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Abstract

In 1874, Mertens famously proved an asymptotic formula for the product of p/(p−1)
over all primes p up to x. Observe that this product equals the reciprocal sum of all
integers composed of prime factors up to x. It is natural to restrict such series to
integers with a fixed number k of prime factors. In this article, we obtain formulae
for these series for each k, which together dissect Mertens’ original estimate. The
proof is by elementary methods of a combinatorial flavor.

1. Introduction

We begin with the Euler-Mascheroni constant γ = 0.57721 · · · , defined as the limit

of the difference between the harmonic series up to x and log x. The ubiquitous

constant γ crops up in many contexts, notably, in the third of three results from a

celebrated paper of Mertens [7] on the distribution of prime numbers.

As notation, throughout we write f(x) = O(g(x)) and f(x) � g(x) to mean

|f(x)/g(x)| is bounded, while f(x) ∼ g(x) means limx→∞ f(x)/g(x) = 1. Also, let

log2 x = log log x, and let p denote a prime number.

Theorem 1.1 (Mertens, 1874). There exists a constant β > 0 for which∑
p≤x

log p

p
= log x + O(1),

∑
p≤x

1

p
= log2 x+ β + O

( 1

log x

)
(1.1)

∏
p≤x

(
1− 1

p

)−1

∼ eγ log x. (1.2)

Here β = 0.26149 · · · is Mertens’ constant, which is known to satisfy

β − γ =
∑
p

(
log(1− 1

p ) + 1
p

)
= −

∑
p

∑
j≥2

p−j

j
= −

∑
j≥2

Z(j)

j
, (1.3)

where Z(s) =
∑
p p
−s denotes the prime zeta function, for s > 1. See for instance

Theorem 2.7 in [8, p.50].



INTEGERS: 21A (2021) 2

Now by expanding Mertens’ prime product in Equation (1.2), we have∏
p≤x

(
1− 1

p

)−1

=
∏
p≤x

(
1 +

1

p
+

1

p2
+ · · ·

)
=

∑
P+(n)≤x

1

n
(1.4)

where P+(n) denotes the largest prime factor of n.

Consider “dissecting” the sum in Equation (1.4) according to the number of

prime factors of n with multiplicity, denoted Ω(n). Our main result is an asymptotic

formula for this dissected sum.

Theorem 1.2. For each fixed k ≥ 1, we have∑
Ω(n)=k

P+(n)≤x

1

n
=

k∑
j=0

ck−j
j!

(
log2 x+ β

)j
+ Ok

( (log2 x)k−1

log x

)
(1.5)

where the sequence (ck)∞k=0 is recursively defined by c0 = 1 and

ck =
1

k

k∑
j=2

ck−j Z(j). (1.6)

Theorem 1.2 may be viewed as a “dissection” of Mertens’ prime product formula.

Indeed, as shown later in Equation (2.7), the main term eγ log x in Equation (1.2)

may be expressed as the series over all k ≥ 1 of the main terms in Equation (1.5) (i.e.

the sum over j ≤ k). Here “dissection” is meant to highlight the formal compatibly

of main terms. Whereas the estimate Equation (1.5) itself does not necessarily hold

uniformly over all k ≥ 1.

We note this terminology was introduced by Pollack [9], who dissected a classical

mean value theorem of Hall and Tenenbaum.

1.1. Uniform Estimates via Complex Analysis

Classically, the analogous series to Equation (1.5) has been studied, replacing the

condition P+(n) ≤ x with the more common n ≤ x.

Mertens’ 1st theorem implies, by induction on each fixed k ≥ 1,∑
Ω(n)=k
n≤x

1

n
∼ (log2 x)k

k!
(1.7)

as x → ∞, see [8, p.228]. Note Equation (1.7) historically attributed to Landau

[5]. This is another example of dissection, as the sum over all k of each side gives∑
n≤x

1
n and log x, respectively. We also note that the asymptotic (1.7) also holds

with Ω(n) replaced by ω(n), the number of distinct prime factors of n.

However, Equation (1.7) only holds for fixed k. The celebrated theorem of Sathe

and Selberg implies the following uniform estimate for k less than 2 log2 x.
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Theorem 1.3 (Sathe–Selberg). Define ν(z) = 1
Γ(z+1)

∏
p(1−

z
p )−1(1− 1

p )z, and let

r = k/ log2 x. For any ε > 0, as x→∞ we have uniformly for r ≤ 2− ε,∑
Ω(n)=k
n≤x

1

n
∼ ν(r)

(log2 x)k

k!
. (1.8)

To see this, [8, Theorem 7.19] or [13, Theorem 6.5] gives an asymptotic in the

stated range ∑
Ω(n)=k
n≤x

1 = ν(r)
x

log x

(log2 x)k−1

(k − 1)!

(
1 +Oε

(
k

log2 x

))
.

Then Equation (1.8) follows by partial summation, combined with e.g. the Erdős-

Sarközy upper bound O(k4 2−kx log x) uniformly for all x, k ≥ 1, see [2].

Remark 1. As ν(r) = 1 only when r = 0, 1, Landau’s estimate (1.7) holds if and

only if k = o(log2 x) or k = (1 + o(1)) log2 x.

Remark 2. [13, Theorem 6.4] gives an analogous result with Ω(n) replaced by ω(n),

by substituting the function ν(z) above with λ(z) = 1
Γ(z+1)

∏
p(1 + z

p−1 )(1− 1
p )z.

Remark 3. The Sathe–Selberg theorem is proved through contour integration in

the complex plane. Recently, Popa [10, 11] and Tenenbaum [12] have obtained

results by similar analytic methods, for a generalized series that replaces the con-

ditions Ω(n) = k and n ≤ x by the condition p1 · · · pk ≤ x over k independent

prime variables. Or equivalently, they weight n by the number of its ordered prime

factorizations.

The uniformity coming from sophisticated analytic tools exemplifies the larger

tension within mathematics, between proving the strongest results and using the

simplest arguments. Of particular interest historically is the case k = 1, i.e. the

Prime Number Theorem. Hadamard and de la Vallée Poussin initially gave proofs

in 1896 using complex analysis, and for decades many believed it impossible to

prove by elementary means. It came as a great shock when Selberg and Erdős did

so in 1948. For an intriguing historical account, see Spencer and Graham [4].

As such, we emphasize that in Theorem 1.2, our particular conditions Ω(n) =

k, P+(n) ≤ x in Equation (1.5) are directly amenable to elementary methods when

k is fixed. Nevertheless, applying analytic tools to Equation (1.5) do lend the

advantage of uniformity in k < (2− ε) log2 x.

Theorem 1.4. Let r = k/ log2 x. For any ε > 0, as x→∞ we have uniformly for

r ≤ 2− ε, ∑
Ω(n)=k

P+(n)≤x

1

n
∼ ν(r)erγ Γ(r + 1)

(log2 x)k

k!
. (1.9)
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Hence by comparison with the Sathe–Selberg theorem, we obtain the following

elegant relation between sums over P+(n) ≤ x with those over n ≤ x.

Corollary 1.1. Let r = k/ log2 x. For any ε > 0, as x→∞ we have uniformly for

r ≤ 2− ε, ∑
Ω(n)=k

P+(n)≤x

1

n
∼ erγ Γ(r + 1)

∑
Ω(n)=k
n≤x

1

n
. (1.10)

Remark 4. One may prove an analogous result for ω(n), with the same factor

erγ Γ(r + 1).

Note the factor erγ Γ(r+ 1) = 1 if and only if r = 0. Hence Corollary 1.1 implies∑
Ω(n)=k

P+(n)≤x

1

n
∼

∑
Ω(n)=k
n≤x

1

n
(1.11)

if and only if k is in the uniform range k = o(log2 x). This is an example of friable

regularity, in the following sense. Recall an integer n with P+(n) ≤ x is called

x-smooth or x-friable.

Definition 1. A sequence (an)n∈N is friably regular 1 if
∑
n≤x an ∼

∑
P+(n)≤x an

as x→∞.

For example, the friable regularity of (µ(n)/n)n∈N is equivalent to the prime

number theorem. We also extend the definition to families of sequences.

Definition 2. A one-parameter family (an,x)n∈N, indexed by x ∈ R, is friably

regular if
∑
n≤x an,x ∼

∑
P+(n)≤x an,x as x→∞.

In particular, Corollary 1.1 implies the family (1Ω(n)=k/n)n∈N, indexed by k =

k(x), is friably regular if and only if k = o(log2 x).

1.2. The Coefficients ck

Finally, we emphasize an important feature of the combinatorial approach in The-

orem 1.2. The recursion in Equation (1.6) enables rapid computation of the coeffi-

cients ck to high precision, the first few displayed below.

k ck k ck
0, 1 1, 0 6 0.0108213 · · ·
2 0.226123 · · · 7 0.0054110 · · ·
3 0.058254 · · · 8 0.0027375 · · ·
4 0.044814 · · · 9 0.0013752 · · ·
5 0.020323 · · · 10 0.0006903 · · ·

1This extends the notion of friable regularity as in [1],[3], from equality of limits of convergent
series to asymptotic equality of (possibly non-convergent) partial sums.
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At first glance, one might not expect the coefficients ck arising from Equation

(1.6) to exhibit any particular structure. However, the combinatorial approach

shows ck to satisfy exponentially precise asymptotics.

Theorem 1.5. The coefficients satisfy ck = η 2−k + O(3−k). Here the constant η

is given by η = e−1
∏
p>2(1− 2

p )−1e−2/p = 0.71206 · · · .

2. Elementary Combinatorial Proof for k Fixed

In this section we prove Theorem 1.2. For x, s > 0 define the (truncated) zeta

functions

Zk(s, x) =
∑

Ω(n)=k

P+(n)≤x

n−s, Z(s, x) = Z1(s, x) =
∑
p≤x

p−s.

We first express Zk(s, x) in terms of Z(s, x).

Proposition 2.1. For each k ≥ 1 and any x, s > 0 we have the identity

Zk(s, x) =
∑

n1+2n2+···=k

∏
j≥1

1

nj !

(
Z(js, x)/j

)nj
(2.1)

where the sum ranges over all partitions of k.

Proof. For any x, s > 0 we have a formal power series identity in z,∑
k≥0

Zk(s, x)zk =
∑

P+(n)≤x

zΩ(n)

ns
=
∏
p≤x

(
1 +

z

ps
+

z2

p2s
+ · · ·

)
=
∏
p≤x

(
1− z

ps

)−1

since the function n 7→ zΩ(n)/ns is completely multiplicative. Thus expanding

Taylor series,∑
k≥0

Zk(s, x)zk = exp
(
−
∑
p≤x

log(1− zp−s)
)

= exp
(∑
p≤x

∑
j≥1

(zp−s)j

j

)
= exp

(∑
j≥1

Z(js, x)

j
zj
)

=
∏
j≥1

exp
(Z(js, x)

j
zj
)

=
∏
j≥1

∑
nj≥0

1

nj !

(Z(js, x)

j
zj
)nj

=
∑
k≥0

zk
∑

n1+2n2+···=k

∏
j≥1

1

nj !

(
Z(js, x)/j

)nj
. (2.2)

Now Equation (2.1) follows by comparing the coefficients of zk.
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Remark 5. This proposition generalizes [6, Proposition 3.1].

Next, the recursion for ck in Equation (1.6) leads to the explicit formula,

ck =
∑

2n2+3n3···=k

∏
j≥2

1

nj !

(
Z(j)/j

)nj
(2.3)

by the following lemma, for the choices A1 = 0 and Aj = Z(j) when j ≥ 2.

Lemma 2.1. Given any sequence (Ak)∞k=1, the sequence (bk)∞k=0 is given recursively

by b0 = 1 and bk = 1
k

∑k
j=1 bk−jAj, if and only if (bk)∞k=0 is given explicitly as

bk =
∑

n1+2n2+···=k

∏
j≥1

(Aj/j)
nj

nj !
.

Note the (unique) partition of k = 0 has nj = 0 for all j ≥ 1, so indeed b0 =∏
j≥1(Aj/j)

0/0! = 1.

Proof. We prove the forward direction by induction on k (the reverse direction is

similar). For k = 1, we have b1 = b0A1 = A1.

Then assuming the claim for each r < k,

kbk =

k∑
r=1

bk−rAr =

k∑
r=1

Ar
∑

n1+···=k−r

∏
j≥1

(Aj/j)
nj

nj !

=

k∑
r=1

∑
n1+···=k−r

Anr+1
r

rnrnr!

∏
j 6=r

(Aj/j)
nj

nj !
=

k∑
r=1

∑
n1+···=k
nr≥1

rnr
∏
j≥1

(Aj/j)
nj

nj !

=
∑

n1+···=k

∏
j≥1

(Aj/j)
nj

nj !

∑
1≤r≤k
nr≥1

rnr = k
∑

n1+···=k

∏
j≥1

(Aj/j)
nj

nj !

In the last step, we dropped the condition nr ≥ 1 (since rnr = 0 for nr = 0) which

gives
∑k
r=1 rnr = k. Dividing by k completes the induction.

Now equipped with Proposition 2.1 and Equation (2.3) for ck, we now prove

Theorem 1.2.

Proof of Theorem 1.2. For Z(j, x) with j ≥ 2, we trivially bound
∑
p>x p

−j by

x2−j∑
n>x n

−2 = O(x1−j), which gives

Z(j, x) :=
∑
p≤x

p−j = Z(j)−
∑
p>x

p−j = Z(j) +O(x1−j) for j ≥ 2.
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Thus plugging into the identity for Zk(1, x), Proposition 2.1 with s = 1 gives

Zk(1, x) =
∑

n1+2n2+···=k

Z(1, x)n1

n1!

∏
j≥2

1

nj !

(Z(j) +O(x1−j)

j

)nj

.

For any partition of k, the binomial theorem implies
∏
j≥2

1
nj !

(
[Z(j)+O(x1−j)]/j

)nj

equals
∏
j≥2

1
nj ! (Z(j)/j)nj at negligible cost Ok(1/x). Thus

Zk(1, x) =
∑

n1+2n2+···=k

Z(1, x)n1

n1!

∏
j≥2

1

nj !

(
Z(j)/j

)nj
+ Ok(Z(1,x)k

x ). (2.4)

Then for Z(1, x), we recall Mertens’ 2nd theorem

Z(1, x) :=
∑
p≤x

1

p
= log2 x+ β + E(x), with E(x) = O

(
1

log x

)
(2.5)

so plugging in above gives

Zk(1, x) (2.6)

=
∑

n1+2n2+···=k

1

n1!

(
log2 x+ β + E(x)

)n1 ∏
j≥2

1

nj !

(
Z(j)/j

)nj
+ Ok( (log2 x)k

x )

=

k∑
n1=0

1

n1!

(
log2 x+ β

)n1
∑

2n2+···=k−n1

∏
j≥2

1

nj !

(
Z(j)/j

)nj
+Ok

(
E(x) (log2 x)k−1

)
again by the binomial theorem. Here we used

∏
j≥2

1
nj ! (Z(j)/j)nj = Ok(1).

Now recalling Equation (2.3) and E(x) = O(1/ log x) completes the proof of

Theorem 1.2.

From here, we may “dissect” Mertens’ 3rd theorem. Indeed by Equation (1.4),∏
p≤x

(
1− 1

p

)−1
=

∑
P+(n)≤x

1

n
=
∑
k≥0

Zk(1, x)

and using the asymptotic formula for Zk(1, x) from Theorem 1.2,∑
k≥0

k∑
j=0

ck−j
j!

(
log2 x+ β

)j
=
∑
j≥0

1

j!

(
log2 x+ β

)j∑
k≥j

ck−j = eβ log x
∑
m≥0

cm

= eγ log x, (2.7)

as desired, provided
∑
m≥0 cm = eγ−β . This follows in turn by Equation (2.3),∑

m≥0

cm =
∑
m≥0

∑
2n2+3n3···=m

∏
j≥2

1

nj !

(
Z(j)/j

)nj
=
∏
j≥2

∑
nj≥0

1

nj !

(
Z(j)/j

)nj

=
∏
j≥2

exp
(
Z(j)/j

)
= exp

(∑
j≥2

Z(j)

j

)
= eγ−β
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recalling Equation (1.3). This shows the claim.

3. Combinatorial Proof of Asymptotics for Coefficients ck

In this section we prove a strengthening of Theorem 1.5. To this, we first rephrase

the recursion for ck in Equation (1.6).

Let A1 = 0 and Ak =
∑
p p
−k for k ≥ 2. Then ck is recursively defined by c0 = 1

and

kck =

k∑
j=1

ck−jAj . (3.1)

Consider the following induced sequences Ak,q, ck,q for each prime q: let Ak,2 =

Ak, ck,2 = ck; and if p is the prime preceding q > 2, let

Ak,q = Ak,p − p−k for k ≥ 1, (3.2)

ck,q = ck,p − p−1ck−1,p for k ≥ 1, and c0,q = c0. (3.3)

Explicitly we have

Ak,q =
∑
r≥q

r−k for k ≥ 2, and A1,q = −
∑
p<q

p−1. (3.4)

Lemma 3.1. For each prime q and k ≥ 0, we have the recursion

kck,q =

k∑
j=1

ck−j,qAj,q. (3.5)

Proof. We proceed by induction on the prime q. The base case q = 2 holds by

Equation (3.1).

Now assume Equation (3.5) for p < q. The difference of recursions in Equation
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(3.5) for ck,p and p−1 · cp,k−1 is

kck,p − (k − 1)p−1ck−1,p

=

k−1∑
j=1

(ck−j,p − p−1ck−j−1,p)Aj,p + c0,pAk,p

=

k−1∑
j=1

(ck−j,p − p−1ck−j−1,p)(p
−j +Aj,q) + c0,p(p

−k +Ak,q)

=

k−1∑
j=1

(p−jck−j,p − p−j−1ck−j−1,p) + c0,pp
−k +

k−1∑
j=1

ck−j,qAj,q + c0,qAk,q

= p−1ck−1,p +

k∑
j=1

ck−j,qAj,q

using Equations (3.2), (3.3) and telescoping series. Subtracting p−1ck−1,p gives

kck,q = k(ck,p − p−1ck−1,p) =

k∑
j=1

ck−j,qAj,q.

Note Lemmas 2.1 and 3.1 together imply

ck,q =
∑

n1+2n2···=k

∏
j≥1

(Aj,q/j)
nj

nj !
(3.6)

for each prime q, k ≥ 1.

Now with the recursion in hand, we bound the induced sequence ck,q.

Lemma 3.2. For each prime q, we have ck,q �q q
−k as k →∞.

Proof. Fix q and let mk = maxj≤k q
j |cj,q|. We shall prove mk �q 1, and it suffices

to show this along a subsequence, since mk is itself a non-decreasing sequence.

Namely, we consider the indices k for which mk = qk|ck,q|.
Recalling (3.4), we have for all n ≥ 1∑

1≤j≤n

qj Aj,q = qA1,q + (n− 1) +
∑

2≤j≤n

∑
r>q

(q/r)j = n+Oq(1),

by summing the geometric series, and so the recursion in Equation (3.5) gives

kqk |ck,q| =
∣∣∣∣ k∑
j=1

qk−j ck−j,q · qj Aj,q
∣∣∣∣ ≤ mk/2

∣∣∣∣ ∑
k/2<j≤k

qj Aj,q

∣∣∣∣ + mk

∣∣∣∣ ∑
1≤j≤k/2

qj Aj,q

∣∣∣∣
= mk/2

(
k/2 +O(1)

)
+ mk

(
k/2 +O(1)

)
.
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And by our choice of k, we have mk = qk|ck,q| and so

mk ≤ mk/2

(
1 +O(1/k)

)
. (3.7)

Hence by induction on k, we conclude

mk � m1

∏
2i≤k

(1 +O(2−i))� exp
∑
2i≤k

O(2−i)� 1.

Since Lemma 3.2 holds for every prime q and the sequences ck,q are defined induc-

tively on primes, Lemma 3.2 is self-improving. Indeed, for each pair of consecutive

primes p < q,

ck,p − p−1ck−1,p = ck,q = O(q−k).

In other words, multiplying above by pk the modified sequence c′k,p := ck,pp
k satisfies

c′k,p−c′k−1,p = O((p/q)k), so (c′k,p)k≥1 is a Cauchy sequence for each prime p. Hence

the limit

ηp := lim
k→∞

c′k,p = lim
k→∞

ck,pp
k

exists with c′k,p = ηp +O((p/q)k). That is,

ck,p = ηp p
−k +Op(q

−k) for each prime p. (3.8)

To summarize, we expanded the definition of ck,q and used a zeroth order expan-

sion for each prime (Lemma 3.2) to prove a first order expansion for every prime

simultaneously.

Continuing in this way, we obtain a hth order expansion for ck,q by induction

on the order h ≥ 1, at each step proving the respective expansion for every prime

simultaneously.

Proposition 3.1. For any h ≥ 1, we have

ck,pn =

h−1∑
l=0

η(n)
pn+l

p−kn+l + On,h(p−kn+h), where η(n)
pn+l

= ηpn+l
/

l−1∏
i=0

(
1− pn+l

pn+i

)
(3.9)

for all n as k →∞. Here pn denotes the nth prime, and ηp = limk→∞ ck,pp
k as in

Equation (3.8).

Proof. We proceed by induction on h. The base h = 1 holds for all n by Equation

(3.8), since η
(n)
pn = ηpn . Now assume Equation (3.9) holds with h for every n, and
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write ck,pn =
∑h
l=0 η

(n)
pn+l p

−k
n+l + Ek,n,h. By assumption Ek,n,h � p−kn+h, and we

aim to show Ek,n,h � p−kn+1+h.

By Equation (3.3) and the induction hypothesis (3.9) for ck,pn+1 ,

ck,pn+1
= ck,pn − p−1

n ck−1,pn

h−1∑
l=0

η(n+1)
pn+1+l

p−kn+1+l + O(p−kn+1+h) =

h∑
l=0

η(n)
pn+l

(1− pn+l

pn
)p−kn+l + (Ek,n,h − p−1

n Ek−1,n,h)

Note by definition η
(n+1)
pn+l = η

(n)
pn+l(1−

pn+l

pn
), and so the above simplifies as

O(p−kn+1+h) = Ek,n,h − p−1
n Ek−1,n,h.

Thus, similarly as with Equation (3.8), the modified sequence E′k,n,h := Ek,n,hp
k
n

converges as k → ∞ to some limit `n,h, with E′k,n,h = `n,h + O((pn/pn+1+h)k).

That is,

Ek,n,h = `n,h p
−k
n +O(p−kn+1+h)

On the other hand, Ek,n,h � p−kn+h forces `n,h = 0. Hence Ek,n,h = O(p−kn+1+h) as

desired.

Next, we determine the expansion coefficients ηp from Equation (3.8).

Proposition 3.2. For any prime p, the coefficient ηp = limk→∞ ck,pp
k equals

ηp = e−
∑

q≤p p/q
∏
q>p

(1− p
q )−1e−p/q. (3.10)

Proof. Consider the generating function Cp(z) =
∑
k≥0 ck,pz

k. On one hand, the

explicit formula for ck,p in Equation (3.6) implies

Cp(z) =
∑
k≥0

ck,pz
k =

∑
k≥0

zk
∑

n1+2n2···=k

∏
j≥1

(
Aj,p/j

)nj

nj !
=
∏
j≥1

∑
nj≥0

1

nj !

(
Aj,pz

j/j
)nj

=
∏
j≥1

exp
(
Aj,pz

j/j
)

= exp
(∑
j≥1

Aj,pz
j/j
)
.

Then recalling Aj,p =
∑
q≥p q

−j for j ≥ 2,

Cp(z) = exp
(
zA1,p +

∑
q≥p

∑
j≥2

(z/q)j/j
)

= ezA1,p exp
(
−
∑
q≥p

[log(1− z/q) + z/q]
)

= ezA1,p

∏
q≥p

(1− z/q)−1e−z/q. (3.11)
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On the other hand, by the expansion for ck in Equation (3.8) we have

Cp(z) =
∑
k≥0

ckz
k = ηp

∑
k≥0

(z/p)k +Op

(∑
k≥0

(z/q)k
)

=
ηp

1− z/p
+

Op(1)

1− z/q
. (3.12)

since A1,p = −
∑
q<p q

−1. So comparing Cp(z) from Equations (3.11) and (3.12) at

the pole z = p,

ηp = lim
z→p

Cp(z)(1− z/p) = epA1,p−1
∏
q>p

(1− p/q)−1e−p/q.

Hence the result follows since A1,p = −
∑
q<p q

−1.

Finally, we obtain an expansion for the original sequence ck,p1 = ck to arbitrary

order, which gives a considerable refinement of Theorem 1.5.

Theorem 3.1. For each prime q,

ck =
∑
p<q

αp p
−k + Oq(q

−k)

where αp := e−1
∏
q 6=p(1−

p
q )−1e−p/q. In particular ck = α2 2−k +O(3−k).

Proof. Setting n = 1 in Proposition 3.1, the sequence ck,p1 = ck satisfies

ck =
∑
p<q

η(1)
p p−k + Oq(q

−k)

where Proposition 3.2 gives, by definition of η
(1)
p in Equation (3.9),

η(1)
p := ηp/

∏
q<p

(1− p
q ) = e−1

∏
q 6=p

(1− p
q )−1e−p/q = αp.

4. Analytic Proof for k in Uniform Range

We prove Theorem 1.4 which quantitative error, which we state below.

Theorem 4.1. Let r = k/ log2 x and define η(z) = eγz
∏
p(1−

1
p )z(1− z

p )−1. For

any ε > 0, as x→∞ we have uniformly for r ≤ 2− ε,∑
Ω(n)=k

P+(n)≤x

1

n
= η(r)

(log2 x)k

k!

(
1 +Oε

(
k

(log2 x)2

))
.
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Proof. By Cauchy’s residue formula, we have for any r < 2,

Zk(1, x) =
1

2πi

∫
|z|=r

fx(z)
dz

zk+1
, (4.1)

where fx is given by the power series

fx(z) =
∑
k≥0

Zk(1, x)zk =
∑

P+(n)≤x

zΩ(n)

n

=
∏
p≤x

(
1 +

z

p
+
z2

p2
+ · · ·

)
=
∏
p≤x

(
1− z

p

)−1

= (1 +O(E(x)))ezγ(log x)z
∏
p≤x

(
1− z

p

)−1(
1− 1

p

)z
= (1 +O(E(x)))η(z)(log x)z,

as
∏
p≤x(1 − 1

p )−1 = (1 + E(x))eγ log x by Merten’s 2nd theorem in quantitative

form (this also follows from the prime number theorem.)

Hence Equation (4.1) becomes

Zk(1, x) =
1 +O(E(x))

2πi

∫
|z|=r

η(z)(log x)z
dz

zk+1
. (4.2)

The desired main term in Theorem 1.4 is given by evaluating η(z) at z = r,

namely

η(r)

2πi

∫
|z|=r

(log x)z
dz

zk+1
= η(r)

(log2 x)k

k!
. (4.3)

For the error we follow the argument in [8, p. 233], which we provide for com-

pleteness. Recall E(x) � 1/ log x. For |z| = r = k/ log2 x, integration by parts

gives

1

2πi

∫
|z|=r

(z − r)(log x)z
dz

zk+1
=

(log2 x)k−1

(k − 1)!
− r(log2 x)k

k!
= 0, (4.4)

and η(z)− η(r)− η′(r)(z − r) =

∫ z

r

(z − w)η′′(w) dw � |z − r|2. (4.5)
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Thus subtracting Equations (4.3) from (4.2), the error is

η(r)
(log2 x)k

k!
− Zk(1, x) �

∫
|z|=r

[η(r)− η(z)](log x)z
dz

zk+1

(4.4)
=

∫
|z|=r

[η(r)− η(z)− η′(r)(z − r)](log x)z
dz

zk+1

(4.5)
�

∫
|z|=r

|z − r|2(log x)z
dz

zk+1

� r2−k
∫ 1/2

−1/2

(sinπθ)2ek cos(2πθ) dθ

� r2−kek
∫ ∞

0

θ2e−8kθ2dθ � r2−kekk−3/2

= (log2 x)k−2(e/k)kk1/2 � k(log2 x)k−2/k!

Here we used | sinx| ≤ x, cos(2πθ) ≤ 1−8θ2 for |θ| ≤ 1/2, and Stirling’s formula.
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