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Abstract

Let L(G) denote the maximum number of leaves in any spanning tree of a connected
graph G. We show the (known) result that for the n-cube Qn, L(Qn) ∼ 2n =
|V (Qn)| as n → ∞. Examining this more carefully, consider the minimum size
of a connected dominating set of vertices γc(Qn), which is 2n − L(Qn) for n ≥ 2.
We show that γc(Qn) ∼ 2n/n, which rather surprisingly is no larger than the
asymptotic behavior of the domination number γ(Qn). We use Hamming codes
and an “expansion” method to construct leafy spanning trees in Qn.

1. Introduction

The n-cube graph Qn has 2n vertices, the strings a1 . . . an on n bits, where two

vertices are adjacent if and only if their strings differ in exactly one coordinate

(where one vertex has 0 and the other has 1). The n-cube is frequently used as a

structure for computer networks, where there are 2n processors corresponding to

the vertices of Qn. An efficient way to connect all of the processors, so that they

all communicate with each other, is to take a spanning tree in Qn.

With this in mind, S. Bezrukov imagined it would be interesting to construct such

spanning trees with many leaves (degree one vertices). At the IWOCA conference

(Duluth, 2014), Bezrukov proposed the following problem: Letting L(G) denote the

maximum number of leaves in any spanning tree of a connected simple graph G,

what can one say about L(Qn)? He shared this problem in notes [2].

For a spanning tree, the non-leaf vertices are connected, so form a tree themselves,

which we may think of as the backbone of the tree: All vertices are either in this

backbone, or are leaves adjacent to it. Bezrukov’s question then is equivalent to

constructing a spanning tree of the hypercube with the smallest backbone.

Notice that the opposite question, finding the minimum number of leaves in a

spanning tree, is easy: By a simple induction Qn has a Hamilton path for all n ≥ 1.

This path is a spanning tree with just two leaves. We are interested in the other
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extreme, maximizing the number of leaves.

Our problem is closely related to the subject of domination in graphs. A subset

W of the vertex set V of a graph G = (V,E) is a dominating set if every vertex is

either in W or adjacent to some vertex in W . The domination number γ(G) is the

minimum size of any dominating set.

Note that if one pulls off the leaves from a spanning tree T for a connected

graph G = (V,E) with at least three vertices, then the remaining vertices W form

a dominating set, and, moreover, what remains of T still connects them. That is,

W forms a connected dominating set. Conversely, from any connected dominating

set we can span them with a tree and attach any other vertices as leaves to obtain

a spanning tree. The minimum size of a connected dominating set of G is called

the connected domination number γc(G).

We see that maximizing the number of leaves of any spanning tree of such G cor-

responds to minimizing the size of a connected dominating set. From this discussion

we obtain for such G

L(G) + γc(G) = |V (G)|.

The simple ordering relationship between these parameters is

1 ≤ γ(G) ≤ γc(G) ≤ |V |.

For example, one can readily check that for the four-cycle Q2, γ = γc = L = 2,

while for the ordinary cube Q3, γ = 2, γc = L = 4. For larger n more than half the

vertices can be leaves.

The earliest paper we can find that investigates the connected domination number

of a graph is by Sampathkumar and Walikar (1979) [15]. Several studies investigate

bounding L(G) for classes of graphsG, such as those with given minimum degree [16,

8, 12, 9]. Caro et al. [3] study both parameters, and provide more references. Many

papers concern algorithms for finding leafy trees (or small connected dominating

sets).

Searching online we discovered several papers concerning domination in hyper-

cubes. These were often done independently of other studies. The 1990 dissertation

of Jha [10] gives a good general upper bound on γ(Qn), which is just twice the easy

lower bound. Arumugam and Kala [1] (1998) focus on domination in hypercubes.

Duckworth et al. [6](2001) give good general bounds on L(Qn). It follows that

L(Qn) ∼ 2n. It means asymptotically there is a spanning tree for the hypercube in

which almost all vertices are leaves. It is nicer to restate their results in terms of

connected domination:

Theorem 1. [6]

• Lower bound: For n ≥ 2, γc(Qn)
2n ≥ 1

n

• Upper bound: As n→∞, γc(Qn)
2n ≤ (1 + o(1)) 2

n
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Another 2012 study of hypercubes [4] gives values of γc(Qn) for small n, but

unfortunately its formula for general n, stated without proof, is far from correct.

Mane and Waphare [14] investigate several generalizations of domination numbers

of hypercubes. The 2017 Master’s thesis of Kuboň [13] considers domination in

hypergraphs, and uses some of the same methods as in this paper.

In the next section, we present simple general lower bounds on γ(Qn) and γc(Qn).

In Section 3 we describe the Hamming code construction that gives a “perfect

dominating set” for Qn when n is of the form 2k− 1. We give a method to produce

a small connected dominating set, given a dominating set, that leads to an upper

bound on γc(Qn) for n = 2k − 1. A simple inductive method we call doubling is

used to give upper bounds on γ(Qn) and γc(Qn) for general n in Section 4.

Where we make new progress is by introducing in Section 5 a new method we

call expansion, in which we take a minimum dominating set in each of 2j copies

of QN and connect them appropriately to obtain a small connected dominating set

in Qn, where n = N + j. Choosing N and j wisely improves the best previous

upper bound on γc(Qn) by a factor of 2. Indeed, in Section 6 we settle the leading

asymptotic behavior of γc(Qn):

Theorem 2. As n→∞, γc(Qn)
2n = (1 + o(1)) 1

n .

Restating this in terms of the maximum number of leaves, it means

L(Qn) = (1− 1

n
+ o(

1

n
))2n.

We conclude with suggestions for further study and acknowledgements of valuable

ideas and support of this project.

2. Domination Lower Bounds

Let us note some easy lower bounds on our domination parameters for the hypercube

Qn.

Proposition 1. • For n ≥ 1, γ(Qn) ≥ 2n/(n+ 1).

• For n ≥ 2, γc(Qn) ≥ (2n − 2)/(n− 1) ≥ 2n/n.

Proof. A single vertex can dominate at most itself and its n neighbors, leading to

the lower bound on γ(Qn).

Next, consider a connected dominating set of Qn of size c. There is a tree T on

these c vertices using c − 1 edges from Qn. The sum of degrees of these c vertices

has 2c − 2 accounted for by T . It means that the number of additional vertices

(dominated by those in T ) is at most nc − 2(c − 1). But there are 2n − c vertices

besides T . Rearranging terms gives the stated inequality on c, hence the lower

bounds on γc(Qn).
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3. Hamming Code

The famous Hamming code gives an elegant construction of a “perfect dominating

set” in Qn when n = 2k − 1 for some integer k ≥ 1. This means it achieves the

lower bound on γ(Qn) in Proposition 1. Viewing the vertices of Qn for such an n

as n-dimensional vectors over GF (2), the code consists of the 2n−k vectors in the

row space of a (n− k)×n matrix built as follows: The first n− k columns form the

identity matrix, while the rows of the other k columns consist of all n−k = 2k−k−1

vectors of length k with weight (number of ones) at least 2. The difference between

any two vectors in this row space is then a nonzero vector in the row space, and

hence a nonempty sum of rows of the matrix. By design, such a sum will always

have weight at least three.

Consequently, the 2n−k stars in Qn that are centered at the vectors in the row

space are disjoint. Each star is a K1,n. By counting, we see that these stars partition

the vertices of Qn. They form a minimum dominating set for Qn.

As Bezrukov pointed out when he proposed his problem about L(Qn), for such n

we only have to add some edges between leaves of different stars to obtain a spanning

tree with many leaves. After all, Qn is connected, and all edges not used in the

stars are between leaves of stars (different stars, in fact). If we have c components,

we need to add c − 1 edges to obtain a spanning tree; here, c = 2n−k. At worst,

each additional edge costs us two new leaves–it would be less, if we are able to use

several edges from the same leaf. When we finish, we have a spanning tree where

the non-leaves are the c star centers from the Hamming code, as well as at most

2c− 2 vertices that were star leaves.

In fact, we can use this method for any connected simple graph G to build a

spanning tree. Starting from a minimum dominating set of c vertices, the stars

centered at those vertices cover the entire vertex set (though in general they are

not disjoint, and dominating vertices could even be adjacent). One can add at most

c− 1 edges between stars to create a spanning tree. We obtain this general bound:

Proposition 2. Let G be a connected simple graph. Then

γc(G) ≤ 3γ(G)− 2.

Applying this to our Hamming code construction, we obtain

Proposition 3. Let n = 2k − 1, where the integer k ≥ 1. Then γ(Qn) = 2n−k =

2n/(n+ 1), and γc(Qn) < (3/(n+ 1))2n.

For this Hamming code case n = 2k − 1 our tree construction can be viewed

this way: Starting from a perfect dominating set in Qn, we take the corresponding

C = 2n/(n + 1) stars K1,n and add C − 1 edges to form a tree with many leaves.

Since all edges for the star centers are used already, each edge we add will join leaves

from two different stars. At worst, we give up 2(C − 1) star leaves (they become
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part of the tree backbone), plus the backbone contains the C star centers. This

gives us a connected dominating set of size at most 3C − 2 ∼ 3(2n/n).

If we are fortunate, we don’t have to pick two new leaves for each successive

additional edge: It could be that one or both leaves are already in the backbone.

However, for each of the C stars we must give up at least one leaf, in order that the

stars connect in the spanning tree. It means that the connected dominating set we

construct will have at least 2C ∼ 2(2n/n) vertices.

4. Doubling

So far, we have constructed leafy trees in the n-cube only when n has the special

form 2k − 1. One can view the (n + 1)-cube Qn+1 as consisting of two copies of

Qn along with a matching in which each vertex of one Qn is on an edge with its

corresponding vertex in the other Qn. This is true for any value of n, not just the

special values where the Hamming code exists.

If we take a dominating set for each copy of Qn, we get a dominating set for

Qn+1. Moreover, if we take the same connected dominating set for each copy, it

gives a dominating set for Qn+1 that is connected. We see this simply by adding

the edge joining the two copies of a vertex in the connected dominating set for Qn.

We record these observations about doubling next.

Proposition 4. For all n ≥ 1, γ(Qn+1) ≤ 2γ(Qn), and γc(Qn+1) ≤ 2γc(Qn).

Now suppose n is between two consecutive values where the Hamming code

construction is the last section applies, say n = N + j, where k ≥ 1, N = 2k − 1,

and 0 ≤ j ≤ 2k. We apply the doubling proposition j times, starting from QN , and

obtain:

γ(Qn) ≤ 2j
2N

N + 1
=
N + j

N + 1

2n

n
< 2

2n

n
.

It follows that

γ(Qn)/2n < 2/n→ 0,

as n→∞. This matches the bound given by Jha [10].

For connected domination we apply Proposition 2 and obtain:

γc(Qn) < 3γ(Qn) < 6
2n

n
.

It follows that
γc(Qn)

2n
<

6

n
→ 0,

as n → ∞, confirming our earlier assertion that there are spanning trees for hy-

percubes with almost all vertices being leaves. Of course, Theorem 1 got a better

bound than this on γc(Qn)/2n; Our main result will do even better.
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Let us summarize our findings so far. The domination problem for Qn is solved

by the Hamming code for n = N = 2k − 1. Then as n = N + j grows with

j, 0 ≤ j ≤ 2k, our upper bound on γ(Qn)/(2n/n) grows from around 1 to around

2. However, at j = 2k, we have the next Hamming code case, n = 2k+1 − 1, and

it is better to switch again to the Hamming code construction. It means we have

a sawtooth function upper bound, rising from 1 to 2 as n increases, then abruptly

dropping back down to 1 and rising again. Of course, each tooth covers an interval

of length about 2k, so the teeth get wider with k.

Owing to our upper bound Proposition 2, for connected domination γc(Qn) has

a similar sawtooth upper bound, but each tooth rises from value 3 to 6.

5. Expansion

We introduce a new method of tree construction that takes advantage of small

dominating sets to produce smaller connected dominating sets in Qn. This will

bring down our upper bound for connected domination, and eventually allow us to

solve our problem asymptotically.

For constructing a spanning tree, the Hamming code bound punished us by

potentially using up so many leaves to connect the stars. If we repeatedly double

the construction, then it repeats this penalty over and over. A better idea could

then be to select one copy (or “layer”) of the base hypercube, add edges to connect

the stellar clusters in just that layer, and then connect all the copies of each star

center to the one in the special layer.

Describing this explicitly, let N = 2k − 1, and n = N + j, where 0 ≤ j ≤ 2k.

Partition the vertices of Qn into 2j ”layers” according to the last j coordinates of

the vertices (a1, . . . , an). Each layer induces a QN , and its vertices are partitioned

into |C| = 2N−k stars, according to the Hamming code partition of QN . For each

star S in the partition of QN , there are 2j vertices, one in each layer, that are

centers of the stars corresponding to star S. The centers all agree in their first N

coordinates, so together induce a subgraph Qj . By adding 2j − 1 edges these stars

(copies of S) can be connected into a tree. We now have a forest of |C| = 2N−k

such trees.

We connect these trees by adding |C| − 1 edges, which may as well all be in the

layer ending with 0’s. Each such edge adds at most two vertices to the connected

dominating set we construct. It is similar to how we connected the stars in the

Hamming code construction. We record the result of our expansion construction:

Proposition 5. Let n = N + j, where N = 2k − 1 and 1 ≤ j ≤ 2k. Then

γc(Qn) ≤ 2j |C|+2(|C|−1), where C is the set of 2N−k codewords for the Hamming

code in QN .



INTEGERS: 21A (2021) 7

We have seen that γc(Qn)/2n ≥ 1/n for all n ≥ 2. It would be nice if we could

find a tree construction for Qn that has so many leaves that its backbone (connected

dominating set) comes close to achieving the lower bound, acting asymptotically like

a perfect dominating set: What we want is that γc(Qn)/(2n/n) → 1 as n → ∞.

Expansion allows us to come much closer to this goal. The next result is what we

can show now.

Theorem 3. For all n ≥ 1, γc(Qn)/2n < 2/n. For all n ≥ 3, γc(Qn)/2n > 1/n.

We have lim infn→∞ γc(Qn)/(2n/n) = 1.

Proof. We have n,N,K, j as above. Proposition 5 gives us

γc(Qn) ≤ 2j |C|+ 2(|C| − 1)

< (2j + 2)|C|
= (2j + 2)(2N−k)

= (2n + 2N+1)/2k.

We rewrite this as

γc(Qn)

2n/n
<

(
1 +

1

2j−1

)(
1 +

j − 1

2k

)
.

In our range 1 ≤ j ≤ 2k, the first term in the product on the right starts at 2 and

decreases exponentially quickly towards 1. The second term starts at 1 and grows

linearly to just below 2 at the end of this range. Throughout this whole range in j,

the product is at most 2, giving us the first statement of the theorem.

The second statement, the lower bound on γc(Qn)/2n, follows easily from Propo-

sition 1. For the third statement, we select values of n for which we can show

γc(Qn)/(2n/n). Specifically, given k take j = k + 1, so that n = 2k + k. Then in

the upper bound inequality above on γc(Qn)/(2n/n), both terms in the product are

small (slightly above 1), and their product → 1 as k → ∞. The lim inf statement

follows.

An interesting observation is that for n of the form 2k − 1, the Hamming code

exists, but the corresponding spanning tree construction for Qn we described ear-

lier only guarantees that γc(n)/(2n/n) is at most 3 for such n. We can do better,

constructing a tree that reduces the bound for such n to 2, by taking the Hamming

construction for 2k−1 − 1 and applying the expansion method with j = 2k−1. Nev-

ertheless, we are still seeking to do better, aiming to construct trees that bring the

bound down to 1 asymptotically.
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6. Main Result

We have shown how to construct spanning trees for hypercubes Qn with many

leaves–the proportion of the 2n vertices that are not leaves is at most roughly 2/n.

The idea is to take a Hamming code and then expand.

Now observe that the expansion idea can be used starting from any values of N ,

not just a Hamming code value 2k − 1, and from any dominating set C in QN , to

produce a connected dominating set for Qn, n = N + j: Set C gives a partition of

QN into stars. For each star center (vertex in the dominating set), add edges to

connect the 2j copies of the vertex. In the original QN add edges to connect the

stars. We now have a spanning tree for Qn. Denote by D its backbone, a connected

dominating set in Qn. We get an upper bound on |D| as in Proposition 5. Assuming

|C| is minimum-sized, we get that

γc(Qn) < (2j + 2)γ(QN ).

Given n large, let j be an integer close to log n (logarithm base 2), and take

N = n − j. Then the display above implies that γc(Qn)/(2n/n) is bounded above

approximately by γ(Qn)/(2N/N). So an upper bound function for the domination

number, shifted to the right by log n, yields an approximate upper bound function

on connected domination.

In particular, if it holds that for domination γ(Qn)/(2n/n) tends towards 1, its

lower limit, then the same will be true for the similar expression for connected

domination! Fortunately, what we need is proven in the 1997 book Covering Codes

by Cohen, Honkala, Litsyn, and Lobstein [5], p.332. They attribute the result

to Kabatyanskii and Panchenko [11] (1988). The proof relies on various coding

constructions, including q-ary Hamming codes for prime powers q. It also depends

on results on the density of primes.

We include their result on the domination number as the first part of our Main

Theorem below. It is restated for convenient comparison to our result for connected

domination number, the second part, which can be viewed as a strengthening of the

first part.

Theorem 4. The domination ratio for hypercubes satisfies [11]

lim
n→∞

γ(Qn)

2n/n
= 1.

The connected domination ratio satisfies

lim
n→∞

γc(Qn)

2n/n
= 1.

Proof. As noted above, the first statement is proven in the literature. What is new

is the second part, which is a stronger statement. Building on Theorem 3 it suffices
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to give an upper bound on γc(Qn)/(2n/n) that goes to 1 as n → ∞. As in the

discussion above, given n we take j is close to log n and N = n − j. Given ε > 0

we have that for all sufficiently large n (and N) that

γ(QN )

2N/N
< 1 + ε.

Applying this in the discussion above, gives us for all sufficiently large n that

γc(Qn)

2n/n
< (1 + ε)2,

and the second part follows.

Formulating this equivalently in terms of leaves in spanning trees, we obtain:

Corollary 1. As n→∞, L(Qn) = 2n(1− 1
n + o( 1

n )).

7. Further Study

Here are some ideas for continuing research. We were not able to give a simple

enough proof that the domination number that γ(Qn)/(2n/n)→ 1. We were hoping

to give a self-contained proof of our main result. The proof in the literature of this

domination result relies on rather technical explicit coding constructions. It would

be nice if one could devise an algorithm, or use probabilistic arguments, to prove

the existence of dominating sets in the hypercube that are as small as the theorem.

Another question asked by Bezrukov [2] is this: For n = 2k−1, starting from the

stars given by the Hamming code, can one describe nicely how to add edges to form

a tree with the most leaves (the smallest connected dominating set)? We have seen

that for large k the connected dominating set will have size between 2 and 3 times

2n/n. Noga Alon pointed out (pers. comm.) that one only has to take a minimum

connected dominating set and add to it the Hamming code to obtain a connected

dominating set that, in view of the main theorem, is of size only ∼ 2(2n/n). Still,

we ask whether one can construct a connected dominating set of size ∼ 2(2n/n),

including the Hamming code, without relying on the other known covering codes

(used in the proof of the main theorem).

What can one say about a more general class of graphs? For instance, one could

consider domination and connected domination in a generalized grid (box) graph,

such as a Cartesian product of n paths on p vertices. This graph on pn vertices is

the hypercube when p = 2. Perhaps the more natural graph to study is a product of

n cycles on p vertices. Note that for p = 4 it is the same graph as Q2n. Edenfield [7]
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studied products of cycles and products of complete graphs, both generalizations of

the hypergraph questions in this paper.

Joshua Cooper suggests considering powers of graphs. That is, for a graph G =

(V,E), such as the hypercube, fix integer r > 0 and consider the same questions as

before, but for the graph Gr: This graph also has vertex set V , but now edges join

vertices at distance at most r in G. This is motivated by covering codes of radius r.
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