ROOK DOMINATION ON HEXAGONAL HEXAGON BOARDS

Heiko Harborth
Diskrete Mathematik, Technische Universität Braunschweig, Germany
h.harborth@tu-bs.de
Hauke Nienborg
Diskrete Mathematik, Technische Universität Braunschweig, Germany
hauke.nienborg@ewetel.net

Received: 2/24/21, Revised: 7/7/21, Accepted: 8/6/21, Published: 8/23/21

Abstract

Chess-like game boards B_{n} are considered, which are hexagonal parts of the Euclidean tessellation of the plane by regular hexagons. For chess-like rooks on B_{n} the domination number $\gamma(n)$ is determined.

1. Introduction

Corresponding to a classical chessboard a hexagonal hexagon board B_{n} is defined as the following hexagonal part of the Euclidean tessellation of the plane by regular

Figure 1: Hexagonal hexagon boards.
hexagons: If B_{1} is one hexagon and if B_{2} consists of three hexagons with a common vertex, then B_{n} for $n \geq 3$ consists of B_{n-2} together with all neighboring hexagons of B_{n-2} (see Figure 1). One may wonder whether Ronald Graham, who liked to look at combinatorial problems for chessboards, would have liked the corresponding problems for these hexagonal boards as well.

A rook can move on straight-line sequences of edge-adjacent hexagons, see [1], as on straight-line sequences of edge-adjacent squares on classical chessboards. Then
the domination number $\gamma(n)$ denotes the smallest number of rooks, so that every hexagon of B_{n} is either occupied or threatened. Here we want to determine $\gamma(n)$.

Theorem 1. For all $n \geq 1$ it holds that

$$
\gamma(n)= \begin{cases}\frac{n}{2} & \text { if } n \equiv 0(\bmod 4) \\ \frac{n+1}{2} & \text { if } n \equiv 1(\bmod 4) \\ \frac{n-1}{2} & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

For the domination number of grids that threaten all neighboring hexagons on B_{n}, estimates can be found in [3].

The domination number for rooks on triangular hexagon boards seems to be more difficult to determine (see $[5,6]$). The independence number $\beta(n)$ corresponding to $\gamma(n)$; that is, the maximum number of pairwise not threatening rooks on B_{n} is proven in [5] to be $\beta(n)=2\left\lceil\frac{n}{2}\right\rceil-1$.

In general, results for domination, independence, and other parameters for chessboards can be found in $[4,1]$.

2. Upper Bound

For $n \leq 3, \gamma(n)$ is easy to prove, as claimed in Theorem 1. Consider the four

Figure 2: Rook domination for $n=13,14,15$, and 16 .
consecutive boards $B_{n}=B_{4 t+i}$ for $i=1,2,3,4$ and $t \geq 1$. If the first row has
$\left\lfloor\frac{n+1}{2}\right\rfloor$ hexagons at the top, then we put a first rook in row $\left\lfloor\frac{n+5}{4}\right\rfloor$ at position $\left\lfloor\frac{n+5}{4}\right\rfloor$ from the left and a second rook in the next row at position $\left\lfloor\frac{n+5}{4}\right\rfloor$ from the right. Vertically below the first rook, $\left\lfloor\frac{n-1}{4}\right\rfloor$ further rooks are placed in the hexagons of the rows $\left\lfloor\frac{n+5}{4}\right\rfloor+2 j$ for $1 \leq j \leq\left\lfloor\frac{n-1}{4}\right\rfloor$ and vertically below the second rook, $\left\lfloor\frac{n}{4}\right\rfloor-1$ further rooks are placed in the hexagons of the rows $\left\lfloor\frac{n+5}{4}\right\rfloor+2 j+1$ for $1 \leq j \leq\left\lfloor\frac{n}{4}\right\rfloor-1$ (see Figure 2 for $t=3$). Note that this construction is also possible for $n=4$.

Together, there are $1+\left\lfloor\frac{n}{4}\right\rfloor+\left\lfloor\frac{n-1}{4}\right\rfloor$ rooks, that is, $2 t+1=\frac{n+1}{2}, 2 t+1=\frac{n}{2}$, $2 t+1=\frac{n-1}{2}$, and $2 t+2=\frac{n}{2}$ rooks for $i=1,2,3$, and 4 , respectively, as claimed in Theorem 1. Now it is easy to check that the rooks on the three families of adjacent parallel straight lines of hexagons dominate each hexagon of B_{n}.

3. Lower Bound

The straight-line sequences of edge-adjacent hexagons of B_{n} are called x-lines if they have x hexagons. There are three n-lines (diagonals) which, for odd n, have the central hexagon in common and which, for even n, pairwise have one of the three central hexagons in common. The six x-lines at the border of B_{n} have $x=\frac{n+1}{2}$ for odd n and alternatingly $x=\frac{n+2}{2}$ and $x=\frac{n}{2}$ for even n, say $x=\frac{n}{2}$ at the top.

The strategy for the proofs of the lower bounds is to check all x-lines with $x=n, n-1, n-2, \ldots$
(i) whether it must contain a rook,
(ii) whether it must not contain a rook, or
(iii) whether both cases containing a rook or not having a rook are to be distinguished.

There are two possibilities for (i):
$(i)_{1}$: Since each of the assumed γ rooks from outside an x-line can threaten at most two hexagons of the x-line and since each of p pairs of the γ rooks that threaten one and the same hexagon threatens at most three hexagons of the x-line, it follows that at most $2 \gamma-p$ hexagons are threatened and $2 \gamma-p<x$ forces a rook on the x-line if $p<x$.
$(i)_{2}$: If for a hexagon of an x-line the other two lines through this hexagon both contain no rook, then a rook on this x-line is forced.
If for (ii) an x-line has a hexagon, so that one of the two other lines through the hexagon contains a rook and so that the other line, say an y-line, has been chosen as without a rook because of $2 \gamma-p=y, p<y$, and this hexagon is threatened only once, then no rook on this x-line is forced.
For (iii) it must hold for the x-line $2 \gamma-p \geq x, p<x$.

3.1. $\mathrm{n} \equiv 3(\bmod 4)$

Assume that $\gamma(n) \leq \frac{n-3}{2}$. Because $2 \frac{n-3}{2}<n-2$, all $(n-i)$-lines for $i \leq 2$ each have a rook. If a rook is assumed on every $(n-j)$-line for $j \leq i-1$, then on every $(n-i)$-line there are $p=i-1$ hexagons which are threatened twice (see Figure 3). Hence, with (i) $)_{1}$ and because of $2 \gamma-p \leq 2 \frac{n-3}{2}-(i-1)<n-i$ for $i<\frac{n+1}{2}$ it follows

Figure 3: Case $i=3$ for B_{15}.
that all $(n-i)$-lines must each contain a rook. Since all $(n-i)$-lines for $i \geq \frac{n-3}{4}$ are required to cover all hexagons of B_{n}, there are at least $2 i+1 \geq 2 \frac{n-3}{4}+1=\frac{n-1}{2}$ parallel x-lines, each containing a rook, contradicting $\gamma \leq \frac{n-3}{2}$.

Figure 4: All $(n-t)$-lines with a rook for $t=2$.

3.2. $\mathrm{n} \equiv 1(\bmod 4)$

For $n=4 s+1$ it is assumed $\gamma(n) \leq \frac{n-1}{2}$. Because $2 \frac{n-1}{2}<n$, every n-line must have a rook. If all x-lines for $n \geq x \geq n-t+1$ each contain a rook, then on each $(n-t)$-line there are $p=t-1$ hexagons that have already been threatened twice. Hence, with (iii) and because of $2 \frac{n-1}{2}-(t-1)=n-t$ for $t<\frac{n+1}{2}$, every $(n-t)$-line could contain a rook or not contain a rook. Note that in the later case, only exactly one threat is allowed for all hexagons of an $(n-t)$-line, except for those $p=t-1$ hexagons that are twice threatened.

If there is a rook on one of the six $(n-t)$-lines, then each of the two neighboring $(n-t)$-lines now has t doubly threatened hexagons, so that with $(i)_{1}$ and because of $2 \frac{n-1}{2}-t<n-t$ for $t<\frac{n}{2}$ these $(n-t)$-lines also contain a rook. Now the next two neighboring $(n-t)$-lines also have t doubly threatened hexagons, so they also must have a rook as before. Finally, the sixth $(n-t)$-line then has $t+1$ doubly threatened hexagons, and it must have a rook as before (see Figure 4). So if one of the $(n-t)$-lines contains a rook, then all six must contain a rook. Thus there are only two possibilities: that all $(n-t)$-lines have a rook and that all are without a rook.

Now the six $(n-t)$-lines are supposed to be the largest that are without a rook.

Figure 5: Cases $t=1$ and $t=2$ for B_{13}.
$t=1$: In this case all $(n-i)$-lines for $i=0,1,2, \ldots$ are alternatingly with or without a rook if i is even or odd, respectively. This is true for $i=0$ and $i=1$ because $t=1$. If all $(n-2 j-1)$-lines are without a rook $(j \geq 0)$ then every $(n-2 j-2)$-line is forced to have a rook because of a common hexagon together with an ($n-1$)-line (without rook) and an $(n-2 j-1$)-line (without rook) and with $(\mathrm{i})_{2}$. If then all $(n-2 j-2)$-lines have a rook then every $(n-2 j-3)$-line is forced to be without a rook because of a common hexagon together with an $(n-1)$-line (without rook) and an ($n-2 j-2$)-line (with rook) and with (ii) (see Figure 5).

Since then on every x-line with a rook hexagons occur that are threatened only
once, all x-lines with a rook are required for a domination of all hexagons of B_{n}. So there are $\left\lceil\frac{4 s+1}{2}\right\rceil=2 s+1=\frac{n+1}{2}$ parallel x-lines that each have a rook in contradiction to $\gamma(n) \leq \frac{n-1}{2}$. It can be noted that for $n=4 s-1$, two x-lines, each with a rook, are omitted, so that $\gamma(n)=\gamma(4 s-1)=\left\lceil\frac{4 s+1}{2}\right\rceil-2=2 s-1=\frac{n-1}{2}$ could apply.
$t \geq 2$: Any $(n-x-t)$-line for $1 \leq x \leq t-1$ is forced to be without a rook because of a common hexagon together with an $(n-t)$-line (without rook) and an $(n-x)$-line (with rook) and with (ii). Next, any $(n-x-t)$-line for $t \leq x \leq 2 t-1$ is forced to have a rook because of a common hexagon together with an $(n-t)$-line (without rook) and an ($n-x$)-line (without rook) and with (i) $)_{2}$ (see Figure 5). Then on the one hand any $(n-3 t)$-line is forced to be without a rook because of a common hexagon together with an $(n-t)$-line (without rook) and an $(n-2 t)$-line (with rook) and with (ii). On the other hand any ($n-3 t$)-line is forced to have a rook because of a common hexagon together with an $(n-t-1)$-line (without rook) and an ($n-2 t+1$)-line (without rook) and with (i) $)_{2}$ (see Figure 5). This is a contradiction and thus a domination cannot exist for $n-3 t \geq \frac{n+1}{2}$, that is, for $n \geq 6 t+1$. For $n<6 t+1$ there are rooks on each $(n-x)$-line for $0 \leq x \leq t-1$ and for $2 t \leq x \leq 3 t-1$. Then B_{n} has $2(t-1)+1 \geq \frac{n+1}{2}$ rooks on parallel lines if $n \leq 4 t-3$ and $2(t-1)+1+2 j \geq \frac{n+1}{2}$ rooks on parallel lines if $n \geq 4 t+2 j-1, j \geq 1$. Both cases are contradicting $\gamma(n) \leq \frac{n-1}{2}$ which finishes the proof for $n \equiv 1(\bmod 4)$.

Figure 6: Two dominations for $n=11$.

It can be noted that for $n=4 t-1$, that is, for $j=0$, there are only $2(t-1)+1=$ $\frac{n-1}{2}$ rooks on parallel lines so that $\gamma(n)=\frac{n-1}{2}$ could apply. Together with the note in case $t=1$ there are only two possibilities for $\gamma(n)=\frac{n-1}{2}$ if $n \equiv 3(\bmod 4)$ both of which are similar by a factor of 2 . Then all maximum independences of rooks for the triple threatened hexagons determine all minimum dominations of rooks for B_{n} (see Figure 6). This gives the following.

Corollary 1. For $n \equiv 3(\bmod 4)$, all minimum dominations with rooks on B_{n} are determined by all maximum independences with rooks on $B_{(n-1) / 2}$.

3.3. $\mathrm{n} \equiv 0(\bmod 2)$

Assume that $\gamma(n)<\frac{n}{2}$. Then $2\left(\frac{n}{2}-1\right)<n-1$ implies that all $(n-i)$-lines for $i \leq 1$ must have a rook. If a rook is assumed on every $(n-j)$-line for $j \leq i-1$, then on the six $(n-i)$-lines there are alternatingly $p=i$ and $p=i-2$ hexagons which are threatened twice (see Figure 7). With (i) $)_{1}$ and because of $2 \frac{n-2}{2}-i<n-i$ for

Figure 7: Case $i=3$ for B_{12}.
$i<\frac{n}{2}$ those three $(n-i)$-lines with i doubly threatened hexagons also must contain a rook. Then the three remaining $(n-i)$-lines also each have $p=i$ hexagons which are threatened twice (see Figure 7) and as before these $(n-i)$-lines also must have a rook. Now all $(n-i)$-lines for $i \geq\left\lfloor\frac{n}{4}\right\rfloor$ are needed to cover all hexagons of B_{n} so that there are at least $2 i+1 \geq 2\left\lfloor\frac{n}{4}\right\rfloor+1 \geq \frac{n}{2}$ parallel lines, each containing a rook, contradicting $\gamma(n)<\frac{n}{2}$. This completes the proof of Theorem 1.

It has to be remarked that after the submission it was noticed that in [2] the domination number has already been determined, but only for odd n and with a completely different proof. The rooks are referred to as queens in [2], although queens should be able to move in six directions.

References

[1] J.-P. Bode and H. Harborth, Independent chess pieces on euclidean boards, J. Combin. Math. Combin. Comput. 33 (2000), 209-223.
[2] A.P. Burger and C.M. Mynhardt, Queens on hexagonal boards, J. Combin. Math. Combin. Comput. 31 (1999), 97-111.
[3] H. Harborth and H. Nienborg, Grid domination on hexagonal boards, Congr. Numer. 233 (2019), 11-20.
[4] S.M. Hedetniemi, S.T. Hedetniemi, and R. Reynolds, Combinatorial problems on chessboards, II, in Domination in Graphs, M. Dekker, New York, 1998, 133-162.
[5] J.D.E. Konhauser, D. Velleman, and S. Wagon, Which Way did the Bicycle Go? The Mathematical Association of America, Washington DC, MAA, 1996.
[6] S. Wagon, Graph theory problems from hexagonal and traditional chess, College Math. J. 45 (2014), 278-287.

