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Abstract

The 2-color Rado number for ax + by = z with positive integers 1 ≤ a ≤ b is
known; this is the least integer such that any 2-coloring of the integers from 1
to the Rado number must include a solution to the equation consisting of numbers
that have been assigned the same color. We modify the requirements by introducing
constraints on the colorings. These constraints are motivated by symbolic dynamics,
specifically the golden mean shift and a version of the even shift, both over a 2-letter
alphabet. We establish several initial results, offer some conjectures, and outline
possible directions for further research in this new study of shift-constrained Rado
numbers.

1. Background

We consider a problem in Ramsey theory on the positive integers informed by

symbolic dynamics. We begin with background material for each of these two

areas.

For a positive integer r, call a map ∆ : {1, . . . , n} → {0, 1, . . . , r−1} an r-coloring.

A set of integers is monochromatic if ∆ assigns the same color to each element of

the set. In this article, we limit our attention to r = 2. Within the context of a

specific coloring, we will write ∆0 for the set of integers assigned the color zero and

similarly ∆1.

Issai Schur showed that, for any r ≥ 1, there is a least positive integer S(r)

such that any r-coloring of {1, . . . , S(r)} includes a monochromatic solution to the

equation x + y = z. For example, the second Schur number S(2) = 5. There

are two steps to verifying such a value. First, one demonstrates that there is a

2-coloring on {1, 2, 3, 4} that contains no monochromatic solutions—the coloring

given by ∆0 = {1, 4} and ∆1 = {2, 3} satisfies this condition, along with the

coloring that reverses the assignments to zero and one. Clearly, the same coloring

restricted to {1, 2, 3} is equally valid, likewise restricted to {1, 2} and to {1}. Second,

one argues that any 2-coloring of {1, 2, 3, 4, 5} would produce a monochromatic
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solution: The coloring ∆ given for {1, 2, 3, 4} (and its reverse) would result in a

monochromatic solution for either color assignment of 5 as both (x, y, z) = (1, 4, 5)

and (2, 3, 5) are solutions to x + y = z, and any other coloring will already have a

monochromatic solution on {1, 2, 3, 4}.
Richard Rado extended these ideas to systems of general linear equations and

developed a criterion for which systems have a bound analogous to S(r); these are

known as Rado numbers. See Landman and Robertson [4, Chapter 9] for additional

background. In this article, we restrict our attention to the following parameters,

where the Rado numbers are known to be finite.

Definition 1. Given integers a, b with 1 ≤ a ≤ b, the (2-color) Rado number is the

least positive integer R(a, b) such that any 2-coloring of {1, . . . , R(a, b)} includes a

monochromatic solution of ax + by = z.

Guo and Sun [2] proved

R(a, b) = a(a + b)2 + b, (1)

confirming a conjecture of the current author and Schaal [3] (the full results al-

low arbitrarily many variables). Work continues on determining the 2-color Rado

number for the fully general linear equation a1x1 + · · · + am−1xm−1 = amxm + c;

see Thanatipanonda [6] for some recent results towards this goal. There are also

related results involving more colors, selected systems and nonlinear equations, and

numeric structures beyond the integers. Ron Graham’s wide interests in Ramsey

theory included an article in this journal with Alexeev and Fox on minimal colorings

without rational monochromatic solutions to x1 + x2 + x3 = 4x4 [1].

Moving to our other ingredient, symbolic dynamics begins with a choice of what

symbols and patterns are allowed in the underlying system. The full r-shift allows

all sequences over the alphabet {0, 1, . . . , r−1}. For various theoretical and applied

reasons, often only parts of the full shift are used. Subsets of the full shift are called

shifts, subshifts, or shift spaces. See Lind and Marcus [5] for additional background.

We focus on two simple binary shifts (so r = 2), the golden mean shift and a

version of the even shift, described next.

The golden mean shift is defined by forbidding consecutive ones. Table 1 shows

the short binary sequences that can arise in the golden mean shift; notice that their

length allowed words count

1 0, 1 2

2 00, 01, 10 3

3 000, 001, 010, 100, 101 5

4 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010 8

Table 1: Allowed length n words in the golden mean shift for small n.
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length allowed words count

1 0, 1 2

2 00, 10, 11 3

3 000, 001, 100, 110, 111 5

4 0000, 0010, 0011, 1000, 1001, 1100, 1110, 1111 8

Table 2: Allowed length n words in our even shift for small n.

counts are Fibonacci numbers. Another reason for the name comes from the fact

that the entropy of the golden mean shift is log(ϕ) where ϕ = (1 +
√

5)/2; entropy

is a useful statistic in symbolic dynamics that is invariant under various operations

and measures the information capacity of a shift [5, Chapter 4].

The version of the even shift that we use requires that runs of zeros have even

length with the possible exception of a terminal run of zeros, which can have any

length. Table 2 shows the short binary sequences allowed by this shift. For instance,

110 is allowed since the length 1 run of zeros is at the end of the word, but 101 is

not allowed since that odd length run of zeros is nonterminal. (In the terminology

of symbolic dynamics, this is the follower set of 1 in the even shift [5, Example 3.2.7]

or a particular one-sided even shift; we will simply call it the even shift.) Notice

that the word counts are the same as for the golden mean shift, which implies that

the even shift also has entropy log(ϕ), but we will see that the two shifts differ

notably in other ways.

Both of these shifts are closed under taking certain subwords. Specifically, if

x1 . . . xn is an allowed word in the golden mean shift then, for all 1 ≤ i ≤ j ≤ n,

the word xi . . . xj is also allowed. The situation for our even shift is not as strong,

but the following holds. If x1 . . . xn is an allowed word in the even shift then, for

all 1 ≤ j ≤ n, the word x1 . . . xj is also allowed.

In Section 2, we combine these ideas to create a new class of Rado number

problems. Section 3 presents results related to the shift spaces mentioned here,

with proofs in Section 4. We conclude in Section 5 with some conjectures and ideas

for further investigations.

2. Shift-constrained Rado Numbers

We combine Ramsey theory on the integers and symbolic dynamics by requiring

that colorings satisfy the conditions of a shift space. We have seen that shifts can

treat different symbols in different ways, thus the Rado numbers for a given equation

can vary depending on the color assigned to 1. (In other words, the standard initial

step “Without loss of generality, assume that ∆(1) = 0” is no longer valid.)
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Definition 2. Given integers a, b with 1 ≤ a ≤ b and a binary shift S, the

S-constrained Rado number RS
0 (a, b) is the least positive integer such that any

2-coloring ∆ of {1, . . . , RS
0 (a, b)} includes a monochromatic solution to ax+ by = z

where ∆(1) = 0 and ∆ satisfies the constraints of the shift S. Define RS
1 (a, b)

analogously with ∆(1) = 1.

As a first example, consider x + y = z with the golden mean shift constraint,

i.e., there is no i such that ∆(i) = ∆(i + 1) = 1. Note that the coloring detailed

above, ∆0 = {1, 4} and ∆1 = {2, 3}, is no longer valid. Write Rϕ
0 (1, 1) and Rϕ

1 (1, 1)

for these particular shift-constrained Rado numbers; we will call them golden Rado

numbers.

Suppose ∆(1) = 0. The solution (1, 1, 2) forces ∆(2) = 1. By the golden mean

shift requirement, we must have ∆(3) = 0. Then either possible coloring of 4 would

give a monochromatic solution, (1, 3, 4) in color zero or (2, 2, 4) in color one. It is

easy to check that the 2-coloring on {1, 2, 3} given by ∆0 = {1, 3} and ∆1 = {2}
has no monochromatic solutions to x + y = z. We conclude that Rϕ

0 (1, 1) = 4.

For the other possibility, ∆(1) = 1, the reverse of the first coloring does work

as before, since ∆0 = {2, 3} and ∆1 = {1, 4} has no consecutive numbers assigned

color one. The issues with assigning a color to 5 are the same as before, thus

Rϕ
1 (1, 1) = 5.

For a second example, consider x+y = z with the even shift described above and

write Re
0(1, 1), Re

1(1, 1) for these shift-constrained Rado numbers. With ∆(1) = 0,

the solution (1, 1, 2) precludes ∆(2) = 0, while ∆(2) = 1 would make an odd

length nonterminal run of zeros, so Re(1, 1) = 1. For ∆(1) = 1, the now-familiar

coloring ∆0 = {2, 3} and ∆1 = {1, 4} has only an even length run of zeros and no

monochromatic solutions, while no coloring of {1, 2, 3, 4, 5} works as before, thus

Re
1(1, 1) = 5.

In both examples, the closure of the shifts under taking subwords, as discussed

in Section 1, means that a coloring of {1, . . . , n} avoiding monochromatic solu-

tions while satisfying the shift constraints restricts to a similarly valid coloring of

{1, . . . , k} for all 1 ≤ k ≤ n− 1.

The examples are consistent with the following result.

Proposition 1. Given positive integers a, b with 1 ≤ a ≤ b and a binary shift S,

the S-constrained Rado numbers satisfy

RS
0 (a, b) ≤ R(a, b) and RS

1 (a, b) ≤ R(a, b).

In the case of the full shift F , we have RF
0 (a, b) = RF

1 (a, b) = R(a, b).

Proof. The full shift F introduces no constraints, so the standard Rado number

results apply, where color assignments to zero and one are interchangeable. Adding

the constraints of a binary shift S may affect colorings such that monochromatic
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solutions must occur at smaller values, decreasing the Rado number, but requiring

additional structure cannot increase the Rado number.

Note that adding a nontrivial shift constraint does not necessarily decrease the

Rado number, as Rϕ
1 (1, 1) = Re

1(1, 1) = R(1, 1) = 5.

In the next sections, we establish some initial results on Rϕ
0 (a, b), Rϕ

1 (a, b), and

Re
0(a, b), Re

1(a, b).

3. Some Golden Mean Shift and Even Shift Constrained Rado Numbers

We begin with equations of the form x + by = z and 2-colorings that satisfy the

golden mean shift, i.e., there is no i for which ∆(i) = ∆(i + 1) = 1.

Theorem 1. Given a positive integer b, the golden Rado numbers are

Rϕ
0 (1, b) =

{
2b + 2 if b is odd,

2b if b is even;

Rϕ
1 (1, b) =

{
5 if b = 1,

3b + 1 if b ≥ 2.

The golden Rado numbers for ax + by = z with a ≥ 2 are more complicated.

We prove one result for this shift, the case of equal coefficients. In Section 5, we

mention other patterns suggested by computational data.

Theorem 2. Given a positive integer a, the golden Rado numbers are

Rϕ
0 (a, a) = 4a2, Rϕ

1 (a, a) = 4a2 + a.

Before considering Rado numbers with colorings constrained by the even shift,

it is helpful to recall a 2-coloring detailed by Hopkins and Schaal. The following

proposition comes from the proof of [3, Theorem 2] applied to the current case of a

three variable equation.

Proposition 2. Given integers 1 ≤ a ≤ b, there are no monochromatic solutions

to the equation ax + by = z in the coloring of {1, . . . , a(a + b)2 + b− 1} specified by

∆0 = {1, 2, . . . , a + b− 1, (a + b)2, (a + b)2 + 1, . . . , a(a + b)2 + b− 1},
∆1 = {a + b, a + b + 1, . . . , (a + b)2 − 1}.

This coloring consists of length a+ b− 1 and length (a2 + ab− b)(a+ b− 1) runs

of zeros and a length (a + b)(a + b− 1) run of ones.

As specified in the next theorem, several even shift constrained Rado numbers,

where nonterminal runs of zeroes must have even length, match standard Rado

numbers.
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Theorem 3. Given integers 1 ≤ a ≤ b, the even shift constrained Rado numbers

with ∆(1) = 1 match the standard Rado numbers, i.e.,

Re
1(a, b) = R(a, b) = a(a + b)2 + b.

Also, if a + b is odd, then the same equality holds for colorings with ∆(1) = 0, i.e.,

Re
0(a, b) = R(a, b) = a(a + b)2 + b.

Our final result mirrors Theorem 1, determining Rado numbers for equations of

the form x + by = z and 2-colorings that satisfy the even shift constraint.

Theorem 4. Given a positive integer b, the even shift constrained Rado numbers

are

Re
0(1, b) =


1 if b = 1,

b2 + 3b + 1 if b is even,

b2 + 2b if b is odd and b ≥ 3;

Re
1(1, b) = b2 + 3b + 1.

Note that several cases match the standard Rado number R(1, b) = b2 + 3b + 1.

4. Proofs of Results

The proofs of the four theorems are elementary but sometimes a bit lengthy. When

arguments are analogous to previous ones, we skip some details.

Proof of Theorem 1. We organize the proof into four cases; it is helpful to split the

Rϕ
1 (1, b) proof into cases for even b and odd b even though the conclusion is the

same for both. Each case requires two things. First, we demonstrate a coloring

from 1 to one less than the Rado number that satisfies the conditions of the golden

mean shift and contains no monochromatic solutions to x + by = z. Second, we

show that any coloring from 1 to the Rado number satisfying the shift constraint

includes a monochromatic solution.

(a) Consider the case b odd and colorings with ∆(1) = 0. Write b = 2k − 1. We

show that the coloring of {1, . . . , 4k − 1} specified by

∆0 = {1, 3, . . . , 4k − 1}, ∆1 = {2, 4, . . . , 4k − 2}

includes no monochromatic solutions to x + (2k − 1)y = z; clearly it satisfies the

golden mean shift condition. By parity arguments, any solution has exactly one

or three of x, y, z even. Therefore there can be no monochromatic solution with

x, y, z ∈ ∆0. Now suppose x, y ∈ ∆1. Since x + (2k − 1)y > 2 + (4k − 2) = 4k,
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beyond the range of the coloring, there is no monochromatic solution in color one.

This valid coloring shows that Rϕ
0 (1, 2k − 1) ≥ 4k = 2b + 2.

To complete this case, we show that any coloring of {1, . . . , 4k} with ∆(1) = 0

and satisfying the golden mean shift condition includes a monochromatic solution

to x + (2k − 1)y = z.

If ∆(2k) = 0, then (1, 1, 2k) would be a monochromatic solution in color zero, so

we may assume that ∆(2k) = 1. By the golden mean shift constraint, ∆(2k−1) = 0

and ∆(2k + 1) = 0.

If ∆(2) = 0, then (2, 1, 2k + 1) would be a monochromatic solution, so we may

assume that ∆(2) = 1.

Now either color assignment for 4k gives a monochromatic solution. If ∆(4k) = 0,

then (2k + 1, 1, 4k) would be a monochromatic solution in color zero. If ∆(4k) = 1,

then (2, 2, 4k) would be a monochromatic solution in color one. This shows that

Rϕ
0 (1, 2k − 1) ≤ 4k.

Together with the bound from the valid coloring, we conclude Rϕ
0 (1, 2k−1) = 4k,

i.e., Rϕ
0 (1, b) = 2b + 2 for b = 2k − 1.

(b) Consider the case b even and colorings with ∆(1) = 0. Write b = 2k. We will

show that the coloring of {1, . . . , 4k − 1} specified by

∆0 = {1, 3, . . . , 2k − 1, 2k, 2k + 2, . . . , 4k − 2},
∆1 = {2, 4, . . . , 2k − 2, 2k + 1, 2k + 3, . . . , 4k − 1}

includes no monochromatic solutions to x + 2ky = z; clearly it satisfies the golden

mean shift condition. It is straightforward to verify that this coloring is valid: For a

solution (x, y, z) to have z < 4k requires x < 2k and y = 1, and in that range parity

arguments similar to those in (a) can be made, etc. The validity of this coloring

also follows from the second part of this case.

We show that any coloring of {1, . . . , 4k} with ∆(1) = 0 and satisfying the golden

mean shift condition includes a monochromatic solution to x + 2ky = z.

If ∆(2k + 1) = 0, then (1, 1, 2k + 1) would be a monochromatic solution, so we

may assume that ∆(2k + 1) = 1. By the golden mean shift constraint, ∆(2k) = 0

and ∆(2k + 2) = 0.

If ∆(2) = 0, then (2, 1, 2k + 2) would be a monochromatic solution, so we may

assume that ∆(2) = 1. It follows that ∆(3) = 0.

If ∆(2k + 3) = 0, then (3, 1, 2k + 3) would be a monochromatic solution, so we

may assume that ∆(2k + 3) = 1. It follows that ∆(2k + 4) = 0.

If ∆(4) = 0, then (4, 1, 2k + 4) would be a monochromatic solution, so we may

assume that ∆(4) = 1. It follows that ∆(5) = 0.

This bootstrapping continues through ∆(4k − 2) = 0 by the golden mean shift

constraint.

If ∆(2k− 2) = 0, then (2k− 2, 1, 4k− 2) would be a monochromatic solution, so

we may assume that ∆(2k − 2) = 1. It follows that ∆(2k − 1) = 0.
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If ∆(4k− 1) = 0, then (2k− 1, 1, 4k− 1) would a monochromatic solution, so we

may assume that ∆(4k − 1) = 1.

At this point, we have shown that the coloring described above for {1, . . . , 4b−1}
does not contain any monochromatic solutions to x + 2ky = z. (It is the unique

such coloring, as the color assignments have all been forced.)

Now either color assignment for 4k gives a monochromatic solution. If ∆(4k) = 0,

then (2k, 1, 4k) would be a monochromatic solution in color zero. If ∆(4k) = 1, then

∆ would violate the golden mean shift constraint, as the valid coloring requires

∆(4k − 1) = 1. We conclude that Rϕ
0 (1, 2k) = 4k, i.e., Rϕ

0 (1, b) = 2b for b = 2k.

(c) Consider the case b even and colorings with ∆(1) = 1. Write b = 2k. The

coloring of {1, . . . , 6k} specified by

∆0 = {2, 4, . . . , 2k, 2k + 1, 2k + 2, . . . , 4k + 1, 4k + 3, . . . , 6k − 1},
∆1 = {1, 3, . . . , 2k − 1, 4k + 2, 4k + 4, . . . , 6k}

includes no monochromatic solutions to x + 2ky = z; clearly it satisfies the golden

mean shift condition. Starting with this case, we omit verifications that the given

colorings are valid. As in (b), one can show that this is the unique valid coloring in

this case.

We show that any coloring of {1, . . . , 6k + 1} with ∆(1) = 1 and satisfying the

golden mean shift constraint includes a monochromatic solution to x + 2ky = z.

Since ∆(1) = 1, the golden mean shift constraint requires ∆(2) = 0.

If ∆(2k + 1) = 1, then (1, 1, 2k + 1) would be a monochromatic solution, so we

may assume that ∆(2k + 1) = 0.

If ∆(4k + 2) = 0, then (2, 2, 4k + 2) would be a monochromatic solution, so we

may assume that ∆(4k + 2) = 1. It follows that ∆(4k + 3) = 0.

If ∆(3) = 0, then (3, 2, 4k + 3) would be a monochromatic solution, so we may

assume that ∆(3) = 1.

Now either color assignment for 6k+1 gives a monochromatic solution. If ∆(6k+

1) = 0, then (2k + 1, 2, 6k + 1) would be a monochromatic solution in color zero.

If ∆(6k + 1) = 1, then (1, 3, 6k + 1) would be a monochromatic solution in color

one. With the valid coloring above, we conclude that Rϕ
1 (1, 2k) = 6k + 1, i.e.,

Rϕ
1 (1, b) = 3b + 1 for b even.

(d) Consider the case b odd and colorings with ∆(1) = 1. We established in

Section 2 that Rϕ
1 (1, 1) = 5, so we assume b ≥ 3. Write b = 2k− 1. The coloring of

{1, . . . , 6k − 3} specified by

∆0 = {2, 4, . . . , 2k − 2, 2k, 2k + 1, . . . , 4k − 1, 4k + 1, 4k + 3, . . . , 6k − 3},
∆1 = {1, 3, . . . , 2k − 1, 4k, 4k + 2, . . . , 6k − 4}

includes no monochromatic solutions to x + (2k − 1)y = z; clearly it satisfies the

golden mean shift condition. In fact, it is the unique valid coloring in this case.
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The argument to show that any coloring of {1, . . . , 6k − 2}, with ∆(1) = 1 and

satisfying the golden mean shift condition, includes a monochromatic solution to

x + (2k − 1)y = z is very similar to the steps of (c). One can show

2, 2k, 4k + 1 ∈ ∆0, 1, 3, 4k ∈ ∆1

from which no color assignment for 6k−2 is valid due to the solutions (2k, 2, 6k−2)

and (1, 3, 6k−2). With the coloring above, we conclude that Rϕ
1 (1, 2k−1) = 6k−2,

i.e., Rϕ
1 (1, b) = 3b + 1 for odd b ≥ 3.

Proof of Theorem 2. For the equation ax + ay = z, first consider colorings with

∆(1) = 0. The coloring of {1, . . . , 4a2 − 1} specified by

∆0 = {1, 2, . . . , 2a− 1, 2a + 1, 2a + 2, . . . , 3a− 1, 3a + 1, 3a + 2, . . . ,

4a2 − a− 1, 4a2 − a + 1, 4a2 − a + 2, . . . , 4a2 − 1},
∆1 = {2a, 3a, . . . , 4a2 − a}

includes no monochromatic solutions to ax + ay = z; clearly it satisfies the golden

mean shift condition. Following the convention adapted in the previous proof, we

do not verify that the coloring in valid. We mention in passing that the color

assignments are forced except for the integers greater than 4a2 − a (although the

golden mean shift constraint still applies).

We show that any coloring of {1, . . . , 4a2} with ∆(1) = 0 and satisfying the

golden mean shift condition includes a monochromatic solution to ax + ay = z.

If ∆(2a) = 0, then (1, 1, 2a) would be a monochromatic solution, so we may

assume that ∆(2a) = 1. It follows that ∆(2a− 1) = 0 and ∆(2a + 1) = 0.

Already, either color assignment for 4a2 gives a monochromatic solution. If

∆(4a2) = 0, then (2a− 1, 2a + 1, 4a2) would be a monochromatic solution in color

zero. If ∆(4a2) = 1, then (2a, 2a, 4a2) would be a monochromatic solution in color

one. With the valid coloring above, we conclude that Rϕ
0 (a, a) = 4a2.

Second, consider colorings with ∆(1) = 1. The coloring of {1, . . . , 4a2 + a − 1}
specified by

∆0 = {2, 3, . . . , 4a− 1, 4a + 1, 4a + 2, . . . , 5a− 1, 5a + 1, 5a + 2, . . . ,

4a2 − 1, 4a2 + 1, 4a2 + 2, . . . , 4a2 + a− 1},
∆1 = {1, 4a, 5a, . . . , 4a2}

includes no monochromatic solutions to ax + ay = z; clearly it satisfies the golden

mean shift condition. The color assignments are forced except for the integers

greater than 4a2 (although the golden mean shift constraint still applies).

The argument that any coloring of {1, . . . , 4a2 +a}, with ∆(1) = 1 and satisfying

the golden mean shift condition, includes a monochromatic solution to ax+ ay = z
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is very similar to the ∆(1) = 0 case. One can show

2, 2a, 4a− 1 ∈ ∆0, 1, 4a ∈ ∆1

from which no color assignment for 4a2 + a would be valid due to the solutions

(2, 4a− 1, 4a2 + a) and (1, 4a, 4a2 + a). With the valid coloring above, we conclude

that Rϕ
1 (a, a) = 4a2 + a.

Proof of Theorem 3. For the equation ax + by = z, first consider colorings with

∆(1) = 0 constrained by the even shift. In the cases that the coloring described in

Proposition 2 has only even length nonterminal runs of zeros, that coloring shows

Re
0(a, b) ≥ R(a, b). That will complete the proof of this case since Re

0(a, b) ≤ R(a, b)

by Proposition 1.

As described after Proposition 2, the length of the initial run of zeros is a+ b− 1

which is even exactly when a + b is odd. Thus Re
0(a, b) = R(a, b) when a + b is odd

and Equation (1) provides the formula.

Second, consider colorings with ∆(1) = 1. The coloring described in Propo-

sition 2 is for standard Rado numbers, so the assignments to zero and one are

interchangeable. Reversing the zero and one colors to satisfy ∆(1) = 1 results

in one run of zeros, length (a + b)(a + b − 1), which is always even. Therefore

the reversed coloring satisfies the even shift constraint and, as before, we conclude

Re
1(a, b) = R(a, b) = a(a + b)2 + b.

Proof of Theorem 4. The b = 1 case was treated in Section 2. Theorem 3 applies

to the remaining cases except Re
0(1, b) when b is odd, so we take b ≥ 3.

Let b = 2k − 1 with k ≥ 2 and consider colorings with ∆(1) = 0. We want to

show that the even shift constrained Rado number is b2 + 2b = 4k2 − 1. First, we

show that the coloring of {1, . . . , 4k2 − 2} specified by

∆0 = {1, 2, . . . , 2k − 2, 4k2 − 2k, 4k2 − 2k + 1, . . . , 4k2 − 2},
∆1 = {2k − 1, 2k, . . . , 4k2 − 2k − 1}

includes no monochromatic solutions to x + (2k − 1)y = z. Since the only nonter-

minal run of zeros has length 2k − 2, the coloring satisfies the even shift condition.

The standard argument concerning monochromatic solutions is straightforward (i.e.,

x, y ≤ 2k − 2 in ∆0 give z ∈ ∆1, then x, y ∈ ∆1 give z ≥ 4k2 − 2k, etc.), but we

will show that this is the unique valid coloring in the second part of the proof.

We show that any coloring of {1, . . . , 4k2 − 1} with ∆(1) = 0 and satisfying the

even shift condition would include a monochromatic solution to x + by = z.

Let c be the least integer such that ∆(c) = 1. We show that c = 2k − 1. Since

∆(1) = 0, we know c ≥ 2. By the definition of c, we have ∆(c− 1) = 0.

If ∆(2ck) = 1, then (c, c, 2ck) would be a monochromatic solution, so we may

assume that ∆(2ck) = 0.
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If ∆(2k + c − 1) = 0, then (2k + c − 1, c − 1, 2ck) would be a monochromatic

solution, so we may assume that ∆(2k + c− 1) = 1.

Either color assignment for (2c+2)k−1 would give a monochromatic solution. If

∆((2c+2)k−1) = 0, then (2ck, 1, (2c+2)k−1) would be a monochromatic solution

in color zero. If ∆((2c + 2)k− 1) = 1, then (2k + c− 1, c, (2c + 2)k− 1) would be a

monochromatic solution in color one.

To avoid this problematic (2c + 2)k − 1 in the range of integers of the valid

coloring, we need (2c+ 2)k− 1 > 4k2 − 2, equivalently c > 2k− 1− 1/(2k). By the

solution (1, 1, 2k), we must have ∆(2k) = 1. Thus the range for c not leading to a

monochromatic solution is

2k − 1− 1

2k
< c ≤ 2k.

Of the two possible integer values, it must be that c = 2k − 1 since the initial run

of zeros needs to have even length to satisfy the shift constraint. Keeping track of

the color assignments, so far we have

1, . . . , 2k − 2 ∈ ∆0, 2k − 1, 2k ∈ ∆1.

In addition to 2k − 1, 2k ∈ ∆1, the initial run of zeros forces many integers

to be assigned color one. Specifically, by the solution (2, 1, 2k + 1) we must have

∆(2k+1) = 1, . . . , by (2k−2, 1, 4k−3) we must have ∆(4k−3) = 1. By the solutions

(1, 2, 4k−1) through (2k−2, 2, 6k−4), we must have 4k−1, . . . , 6k−4 ∈ ∆1. Note

that 4k − 2 has not been assigned a color. If ∆(4k − 2) = 0, then there would

be a length one nonterminal run of zeros, so ∆(4k − 2) = 1 by the even shift

constraint. All of this continues through the solution (2k − 2, 2k − 2, 4k2 − 4k)

implying ∆(4k2 − 4k) = 1. That is,

2k + 1, . . . , 4k2 − 4k ∈ ∆1.

Next, we show the color zero assignments that follow from this run of ones. By

the solution (2k − 1, 2k − 1, 4k2 − 2k), we must have ∆(4k2 − 2k) = 0. By the

solutions (2k, 2k − 1, 4k2 − 2k + 1) through (4k − 3, 2k − 1, 4k2 − 2), we have the

length 2k − 1 run of zeros

4k2 − 2k, . . . , 4k2 − 2 ∈ ∆0. (2)

These additional color zero assignments allow us to extend the run of ones. If

∆(4k2 − 4k + 1) = 0, then (4k2 − 4k + 1, 1, 4k2 − 4k) would be a monochromatic

solution in color zero, so we may assume that ∆(4k2 − 4k + 1) = 1. This continues

through the solution (4k2 − 2k − 1, 1, 4k2 − 2), so that

4k2 − 4k + 1, . . . , 4k2 − 2k − 1 ∈ ∆1.
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This establishes the validity and uniqueness of the coloring given at the beginning

of the proof.

To complete the proof, we show that neither color assignment for 4k2−1 is valid.

If ∆(4k2 − 1) = 0, then (4k2 − 2k, 1, 4k2 − 1) would be a monochromatic solution

in color zero. If ∆(4k2 − 1) = 1, then Equation (2) would describe an odd length

nonterminal run of zeros. (Also, (4k−2, 2k−1, 4k2−1) would be a monochromatic

solution in color one.)

We conclude that Re
0(1, 2k − 1) = 4k2 − 1 for k ≥ 2, i.e., Re

0(1, b) = b2 + 2b for

odd b ≥ 3.

5. Conjectures and Other Ideas for Further Study

Here are some possible next investigations in this new study of shift-constrained

Rado numbers.

For the golden mean shift, computation data suggest additional identities, two

of which we include here as conjectures.

Conjecture 1. Given positive integers a and `, the golden Rado number for the

case ∆(1) = 0 is Rϕ
0 (a, `a) = (` + 1)2a2.

Theorem 2 confirms the ` = 1 case of Conjecture 1.

By Theorem 1, we know Rϕ
0 (1, b) < Rϕ

1 (1, b) for all positive integers b. Also, by

Theorem 2, Rϕ
0 (a, a) < Rϕ

1 (a, a) for all positive integers a. In general, though, the

relation between Rϕ
0 (a, b) and Rϕ

1 (a, b) is not clear. That is, which color assignment

for 1 has the greater effect on lowering the standard Rado number when applying

the golden mean shift constraint? Computational data support the following claim.

Conjecture 2. Given integers 2 ≤ a ≤ b, the golden mean shift constrained Rado

numbers satisfy Rϕ
0 (a, b) < Rϕ

1 (a, b) except when b = `a for some integer ` ≥ 2, in

which case Rϕ
0 (a, `a) > Rϕ

1 (a, `a).

Of course, a full understanding of Rϕ
0 (a, b), Rϕ

1 (a, b) is desired. Similarly for the

even shift, where we have not determined Re
0(a, b) for a + b even with a > 1. (The

analogue of Conjecture 2 for the even shift constraint is clear, as we know from

Proposition 1 and Theorem 3 that Re
0(a, b) ≤ Re

1(a, b) = R(a, b).)

Following developments in the study of Rado numbers, one can generalize from

ax + by = z to equations with arbitrarily many variables, including a constant

term, requiring x 6= y, etc. In symbolic dynamics, there are many interesting

shifts to explore, including run-length limited shifts, charge constrained shifts, and

generalized Morse shifts, along with larger alphabets corresponding to more colors.
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