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Heiko Harborth
Diskrete Mathematik, Technische Universität Braunschweig, Germany

h.harborth@tu-bs.de

Hauke Nienborg
Diskrete Mathematik, Technische Universität Braunschweig, Germany

hauke.nienborg@ewetel.net

Received: 2/24/21, Revised: 7/7/21, Accepted: 8/6/21, Published: 8/23/21

Abstract

Chess-like game boards Bn are considered, which are hexagonal parts of the Eu-
clidean tessellation of the plane by regular hexagons. For chess-like rooks on Bn

the domination number γ(n) is determined.

1. Introduction

Corresponding to a classical chessboard a hexagonal hexagon board Bn is defined

as the following hexagonal part of the Euclidean tessellation of the plane by regular
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Figure 1: Hexagonal hexagon boards.

hexagons: If B1 is one hexagon and if B2 consists of three hexagons with a common

vertex, then Bn for n ≥ 3 consists of Bn−2 together with all neighboring hexagons

of Bn−2 (see Figure 1). One may wonder whether Ronald Graham, who liked to

look at combinatorial problems for chessboards, would have liked the corresponding

problems for these hexagonal boards as well.

A rook can move on straight-line sequences of edge-adjacent hexagons, see [1], as

on straight-line sequences of edge-adjacent squares on classical chessboards. Then
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the domination number γ(n) denotes the smallest number of rooks, so that every

hexagon of Bn is either occupied or threatened. Here we want to determine γ(n).

Theorem 1. For all n ≥ 1 it holds that

γ(n) =


n
2 if n ≡ 0 (mod 4),
n+1
2 if n ≡ 1 (mod 4),

n−1
2 if n ≡ 3 (mod 4).

For the domination number of grids that threaten all neighboring hexagons on

Bn, estimates can be found in [3].

The domination number for rooks on triangular hexagon boards seems to be more

difficult to determine (see [5, 6]). The independence number β(n) corresponding

to γ(n); that is, the maximum number of pairwise not threatening rooks on Bn is

proven in [5] to be β(n) = 2dn2 e − 1.

In general, results for domination, independence, and other parameters for chess-

boards can be found in [4, 1].

2. Upper Bound

For n ≤ 3, γ(n) is easy to prove, as claimed in Theorem 1. Consider the four

B 13 B 14

B 15 B 16

Figure 2: Rook domination for n = 13, 14, 15, and 16.

consecutive boards Bn = B4t+i for i = 1, 2, 3, 4 and t ≥ 1. If the first row has
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⌊
n+1
2

⌋
hexagons at the top, then we put a first rook in row

⌊
n+5
4

⌋
at position

⌊
n+5
4

⌋
from the left and a second rook in the next row at position

⌊
n+5
4

⌋
from the right.

Vertically below the first rook,
⌊
n−1
4

⌋
further rooks are placed in the hexagons of

the rows
⌊
n+5
4

⌋
+ 2j for 1 ≤ j ≤

⌊
n−1
4

⌋
and vertically below the second rook,⌊

n
4

⌋
− 1 further rooks are placed in the hexagons of the rows

⌊
n+5
4

⌋
+ 2j + 1 for

1 ≤ j ≤
⌊
n
4

⌋
−1 (see Figure 2 for t = 3). Note that this construction is also possible

for n = 4.

Together, there are 1 +
⌊
n
4

⌋
+
⌊
n−1
4

⌋
rooks, that is, 2t + 1 = n+1

2 , 2t + 1 = n
2 ,

2t+ 1 = n−1
2 , and 2t+ 2 = n

2 rooks for i = 1, 2, 3, and 4, respectively, as claimed in

Theorem 1. Now it is easy to check that the rooks on the three families of adjacent

parallel straight lines of hexagons dominate each hexagon of Bn.

3. Lower Bound

The straight-line sequences of edge-adjacent hexagons of Bn are called x-lines if

they have x hexagons. There are three n-lines (diagonals) which, for odd n, have

the central hexagon in common and which, for even n, pairwise have one of the three

central hexagons in common. The six x-lines at the border of Bn have x = n+1
2 for

odd n and alternatingly x = n+2
2 and x = n

2 for even n, say x = n
2 at the top.

The strategy for the proofs of the lower bounds is to check all x-lines with

x = n, n− 1, n− 2, ...

(i) whether it must contain a rook,

(ii) whether it must not contain a rook, or

(iii) whether both cases containing a rook or not having a rook are to be distin-

guished.

There are two possibilities for (i):

(i)1: Since each of the assumed γ rooks from outside an x-line can threaten at most

two hexagons of the x-line and since each of p pairs of the γ rooks that threaten

one and the same hexagon threatens at most three hexagons of the x-line, it follows

that at most 2γ − p hexagons are threatened and 2γ − p < x forces a rook on the

x-line if p < x.

(i)2: If for a hexagon of an x-line the other two lines through this hexagon both

contain no rook, then a rook on this x-line is forced.

If for (ii) an x-line has a hexagon, so that one of the two other lines through the

hexagon contains a rook and so that the other line, say an y-line, has been chosen

as without a rook because of 2γ−p = y, p < y, and this hexagon is threatened only

once, then no rook on this x-line is forced.

For (iii) it must hold for the x-line 2γ − p ≥ x, p < x.
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3.1. n ≡ 3 (mod 4)

Assume that γ(n) ≤ n−3
2 . Because 2n−3

2 < n − 2, all (n − i)-lines for i ≤ 2 each

have a rook. If a rook is assumed on every (n− j)-line for j ≤ i− 1, then on every

(n− i)-line there are p = i− 1 hexagons which are threatened twice (see Figure 3).

Hence, with (i)1 and because of 2γ−p ≤ 2n−3
2 −(i−1) < n−i for i < n+1

2 it follows

Figure 3: Case i = 3 for B15.

that all (n − i)-lines must each contain a rook. Since all (n − i)-lines for i ≥ n−3
4

are required to cover all hexagons of Bn, there are at least 2i+ 1 ≥ 2n−3
4 + 1 = n−1

2

parallel x-lines, each containing a rook, contradicting γ ≤ n−3
2 .

Figure 4: All (n− t)-lines with a rook for t = 2.
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3.2. n ≡ 1 (mod 4)

For n = 4s + 1 it is assumed γ(n) ≤ n−1
2 . Because 2n−1

2 < n, every n-line must

have a rook. If all x-lines for n ≥ x ≥ n− t + 1 each contain a rook, then on each

(n− t)-line there are p = t− 1 hexagons that have already been threatened twice.

Hence, with (iii) and because of 2n−1
2 −(t−1) = n− t for t < n+1

2 , every (n− t)-line

could contain a rook or not contain a rook. Note that in the later case, only exactly

one threat is allowed for all hexagons of an (n− t)-line, except for those p = t− 1

hexagons that are twice threatened.

If there is a rook on one of the six (n− t)-lines, then each of the two neighboring

(n − t)-lines now has t doubly threatened hexagons, so that with (i)1 and because

of 2n−1
2 − t < n− t for t < n

2 these (n− t)-lines also contain a rook. Now the next

two neighboring (n− t)-lines also have t doubly threatened hexagons, so they also

must have a rook as before. Finally, the sixth (n − t)-line then has t + 1 doubly

threatened hexagons, and it must have a rook as before (see Figure 4). So if one of

the (n − t)-lines contains a rook, then all six must contain a rook. Thus there are

only two possibilities: that all (n − t)-lines have a rook and that all are without a

rook.

Now the six (n− t)-lines are supposed to be the largest that are without a rook.

??

Figure 5: Cases t = 1 and t = 2 for B13.

t = 1: In this case all (n − i)-lines for i = 0, 1, 2, ... are alternatingly with or

without a rook if i is even or odd, respectively. This is true for i = 0 and i = 1

because t = 1. If all (n − 2j − 1)-lines are without a rook (j ≥ 0) then every

(n − 2j − 2)-line is forced to have a rook because of a common hexagon together

with an (n−1)-line (without rook) and an (n−2j−1)-line (without rook) and with

(i)2. If then all (n− 2j − 2)-lines have a rook then every (n− 2j − 3)-line is forced

to be without a rook because of a common hexagon together with an (n − 1)-line

(without rook) and an (n− 2j − 2)-line (with rook) and with (ii) (see Figure 5).

Since then on every x-line with a rook hexagons occur that are threatened only
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once, all x-lines with a rook are required for a domination of all hexagons of Bn.

So there are d 4s+1
2 e = 2s + 1 = n+1

2 parallel x-lines that each have a rook in

contradiction to γ(n) ≤ n−1
2 . It can be noted that for n = 4s− 1, two x-lines, each

with a rook, are omitted, so that γ(n) = γ(4s − 1) = d 4s+1
2 e − 2 = 2s − 1 = n−1

2

could apply.

t ≥ 2: Any (n − x − t)-line for 1 ≤ x ≤ t − 1 is forced to be without a rook

because of a common hexagon together with an (n− t)-line (without rook) and an

(n− x)-line (with rook) and with (ii). Next, any (n− x− t)-line for t ≤ x ≤ 2t− 1

is forced to have a rook because of a common hexagon together with an (n− t)-line

(without rook) and an (n − x)-line (without rook) and with (i)2 (see Figure 5).

Then on the one hand any (n− 3t)-line is forced to be without a rook because of a

common hexagon together with an (n− t)-line (without rook) and an (n− 2t)-line

(with rook) and with (ii). On the other hand any (n − 3t)-line is forced to have

a rook because of a common hexagon together with an (n − t − 1)-line (without

rook) and an (n− 2t+ 1)-line (without rook) and with (i)2 (see Figure 5). This is

a contradiction and thus a domination cannot exist for n − 3t ≥ n+1
2 , that is, for

n ≥ 6t + 1. For n < 6t + 1 there are rooks on each (n − x)-line for 0 ≤ x ≤ t − 1

and for 2t ≤ x ≤ 3t− 1. Then Bn has 2(t− 1) + 1 ≥ n+1
2 rooks on parallel lines if

n ≤ 4t−3 and 2(t−1)+1+2j ≥ n+1
2 rooks on parallel lines if n ≥ 4t+2j−1, j ≥ 1.

Both cases are contradicting γ(n) ≤ n−1
2 which finishes the proof for n ≡ 1 (mod 4).

Figure 6: Two dominations for n = 11.

It can be noted that for n = 4t−1, that is, for j = 0, there are only 2(t−1)+1 =
n−1
2 rooks on parallel lines so that γ(n) = n−1

2 could apply. Together with the note

in case t = 1 there are only two possibilities for γ(n) = n−1
2 if n ≡ 3 (mod 4) both

of which are similar by a factor of 2. Then all maximum independences of rooks

for the triple threatened hexagons determine all minimum dominations of rooks for

Bn (see Figure 6). This gives the following.
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Corollary 1. For n ≡ 3 (mod 4), all minimum dominations with rooks on Bn are

determined by all maximum independences with rooks on B(n−1)/2.

3.3. n ≡ 0 (mod 2)

Assume that γ(n) < n
2 . Then 2(n

2 −1) < n−1 implies that all (n− i)-lines for i ≤ 1

must have a rook. If a rook is assumed on every (n − j)-line for j ≤ i − 1, then

on the six (n− i)-lines there are alternatingly p = i and p = i− 2 hexagons which

are threatened twice (see Figure 7). With (i)1 and because of 2n−2
2 − i < n− i for

Figure 7: Case i = 3 for B12.

i < n
2 those three (n− i)-lines with i doubly threatened hexagons also must contain

a rook. Then the three remaining (n− i)-lines also each have p = i hexagons which

are threatened twice (see Figure 7) and as before these (n− i)-lines also must have

a rook. Now all (n− i)-lines for i ≥ bn4 c are needed to cover all hexagons of Bn so

that there are at least 2i+ 1 ≥ 2bn4 c+ 1 ≥ n
2 parallel lines, each containing a rook,

contradicting γ(n) < n
2 . This completes the proof of Theorem 1.

It has to be remarked that after the submission it was noticed that in [2] the

domination number has already been determined, but only for odd n and with a

completely different proof. The rooks are referred to as queens in [2], although

queens should be able to move in six directions.
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