection. Fix n ≥ 3

and assume it is true for all n′ ≤ n. Given a shape s(n+1) := s = (s1, . . . , sn) our

goal is to show that N(s) ≤ An+1.

For each k = 0, 1, . . . , n, let Nk(s) = {π ∈ N (s) : π(k + 1) = n+ 1}. As n+ 1 is

always a maximum element of π, we haveNk(s) 6= ∅ if and only if sk = + and sk+1 =

−. Thus, setting K∧ = {k : sk = + and sk+1 = −}, we have N (s) =
⋃

k∈K∧ Nk(s),

and, as the sets under the union are obviously disjoint, N(s) =
∑

k∈K∧ Nk(s),

where Nk(s) = |Nk(s)|. For a fixed k, let us focus on the number Nk(s). Every

permutation in Nk(s) consists of a ‘prefix’ u, followed by n+1, followed by a suffix v.

Introducing ‘truncated’ shapes s′k = (s1, . . . , sk−1) and s′′k = (sk+2, . . . , sn), u and v

must satisfy s(u) = s′k and s(v) = s′′k . Hence, using also the induction assumption,

Nk(s) =

(
n

k

)
N(s′k)N(s′′k) ≤

(
n

k

)
AkAn−k.

The same is true for the complementary shape s̄ as well. Recalling that N(s̄) =

N(s) and noticing that the set

{k : s̄k = + and s̄k+1 = −} = {k : sk = − and sk+1 = +} =: K∨

is disjoint from K∧, we thus conclude that

2N(s) ≤
∑

k∈K∧∪K∨

(
n

k

)
AkAn−k ≤

n∑
k=0

(
n

k

)
AkAn−k = 2An+1,

where the last equality is (5).

4. Concluding Remarks

We believe that the lower bound in Theorem 1 can be improved and it is plausible to

conjecture that wt(n) ∼ n
2 . As a matter of fact, if π happens to be an n-permutation

with e(π) = o(n), then the construction used in the proof of (1) yields wt(π) ∼ n
2 .

It is also not difficult to see that the lower bound on αn in Theorem 2 can

be improved. Let π′ be the sub-permutation obtained from π by removing all

the extremal points of π. Recall that in the proof of the lower bound (2) we
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(a) (b)

Figure 7: (a) 117 choices; (b) 105 choices.

estimated e(π′) by using the lucky six tuples. But one can also consider more

“lucky” structures. This can be done by incorporating zigzags into the lucky six

tuples as in Figure 7, for example. This already gives an improvement on the lower

bound on αn:

αn ≥
(

1

3
+

1

60
+

1

2
· 4 · 117 + 105

8!
+ o(1)

)
n.

Now we can consider longer lucky tuples (of length 10, 12, 14, ...) and use computer

to calculate the corresponding expectations. Computer simulations suggest that

αn ≥ (1/3 + 0.1006...)n.

We do not know what the exact value of the second term is here, since it is not even

clear how to compute the expected value E(e(Π′n)).

Another direction of related studies would be to consider a more general notion

of weak r-twins, defined as r pairwise disjoint subsequences of a permutation with

the same shape. One naturally expects that the analogous function wt(r)(n) should

satisfy wt(r)(n) ∼ n
r .

Finally, let us point at some natural counting problems involving the notion of

weak similarity of permutations. For instance, define, for even n, the sequence Tn
which counts all n-permutations that are weak twins of length n/2, that is, all

n-permutations that can be split into two sub-permutations with the same shape.

What is the asymptotic growth of the sequence Tn?

A related problem stems from Proposition 1. We proved there that no shape is

more represented among all permutations of length n than the alternating ones. It

follows from the proof of Proposition 1 that actually the number An is strictly big-

ger than Bn — the largest among the numbers N(s) with s being a non-alternating

sequence of length n−1. It can be shown that An/Bn ≤ 2. Indeed, by swapping the

first two elements, we see that N(b(n)) = N ′(a
(n)
+ ), where b(n) = (−,−,+,−,+, . . . )

is the shape of permutations which begin with a decreasing triple and then al-

ternate, while N ′(a
(n)
+ ) counts those alternating permutations π of length n for
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which π(2) > π(1) > π(3). In turn, swapping the first and the third element of

an alternating permutation counted by N(a
(n)
+ ) − N ′(a(n)+ ), that is, one for which

π(2) > π(3) > π(1), yields that N ′(a
(n)
+ ) ≥ 1

2An. It would be interesting to compute

limn→∞An/Bn, if it exists.

Acknowledgement. We would like to thank the anonymous referee for careful

reading and helpful suggestions. In particular, for raising the question about the

ratio An/Bn.
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[5] F. R. K. Chung, P. Erdős, R. L. Graham, S. M. Ulam, F. F. Yao, Minimal decompositions of
two graphs into pairwise isomorphic subgraphs, Congr. Numer. 23 (1979), 3–18.
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