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Abstract

We introduce the “moment rank” and “unitary rank” of numerical sequences, close
relatives of linear-recursive order. We show that both parameters can be character-
ized by a broad set of criteria involving moments of measures, types of recurrence
relations, Hankel matrix factorizations, Waring rank, analytic properties of gener-
ating functions, and algebraic properties of polynomial ideals. In the process, we
solve the “complex finite-atomic” and “integral finite-atomic” moment problems:
which sequences arise as the moments of a finite-atomic complex-/integer-valued
measures on C?

– This work is dedicated to the memory of Ron Graham, a gentle

giant of the highest scholarly caliber, a peerless and playful teacher,

and an extraordinarily generous person. His scientific contribu-

tions will live on in innumerable ways, particularly in his endless

demonstrations that theory and application are not just

complementary, but profoundly interwoven. Here we invoke three

persistent themes of his work: recurrence relations, algorithmic

thinking, and expansive TFAE statements.

1. Introduction

We begin with a motivating problem, the original impetus for this work: Suppose

that G is a finite, simple graph; then G is associated with a characteristic polynomial

whose roots are its adjacency eigenvalues. This polynomial, despite substantial

attention in the literature dating back to at least 1957 [6], is still the subject of
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many open problems. One example is the question of describing the multiplicity of

zero as a root, i.e, the nullity of the adjacency matrixA(G). If φ(x) = det(xI−A(G))

is the polynomial, then this multiplicity is the largest m so that φ(x)/xm is also

a polynomial; thus, the degree of φ(x)/xm (or, for this application, its normalized

reciprocal polynomial φ(x) = det(I − A(G)x)/C, where C is chosen so that φ is

monic) then encodes this quantity as m = deg φ− deg φ. Note that

log φ(x) =

r∑
i=1

log(1− bix) =

r∑
i=1

∞∑
j=1

bjix
j

j

where {bi}deg φi=1 are the nonzero roots of φ, whereupon the question becomes of

bounding the smallest r so that cj can be written as a sum of r j-th powers,

where jcj is the j-th coefficient of log φ. As will be defined below, this is exactly

the “unitary rank” of the sequence (jcj)j≥1. Lest this seem like a roundabout

way to study the quantity m, note that, using the log det = tr log identity, it is

straightforward to see that jcj = tr(A(G)j), the number of closed walks in G of

length j, for each j ≥ 1. See condition (6) in Theorem 2 for this connection with

log-polynomial degree.

More generally, one might ask for the simplest recurrence that a combinatorial

sequence C satisfies, as a kind of measure of complexity. If C is “C-finite”, then

it satisfies a linear recurrence with constant coefficients, and the order of that re-

currence captures this complexity. It is natural, then, to ask how to compute this

order, or even if it is finite. Famously, for example, this is an open question for the

sequence An equal to the number of permutations of n with no 1324 pattern (i.e.,

σ ∈ Sn so that there exist no a < b < c < d so that σ(a) < σ(c) < σ(b) < σ(d)).

The theory of such sequences is extremely well-trodden territory, and it is simplest

in the case that the characteristic polynomial – the polynomial whose coefficients

are the same as those of the recurrence – has no repeated roots. We focus on this

case presently.

Another way in which the smallest order of a linear recurrence satisfied by a

sequence appears in the literature is in the context of the venerable “moment prob-

lem”. Here, one asks whether a sequence can arise as the sequence of moments of

various kinds of distributions: important instances include (positive) measures on

R, [0,∞), [0, 1], or T = exp(iR) (the “Hamburger”, “Stieltjes”, “Hausdorff”, and

“Toeplitz”/“trigonometric” moment problems, respectively); signed measures on R
(already considered by Hausdorff [14]); or atomic measures [7, 10]. Important re-

lated lines of research in this area include truncated and multidimensional moment

problems ([8, 9]) and generalized moment problems and their numerical solution

([17]). See [18, 24] for extensive explorations of this old and very broad range of

topics. The question of when a sequence does not arise as moments of a finite-

atomic measure was recently addressed [3], a topic with a long history connected

with totally positive matrices [12, 21], strong log-concavity/unimodality [4, 5], con-



INTEGERS: 21A (2021) 3

tinued fractions and Padé approximants [25]. Here, we add to the literature on

moment problems by addressing the case of the underlying space being C with the

two conditions that either (1) the measures are complex-valued and finite-atomic,

or (2) the (positive) measures are finite-atomic with integer masses.

Yet another large constellation of topics closely connected with recurrence rank

is the theory of Hankel matrices [19, 28], matrices which are constant on anti-

diagonals. These matrices – and, more generally, Hankel operators – play an im-

portant role in combinatorial sequence transforms [13, 19], numerical methods in

signal processing [5], and Riordan arrays [20]. The determinants of Hankel matri-

ces, known as “catalecticants”, are objects of study going back as far as Sylvester’s

work in the 1850s [27], and lives on in invariant theory [26], polynomial positivity

[1], Waring rank and binary forms [23], and the theory of orthogonal polynomials

[16].

Clearly, the subject matters connected with linear recurrence order are vast, and

there is not space here to discuss them all (and many important references are

therefore omitted, although they can be found by following threads in the afore-

mentioned references). Indeed, so much work has been done on related topics over

such a long period of time that it is difficult to trace their history. This work, in

addition to presenting several new results, is an attempt to relate and distill these

perspectives into one focused on the matter of linear recurrence rank, the order of

the shortest recurrence a sequence satisfies, in the particularly interesting cases we

term “moment rank” and “unitary rank.” We attempt to keep the below exposi-

tion mostly self-contained, which entails borrowing a variety of arguments from the

literature, indicated whenever possible.

In the next section, we introduce notation, definitions, and state some basic

results. In Section 3, we present our first main theorem, a wide-ranging TFAE

statement about moment rank, and discuss a few consequences. In Section 4, we

present our second main theorem, another TFAE statement about unitary rank,

and some consequences thereof.

2. Preliminaries

Suppose the sequence C = (cn)∞n=0 satisfies an r-th order linear recurrence relation

r∑
n=0

ancn = 0 (1)

Then, by classical results [11], the elements of C can be expressed as

cn =

r∑
i=1

αiβ
r
i
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for some {αi}ri=1, where {βi}ri=1 are the roots of the degree-r polynomial p(x) =

a0
∏r
i=1(x − βi) =

∑r−1
i=0 aix

r, as long as the βi are distinct. The {αi}ri=1 can be

obtained by solving the linear system

∀j ∈ {0, . . . , r − 1},
r∑
i=1

αiβ
j+1
i = cj (2)

These observations motivate the following definition.

Definition 1. The sequence C = (cn)Nn=0 (with N = ∞ allowed) is said to have

recurrence rank r if r is the smallest positive integer so that C satisfies a linear

recurrence of order r. If N =∞, we write rrank(C) for the recurrence rank.

Definition 2. The sequence C = (cn)Nn=0 (with N = ∞ allowed) is said to have

moment rank r if r is the smallest positive integer so that there exists a set of nonzero

complex numbers {αi}ri=1 and distinct nonzero {βi}ri=1 so that cn =
∑r
i=1 αiβ

n+1
i

for all 0 ≤ n ≤ N . If N =∞, we write mrank(C) for the moment rank.

Use of this definition depends on the uniqueness of the quantity for a given

sequence. This motivates the following lemma.

Lemma 1. mrank((cn)n≥0) is well-defined.

Proof. Suppose, by way of contradiction, that there are two sets {βi}ri=1 and {β′j}sj=1

of nonzero distinct complex numbers along with sets of nonzero complex numbers

{αi}ri=1 and {α′j}sj=1 so that

cn =

r∑
i=1

αiβ
n+1
i =

s∑
j=1

α′jβ
′(n+1)
j

Write f(z) =
∑∞
n=0 cnz

n. Because maxi |βi| and maxj |β′j | are finite, the following

is true around a sufficiently small ball about z = 0:

∞∑
n=0

r∑
i=1

znαiβ
n+1
i =

∞∑
n=0

s∑
j=1

znα′jβ
′(n+1)
j

r∑
i=1

∞∑
n=0

znαiβ
n+1
i =

s∑
j=1

∞∑
n=0

znα′jβ
′(n+1)
j

r∑
i=1

αiβi
1− zβi

=

s∑
j=1

α′jβ
′
j

1− zβ′j

These two functions are equal, so they have the same set of (simple) poles;

thus, {βi}i = {β′j}j and r = s. Furthermore, since the residues of these poles

are proportional to the multiplicity of the αiβi and α′jβ
′
j values, we also have that

{αi}ri=1 = {α′j}sj=1.
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The beginning of this section motivates the moment rank definition by the sat-

isfaction of a linear recurrence. The following definition introduces a specific kind

of linear recurrence we consider throughout the work.

Definition 3. An r-th order linear recurrence of the form
∑r
j=0 ajcj+t = 0 satisfied

by the sequence (cj)j≥0 for all t ≥ 0 is said to be simple if the characteristic

polynomial
∑r
j=0 ajx

j has distinct roots.

The characteristic polynomial of a recurrence provides a way to translate between

polynomials and recurrences. Given a sequence which satisfies a linear recurrence,

there are methods to define other recurrences of higher orders which the given

sequence satisfies. We consider this idea in the context of characteristic polynomials,

motivating the following definition and the lemma that follows.

Definition 4. Given a complex sequence C = (cn)∞n=0, let

RC =


r∑
j=0

ajx
j : aj ∈ C and

r∑
j=0

ajcj+t = 0 for all t ≥ 0


be the set of characteristic polynomials of arbitrary finite order linear recurrences

the sequence C satisfies for all t ≥ 0. We note that the zero polynomial is a trivial

element of RC .

The set above is a subset of one variable polynomials with complex coefficients.

We explore useful algebraic properties of this subset of C[x].

Lemma 2. Given a complex sequence C = (cn)∞n=0, the set RC is an ideal in C[x].

Proof. We know the zero polynomial is in RC by definition. Let a(x) =
∑r
i=0 aix

i

and b(x) =
∑s
j=0 bjx

j be arbitrary elements of RC . Then
∑r
i=0 aici+t = 0 and∑s

j=0 bjcj+t = 0, giving that

r∑
i=0

aici+t +

s∑
j=0

bjcj+t = 0.

Thus, RC is closed under addition.

Now let {dk}qk=0 be complex constants so that d(x) ∈ RC where d(x) =
∑q
k=0 dkx

k.

Let p(x) =
∑m
l=0 plx

l be an arbitrary polynomial with complex coefficients. If d(x)

or p(x) is the zero polynomial, then p(x) · d(x) ∈ RC . Suppose now that d(x)

and p(x) are not identically zero. Since the sequence C satisfies a recurrence with

characteristic polynomial d(x), the generating function Φ(x) of the sequence has

denominator d(x). Therefore p(x) · d(x) ·Φ(x) is a polynomial, so p(x) · d(x) ·Φ(x)

is the characteristic polynomial for a recurrence satisfied by C, giving that RC is

closed under multiplication by elements of C[x].
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Note that since C[x] is a principal ideal domain, RC is generated by one complex

polynomial. Moreover, we call RC the recurrence ideal of the sequence C.

Corollary 1. Given a complex sequence C = (cn)∞n=0 let RC be generated by p(x).

If p(x) has repeated roots, then C does not satisfy a simple linear recurrence of any

order. Thus, C satisfying a simple linear recurrence implies that p(x) has distinct

roots, i.e., if mrank(C) <∞, then rank(C) = mrank(C).

The algebraic structure of the recurrence ideal gives rise to useful properties

of simple linear recurrences, some of which are investigated by Lemma 3. The

properties addressed in the following two lemmas are useful in the proof of Theorem

1.

Lemma 3. Let r be the smallest positive integer so that the sequence (cj)j≥0 sat-

isfies the simple r-th order linear recurrence
∑r
j=0 ajcj+t = 0. Then the following

observations hold.

1. ar 6= 0.

2. The roots of p(x) =
∑r
j=0 ajx

j are non-zero.

3. The polynomial q(x) =
∑r
j=0 ajx

r−j (the “reciprocal” of the characteristic

polynomial) has r distinct, nonzero roots.

Proof. (1) - This follows trivially from the minimality of r.

(2) - Due to Corollary 1, p(x) is the generator of the recurrence ideal, RC . If x is

a factor of p(x), that corresponds to an index shift in the corresponding recurrence.

Then a(x) = p(x)/x is also the characteristic polynomial of a linear recurrence

satisfied by C, so a(x) ∈ RC , contradicting the minimality of deg(p).

(3) - Since ar 6= 0 by (1), q(x) has nonzero constant term so q(0) 6= 0. Therefore,

the reciprocal of q(x) is well defined, with p(x) the reciprocal of q(x). The poly-

nomial p(x) has r distinct nonzero roots by (2) and simplicity, so the same can be

said of q, whose roots are the reciprocals of the roots of p.

Lemma 4. Let the sequence C = (cn)n≥0 satisfy two r-th order linear recurrences,

namely the minimal order recurrence
∑r
n=0 ancn+t = 0 and another r-th order

recurrence
∑r
n=0 bncn+t = 0, for all t ≥ 0. Then (a1, a2, . . . , ar) = λ(b1, b2, . . . , br),

where λ 6= 0 is a scalar.

Proof. Let a(x) be the characteristic polynomial of the recurrence
∑r
n=0 ancn+t = 0.

Since r is minimal, we have that a(x) generates RC . If b(x) is the characteristic

polynomial of the recurrence
∑r
n=0 bncn+t = 0, it must be that a(x) = λb(x) for

some λ ∈ C \ {0} since RC is principal and deg(a) = deg(b), from which the result

follows.
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We have already seen that the roots of characteristic polynomials associated

with simple linear recurrences are distinct. The discriminant is a polynomial in the

coefficients of univariate complex polynomials, whose kernel is exactly the set of

polynomials with a repeated root. This kernel is the “discriminant variety”.

Definition 5. Fix the natural number r ≥ 1. Then the (affine) r-discriminant

variety, denoted ∇r, is the closure of{
(b0, . . . , br) ∈ Cr+1 : f(x) =

r∑
i=0

bix
i has a repeated root

}
.

It is also common to consider a Hankel matrix whose entries are given by the

elements of a sequence. Both finite and infinite dimensional square Hankel matrices

are considered throughout the paper. In [2], the authors show that all infinite

Hankel matrices have generalized Vandermonde decompositions of a specified form,

dependent on the recurrences the original sequence satisfies. Our investigation into

simple linear recurrences invites the question of which additional matrix properties

are satisfied by Hankel matrices generated by sequences satisfying simple linear

recurrences. The following lemma and subsequent definition provide tools necessary

to analyze the structure of these matrices.

Lemma 5. Let V be an r × n Vandermonde matrix where the (i, j) entry is aj−1i ,

and let D be an r×r diagonal matrix with (i, i) entry bi. Take ai and bi for 1 ≤ i ≤ r
to be complex scalars. Then the matrix V TDV is a Hankel matrix.

Proof. We simply perform the matrix multiplication, showing the form of each

product along the way. Let the matrices Dr×r and Vn×r be defined as follows,

where {ai}ri=1 and {bi}ri=1 are complex scalars. Let Dr×r = diag(bi) and

V =


1 a1 a21 · · · an−11

1 a2 a22 · · · an−12
...

...
...

. . .
...

1 ar a2r · · · an−1r


.

We see that

V TD =


b1 b2 b3 · · · br
b1a1 b2a2 b3a3 · · · brar

...
...

...
. . .

...
b1a

n−1
1 b2a

n−1
2 b3a

n−1
3 · · · bra

n−1
r


,

and furthermore that

V TDV =


∑r
i=1 bi

∑r
i=1 biai

∑r
i=1 bia

2
i · · ·

∑r
i=1 bia

n−1
i∑r

i=1 biai
∑r
i=1 bia

2
i

∑r
i=1 bia

3
i · · ·

∑r
i=1 bia

n
i

...
...

...
. . .

...∑r
i=1 bia

n−1
i

∑r
i=1 bia

n
i

∑r
i=1 bia

n+1
i · · ·

∑r
i=1 bia

2n−2
i


.
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Then cj =
∑r
i=1 bia

j
i for 0 ≤ j ≤ 2n−2 is the sequence which populates the Hankel

matrix V TDV .

We are specifically interested in Vandermonde matrices with no zero entries,

motivating the following definition.

Definition 6. Let Hn×n, where n is allowed to be∞, be a complex matrix. We say

H has a non-degenerate Vandermonde decomposition if there exists a Vandermonde

matrix Vr×n with all entries nonzero and a diagonal matrix Dr×r so that H∞ =

V TDV .

3. Moment Rank

Finally, before presenting the main theorem of this section, we describe an algo-

rithm which returns the moment rank of a sequence and the coefficients of a linear

combination of powers witnessing to this rank. Denote the r×r (modified) Vander-

monde matrix with (i, j) entry βji for β = (β1, . . . , βr) by VDM′(β), and the r × r
(ordinary) Vandermonde matrix with (i, j) entry βj−1i by VDM(β).

Algorithm mrank(C): Given the sequence C = (cn)n≥0, set r = 0. Then

1. r ← r + 1

2. Let ct = (ct, . . . , ct+r−1), and C = (cT0 , . . . , c
T
r−1).

3. If det(C) = 0, goto step 1. Else continue.

4. Let (a0, . . . , ar−1)T = −C−1cTr , and define p(x) =
∑r

n=0 anx
n, where ar = 1.

5. If (cn)n≥0 does not satisfy the recurrence
∑r

i=0 aici+t = 0 for all t ≥ 0, goto step 1.
Else continue.

6. If p has repeated roots, throw ErrorNotSimple and terminate. Else continue.

7. return r and α = (c0 VDM′(β)−1)T , where β is the vector of roots of p(x).

Note that the above is in truth only a template for an actual executable algo-
rithm, since some steps involve unspecified subroutines, such as computation of the
determinant in Step 3, or checking for repeated roots in Step 6. Indeed, Step 5 in-
volves checking whether a sequence is satisfied by a given recurrence, a task which
could range from very straightforward (e.g., if the sequence was given as the solu-
tion to a linear recurrence) to undecidable (e.g., if the sequence is not a computable
function of its index). We therefore make no attempt to analyze the complexity of
mrank(·) and instead treat constitutive subproblems as black boxes. However, we
do assume that each step is indeed computable in the sense that there exists an
algorithm which will, in finite time, return True or False correctly.

The following is our main theorem concerning sequences of finite moment rank.
We show that all of the above contexts provide interpretations of the moment rank.
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Recall that an S-measure on a space (X ,Σ), where Σ is a σ-algebra on X , is a
countably additive function from Σ to S, where S is an additive monoid with limits
such as [0,∞) (positive measure), R (signed measure), or C (complex measure).
The t-th moment mt of an S-measure dµ on X is the quantity

∫
X x

t dµ, and the
sequence {mt}∞t=0 is its “moment sequence”. We call a measure “r-atomic” if there
exists an A ⊂ X with |A| = r so that µ(x) 6= 0 for x ∈ A, and µ(B) = 0 for any
B ⊂ X \A in Σ.

Theorem 1. Suppose C = (cn)∞n=0 is a sequence in C, and r ∈ N. Let Hm,t

denote the (m+ 1)× (m+ 1) Hankel matrix whose entries come from the sequence
(cn)2m+t

n=t , and let f =
∑
n≥0 cnz

n denote the ordinary generating function of C.
Then the following are equivalent.

1. The sequence C has moment rank r.

2. C satisfies a simple r-th order linear recurrence, and r is the smallest positive
integer so that C has this property.

3. The matrices Hm,t satisfy det(Hr−1,t) 6= 0, null(Hr,0) = 1, ker(Hr,t) =
ker(Hr,0) for every t ≥ 0, and ker(Hr,0) 6⊆ ∇r.

4. There exist {α1, . . . , αr}, {β1, . . . , βr}, {λ1, . . . , λr} ⊂ C\{0} so that, for each

t ≥ 0, the polynomial
∑2r
j=0

(
2r
j

)
cj+tx

2r−jyj =
∑r
j=1 λj(βj/αj)

t(αjx+ βjy)2r

and {αj/βj}rj=1 is a set of r distinct values.

5. The ordinary generating function Φ(z) =
∑
n≥0 cnz

n of C is a rational func-
tion with exactly r simple poles.

6. The infinite Hankel matrix H∞ has rank r and admits a non-degenerate Van-
dermonde decomposition.

7. The ideal RC is radical, and the least degree of any nonzero element is r.

8. The sequence C is the moment sequence for a complex r-atomic measure on
C.

9. The algorithm mrank(C) returns the parameter r.

Proof.

2⇔ 7: Suppose 7. Let p(x) be a monic generator of RC , which exists because C[x] is
a PID. We know that p is the characteristic polynomial for a linear recurrence
of minimal order satisfied by C. Note that deg(p) = r. Let {βi}si=1 be the
distinct roots of p, and let m be the maximum multiplicity of a root of p.
Consider the polynomial q(x) =

∏s
i=1(x − βi)m. Clearly p divides q, giving

that q(x) ∈ RC . Since the ideal is radical, we have that m
√
q(x) =

∏s
i=1(x−βi)

is an element of RC . Thus, deg( m
√
q(x)) ≤ deg(p(x)), and p(x) generating the

recurrence ideal implies deg( m
√
q(x)) = deg(p(x)), so p(x) has distinct roots.
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We prove the reverse direction by contraposition. Let p(x) be the generator of RC
and suppose RC = 〈p(x)〉 is not radical. Let f(x) ∈ RC and m ≥ 2 be an
integer so that m

√
f(x) is an element of C[x] \ RC . Since RC is principal, we

have that p divides f , but p does not divide m
√
f . Since the distinct roots of

f and m
√
f are the same, we have that p does not have distinct roots. Since p

does not have distinct roots, the same can be said of every polynomial in RC
and so C does not satisfy a simple linear recurrence.

2⇒ 5⇒ 4: We adapt an argument from [23], ultimately drawing upon Sylvester’s
legendary manuscript [27]. Suppose (2), so for C we have

∑r
n=0 ancn+t = 0 for

t ≥ 0, where r is the smallest order simple recurrence the sequence satisfies.
By Lemma (3), the polynomial g(x) =

∑r
n=0 anx

r−n has no repeated roots,
and ar 6= 0. Define h(x, y) =

∑r
n=0 anx

r−nyn. Without loss of generality let
ar = 1. Let αn and βn be complex numbers for 1 ≤ n ≤ r so that h(x, y) =∏r
n=1(−βnx + αny). Note that the αn

βn
are distinct since h(x, 1) = g(x) has

distinct roots.

Let Φ(T ) =
∑∞
m=0 cmT

m. Then we have the following, which converges within
a positive-radius disk about zero:(

r∑
n=0

ar−nT
n

)
Φ(T ) =

r−1∑
j=0

j∑
k=0

ar−(j−k)ckT
j +

∞∑
j=r

r∑
k=0

ar−kcj−kT
j .

In the second term above, we have j − r ≥ 0. Therefore,
∑r
k=0 ar−kcj−k =∑r

n=0 ancn+(j−r) and the second term vanishes, leaving(
r∑

n=0

ar−nT
n

)
Φ(T ) =

r−1∑
j=0

j∑
k=0

ar−(j−k)ckT
j .

Thus, Φ(T ) is a rational function with denominator
∑r
n=0 ar−nT

n

=
∑r
n=0 anT

r−n = h(T, 1) =
∏r
n=1(αn − βnT ). Since the αn

βn
are distinct,

this completes the proof of (5).

Continuing from here, by partial fractions, since the αn

βn
are distinct there

exist λn for 1 ≤ n ≤ r so that (choosing numerators with foresight)

Φ(T ) =

r∑
n=1

λnα
2r+1
n

αn − βnT
⇒ cm =

r∑
n=1

λnα
2r
n

(
βn
αn

)m
.

The following computation completes the proof of (4), noting that the mini-
mality of r in this setting is due to the construction in 4⇒ 2 (see below):

2r∑
j=0

(
2r

j

)
cj+tx

2r−jyj =

r∑
n=1

λnα
2r
n

(
βn
αn

)t 2r∑
j=0

(
2r

j

)(
βn
αn

)j
x2r−jyj

=

r∑
n=1

λn(βn/αn)t(αnx+ βny)2r.
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4⇒ 2: Suppose (4), giving that there exist nonzero {α1, . . . , αr}, {β1, . . . , βr}, and

{λ1, . . . , λr} so that, for each t ≥ 0, the polynomial
∑2r
j=0

(
2r
j

)
cj+tx

2r−jyj =∑r
j=1 λj(βj/αj)

t(αjx+βjy)2r, the set {αj/βj}rj=1 consists of r distinct values,
and r is the smallest positive integer for which this property holds. Then for
0 ≤ j ≤ 2r we have

cj+t =

r∑
j=1

λj(βj/αj)
t(α2r−j

j βjj ) =

r∑
j=1

λjα
2r−j−t
j βj+tj .

Let h(x, y) =
∏r
n=1(−βnx + αny). Moreover, let an for 0 ≤ n ≤ r so that

h(x, y) =
∑r
n=0 anx

r−nyn. Note that ar =
∏r
n=1 αn. Since αn 6= 0 for all

1 ≤ n ≤ r, we have that ar 6= 0. Continuing, we have

r∑
n=0

ancn+t =

r∑
j=1

r∑
n=0

anλjα
2r−n−t
j βn+tj

=

r∑
j=1

λjα
r−t
j βtj

r∑
n=0

anα
r−n
j βnj

=

r∑
j=1

λjα
r−t
j βtjh(αj , βj) = 0.

Therefore, the sequence satisfies an r-th order linear recurrence. Notice that
the recurrence is simple since h(x, 1) =

∏r
n=1(−βnx+αn) has distinct, nonzero

roots. Moreover, the minimality of r in this setting is due to the construction
in the preceding argument.

5⇒ 7: Suppose (5). Let Φ(z) =
∑∞
n=0 cnz

n. Let the r simple poles of Φ(z) be
γn for 1 ≤ n ≤ r so that g(z) =

∏r
n=1(z − γn) is the denominator of Φ(z).

It is a well-known result [11] that the polynomial f(z) =
∑m
i=0 aiz

i is the
characteristic polynomial of a recurrence satisfied by C if and only if f(z)Φ(z)
is a polynomial. Thus f(z) ∈ RC if and only if g(z) divides f(z), giving that
g(z) (a polynomial of degree r) is a generator for RC . The distinctness of the
roots of g(z) implies RC is radical.

1⇔ 2: Suppose (1), meaning there exists a set of nonzero complex numbers {αi}ri=1

and distinct nonzero {βi}ri=1 so that cn =
∑r
i=1 αiβ

n+1
i for all n ≥ 0. We

multiply both sides of the equation by zn and take the sum over n to examine
the ordinary generating functions of both sides. We have the following:

Φ(z) =

∞∑
n=0

r∑
i=1

αiβ
n+1
i zn =

r∑
i=1

∞∑
n=0

αiβ
n+1
i zn =

r∑
i=1

αiβi
1− βiz

.

Thus, if we let g(z) =
∏r
i=1(1−βiz) =

∑r
i=0 aiz

i for some coefficients ai, then
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Φ(z)g(z) =
∑r−1
i=0 λiz

i is a polynomial of degree r − 1 where λr−1 6= 0, i.e.,

r−1∑
i=0

λiz
i =

∞∑
n=0

cnz
ng(z) =

∞∑
n=0

cnz
n

r∑
i=0

aiz
i

=

∞∑
n=r

zn
r∑
i=0

aicn−i +

r−1∑
n=0

zn
n∑
i=0

aicn−i.

By matching coefficients of zn on each side, we see, for n ≥ r,

0 =

r∑
i=0

aicn−i.

But, a0 = 1, so

cn = −
r∑
i=1

aicn−i, (3)

i.e., if α = (ar, ar−1, . . . , a1), we have CαT = −cTr , where we define ct :=
(ct, · · · , ct+r−1) and C = (c0, · · · , cr−1)T . So αT = −C−1cTr , and

q(x) =
∑r
i=0 aix

r−i is the characteristic polynomial of the recurrence in Equa-
tion (3). Since the recurrence is solved by cn =

∑r
i=1 αiβ

n+1
i , the roots of

p(x) are the distinct nonzero values {βi}ri=1. Moreover, since each βi 6= 0, we
have that ar 6= 0. Thus, C satisfies a simple r-th order linear recurrence, and
the minimality of r in this setting is given by the construction in the other
direction of the proof (below) together with Lemma 1.

Suppose (2), giving that
∑r
n=0 ancn+t = 0 for all t ≥ 0, and r is the smallest order

recurrence the sequence satisfies. By Lemma 3, let {βi}ri=1 be the distinct
nonzero roots of p(x), the characteristic polynomial of the recurrence. It
follows from standard facts about rational functions that p(x) having distinct
roots implies cn =

∑r
i=1 αiβ

n+1
i for all n ≥ 0 where each αi ∈ C. If any of

the αi are zero, the construction in the other direction of the proof would
contradict the minimality of r in this direction. Therefore all αi are nonzero
and C has moment rank r.

3⇔ 2: Suppose (2), giving that
∑r
n=0 ancn+t = 0 for all t ≥ 0 with ar = 1, and r

is the smallest order recurrence the sequence satisfies. The r-th order linear
recurrence implies Hr,tA = 0, where A = [a0, a1, . . . , ar]

T . Let M be the
(r+ 1)× (r+ 1) matrix given by Mi,j = 1 if j = i+ 1, Mr+1,j = −aj−2−aj−1
for 1 ≤ j ≤ r + 1 where we define a−1 = 0, and Mi,j = 0 otherwise. Then
M is invertible, because Mr+1,1 6= 0, the (r + 1, 1)-minor of M is 1, and
M(ct, . . . , cr+t)

T = (ct+1, . . . , cr+t+1)T because M acts as a left-shift on the
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first r coordinates, and the r + 1-st coordinate is given by

r+1∑
j=1

−(aj−1 + aj−2)cj+t−1 =

r+1∑
j=1

−aj−2cj+t−1 −
r+1∑
j=1

aj−1cj+t−1

= arcr+t+1 −
r∑

n=0

ancn+t+1 −
r∑

n=0

ancn+t

= cr+t+1.

Therefore, Hr,t = MkHr,t−k for any integers t ≥ max{0, k}, so ker(Hr,t) =
ker(Hr,t′) for every t, t′ ≥ 0. Suppose that there exists a non-trivial vector
B = [b0, b1, . . . , br]

T contained within ker(Hr,t). Then
∑r
n=0 bncn+t = 0 for all

t ≥ 0, and Lemma 4, gives that B is a scalar multiple of A. Thus, null(Hr,t) =
1. The polynomial p(x) =

∑r
i=0 aix

r has no repeated roots, implying that
ker(Hr,t) 6⊆ ∇r.
Finally, the minimality of r gives that null(Hm,t) = 0 for all 1 ≤ m ≤ r − 1,
implying that det(Hr−1,t) 6= 0 for all t ≥ 0.

Suppose (3). There exists A = [a0, a1, . . . , ar]
T so that A ∈ ker(Hr,t) for all t ≥ 0.

Moreover, (a0, . . . , ar) /∈ ∇r, so the polynomial a(x) =
∑r
i=0 aix

i has distinct
complex roots. Let the first row of Hr,t = ct = [ct, . . . , ct+r]. Then ct ·A = 0,
giving that 0 =

∑r
i=0 aici+t for all t ≥ 0, and the original sequence satisfies an

rth order linear recurrence. The minimality of r is given by det(Hr−1,t) 6= 0
for all t ≥ 0, completing the proof.

1⇔ 6 : Suppose (6). Let H∞ (with entries from the sequence C) have rank r and
admit a non-degenerate Vandermonde decomposition. Let {ai}ri=1 and {bi}ri=1

be sets of complex scalars so that Dr×r = diag(bi),

Vr×∞ =


1 a1 a21 · · · an−11 · · ·
1 a2 a22 · · · an−12 · · ·
...

...
...

. . .
... · · ·

1 ar a2r · · · an−1r · · ·


,

and H∞ = V TDV . Since rank(H∞) = r, rank(V ) ≤ r, and rank(D) ≤ r, we
have that rank(V ) = rank(D) = r and furthermore that bi 6= 0 for 1 ≤ i ≤ r.
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By the computation given in Lemma 5, we see that

c0 c1 · · · cn−1 · · ·
c1 c2 · · · cn · · ·
...

...
. . .

... · · ·
cn−1 cn+1 · · · c2n−2 · · ·

...
...

...
...

. . .

 = H∞ = V TDV

=



∑r
i=1 bi

∑r
i=1 biai · · ·

∑r
i=1 bia

n−1
i · · ·∑r

i=1 biai
∑r
i=1 bia

2
i · · ·

∑r
i=1 bia

n
i · · ·

...
...

. . .
... · · ·∑r

i=1 bia
n−1
i

∑r
i=1 bia

n
i · · ·

∑r
i=1 bia

2n−2
i · · ·

...
...

...
...

. . .


.

Thus, equating the entries of the two representations of H∞ yields cn =∑r
i=1 bia

n
i for all n ≥ 0. Using the transformation βi = ai and bi

βi
= αi for

1 ≤ i ≤ r, we obtain the desired form. Note that this transformation is well-
defined since ai 6= 0 is a consequence of the definition of a non-degenerate
Vandermonde decomposition. Moreover, all ai = βi are distinct, since ai = aj
for i 6= j implies the ith and jth rows of V are equal, contradicting rank(V ) =
r.

Suppose (1) by letting C have moment r. Then there exists a set of nonzero
complex numbers {αi}ri=1 and distinct nonzero {βi}ri=1 so cn =

∑r
i=1 αiβ

n+1
i

for all n. We see from the computation in Lemma 5 that D = diag(αiβi)
and the (i, j) entry of Vr×∞ given by βj−1i is a non-degenerate Vandermonde
decomposition of H∞.

It only remains to show that H∞ has rank r. It is immediately clear that
rank(H∞) ≤ r. Moreover, Frobenius’s inequality [15, 0.4.5(e)] implies that
for the product V TDV ,

rank(V TD) + rank(DV ) ≤ rank(D) + rank(V TDV ).

We show now that rank(V TD) = r. Suppose that rank(V TD) < r. Then, not
all columns of V TD are linearly independent, and there exists {γi}r−1i=1 ⊂ C
so that

∑r−1
i=1 γiCi = Cr, where Ci denotes the ith column of V TD. By

examining the entries within the columns of V TD, we see that
∑r−1
i=1 γiCi = Cr

implies
∑r−1
i=1 γiαiβ

n+1
i = αrβ

n+1
r for all n ≥ 0, leading to the following

representation of cn.

cn =

r∑
i=1

αiβ
n+1
i =

r−1∑
i=1

(1 + γi)αiβ
n+1
i

This implies C has description complexity at most r−1, contradicting Lemma
1. Therefore rank(V TD) = r = rank(DV ), and Frobenius’s inequality pro-
duces the desired result. (It is also possible to argue this via Sylvester’s Law
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of Inertia applied to the leading principal r × r submatrices of H∞, V , and
D.)

1⇔ 8: It is clear that cn =
∑r
i=1 αiβ

n+1
i is the (n+ 1)-st moment of the r-atomic

complex measure µ =
∑r
i=1 αiδβi

, where δβi
denotes the standard Dirac delta

function.

1⇔ 9: We argue that the algorithm returns the parameter r if and only if r is
the smallest positive integer so that every term of the sequence (cn) can be
expressed as cn =

∑r
i=1 αiβ

n+1
i for a set of nonzero complex αi and distinct

βi (since αi = 0 or βi = βj for i 6= j contradict the minimality of r).

Suppose the algorithm succeeds. Then (cn)n≥0 satisfies
∑r
n=0 ancn+t = 0,

where the {an} are defined by step 4; this is well-defined because step 3 says
that det(C) 6= 0. The characteristic polynomial of the recurrence p(x) is well-
defined and factors into r distinct linear factors x − βi by step 6. Thus, by
standard results in the theory of linear recurrence relations,

cn =

r∑
i=1

αiβ
n+1
i

for some {αi}ri=1 ⊂ C, which are nonzero by the minimality of r (since
mrank(C) did not terminate on any r′ < r). So, mrank(C) = r.

Now, suppose that cn =
∑r
i=1 αiβ

n+1
i with all distinct nonzero βi and nonzero

values αi. By 1 ⇒ 3 above, the matrix C = Hr−1,0 introduced in step 2 is
invertible, so we pass step 3. Write Φ(z) =

∑∞
n=0 cnz

n. Because maxi |βi| <
∞, the following is true in a sufficiently small ball about z = 0:

Φ(z) =

∞∑
n=0

r∑
i=1

znαiβ
n+1
i

=

r∑
i=1

αiβi
1− βiz

.

Thus, if we let g(z) =
∏r
i=1(1 − βiz) =:

∑r
i=0 ar−iz

i, then Φ(z)g(z) is a
polynomial of degree r − 1, i.e.,

Φ(z)g(z) =

∞∑
n=0

cnz
ng(z) =

∞∑
n=0

cnz
n

r∑
i=0

ar−iz
i

=

∞∑
n=r

zn
r∑
i=0

ar−icn−i +

r−1∑
n=0

zn
n∑
i=0

ar−icn−i

=

∞∑
n=r

zn
r∑
i=0

aici+n−r +

r−1∑
n=0

zn
n∑
i=0

ai+r−nci.
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By matching coefficients of zn on each side, we see, for n ≥ r,
∑r
i=0 aici+n−r =

0, so we pass step 5. But, ar = 1, so setting n = r,

cr = −
r−1∑
i=0

aici, (4)

i.e.,

C

 a0
...

ar−1

 = −cTr

so  a0
...

ar−1

 = −C−1cTr .

Thus, p(x) =
∑r
i=0 aix

i is the characteristic polynomial of the recurrence in
Equation (4). Since the recurrence is solved by cn =

∑r
i=1 αiβ

n+1
i , the roots

of p(x) are the distinct values {βi}ri=1, and we pass step 6. Since Lemma 1
implies that the algorithm does not succeed for any r′ < r, the result follows.

In condition (4), the quantity r is known as the “Waring rank” of this polyno-
mial. Pratt [22] presents a history and many interesting results about this classical
invariant.

Note that, when mrankC is finite, mrank(C) returns r (the order of the recur-
rence satisfied by C) and a vector α = (c0 VDM(β)−1)T . Since cn =

∑r
i=1 αiβ

n+1
i

for some nonzero values {αi}ri=1, we may write

VDM(β)T


α1

α2

...
αr

 =


β1 β2 · · · βr
β2
1 β2

2 · · · β2
r

...
...

. . .
...

βr1 βr2 · · · βrr



α1

α2

...
αr

 =


c0
c1
...

cr−1

 = cT0 .

Since the {βi} are distinct when r is minimal, VDM(β) is invertible, so the vector
of αi values equals (VDM(β)−1)T c0, i.e., α = (α1, . . . , αr).

Corollary 2. For a sequence C = (cn)∞n=0 satisfying a simple r-th order linear
recurrence for r minimal,

nullHm,t = max{0,m− r + 1}.

Proof. The rank of Hm,t is equal to the order r of the smallest linear recurrence
satisfied by C for m ≥ r and is m+ 1 for m < r, since Hr,t is invertible. Therefore,
null(Hm,t) = max{0,m− r + 1}.
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4. Unitary Rank

Given a sequence C = (cn)n≥0 with moment rank r, we know that cn =
∑r
i=1 αiβ

n+1
i

for nonzero {αi} and nonzero, distinct {βi}. It will be useful for some applications
to isolate and consider the case when αi = 1 for all i, meaning cn =

∑r
i=1 β

n+1
i for

n ≥ 0. We proceed with the following definition (changing the sequence index for
ease of use later).

Definition 7. The sequence C = (cn)Nn=1 (with N = ∞ allowed) is said to have
unitary rank r if r is the smallest positive integer so that there exists a multiset
of nonzero complex values {βi}ri=1 so that cn =

∑r
i=1 β

n
i for all 1 ≤ n ≤ N . If

N =∞, we write urank((cn)n≥1) for the unitary rank.

Lemma 6. urank((cn)n≥1) is well-defined.

Proof. Suppose, by way of contradiction, that there are two distinct multi-sets
{βi}ri=1 and {γj}sj=1 of nonzero complex numbers so that

cn =

r∑
i=1

βni =

s∑
j=1

γnj .

Write f(z) =
∑∞
n=1 cnz

n. Because maxi |βi| and maxj |γj | are finite, the following
is true around a sufficiently small ball about z = 0:

∞∑
n=1

r∑
i=1

znβni =

∞∑
n=1

s∑
j=1

znγnj

r∑
i=1

zβi
1− zβi

=

s∑
j=1

zγj
1− zγj

.

These two functions are equal, so they have the same set of poles; thus, as sets,
{γi}i = {βi}i. Furthermore, since the residues of these poles are proportional to
the multiplicity of the γi and βi values, they also occur the same number of times.
Thus, as multisets as well, {γi}i = {βi}i.

Theorem 2. Let C = (cn)∞n=1 be a sequence and r a positive integer. Let Hr−1,t
denote the r × r Hankel matrix whose entries come from the sequence (cn)2r−2+tn=t .
Lastly, let Φ(z) =

∑
n≥1 cnz

n denote the ordinary generating function of the se-
quence C. Then the following are equivalent.

1. The sequence C has unitary rank r.

2. The algorithm mrank(T [C]) succeeds on the sequence T [C] = (cn+1)n≥0 and

returns r′ and α ∈ Nr′ so that α · 1 = r, where 1 is the all-ones vector of
dimension r′.
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3. C satisfies an r′-th order simple linear recurrence for some r′ ≤ r with coeffi-

cients {αi}r
′

i=1, αi ∈ N for all 1 ≤ i ≤ r′, and
∑r′

i=1 αi = r.

4. Let C′ = (c′n)n≥0 be a sequence so that c′0 = r and c′n = cn for n ≥ 1. If H ′r−1,t
is the r×r Hankel matrix whose first row consists of c′t, . . . , c

′
t+r−1, then there

exists an r × r Vandermonde matrix V = VDM(β) so that H ′r−1,t = V TDtV
where D = diag(β), for each t ≥ 0.

5. Let C′ = (c′n)n≥0 be a sequence so that c′0 = r and c′n = cn for n ≥ 1. If
H ′∞ is the infinite Hankel matrix with entries from C′, then there exists a
Vandermonde matrix V ′r,∞ so that H ′∞ = (V ′)TV ′.

6. exp(
∫
−x−1Φ(x) dx) is a polynomial of degree r with nonzero roots.

7. There exist nonzero r′ ∈ N and {α1, . . . , αr′}, {β1, . . . , βr′}, and {λ1, . . . , λr′}
so that, for each t ≥ 0, the polynomial

∑2r′

j=0

(
2r′

j

)
cj+tx

2r′−jyj =∑r′

j=1 λj(βj/αj)
t(αjx + βjy)2r

′
, and the {αj}r

′

j=1 are positive naturals that
sum to r.

8. The sequence C is the moment sequence for a complex finite-atomic measure
on C where the masses of the atoms are positive naturals with sum r.

Proof. 1⇔ 3: This is clear from the definitions of urank and mrank, taking into
account the shift in index.

1⇔ 2: The sequence C having unitary rank r implies there exists r′ ≤ r so that
mrank(T [C]) = r′, since we may take the same βi with αi equal to the mul-
tiplicity of βi in the representation cn =

∑r
i=1 β

n
i . Thus, the algorithm

applied to T [C] with Hankel matrix of size r′ succeeds and returns r′ and
α = (c0 VDM(β)−1)T , which, by the note following the proof of Theorem 1,

is the vector of coefficients αi in the representation cn =
∑r′

i=1 αiβ
n
i . (Note

that the exponent of βi is n instead of n+1 because T [C] is the input to mrank

here.) But then, the sum
∑r′

i=1 αi over the values generated by the algorithm
is r, since this is the number of terms in the representation cn =

∑r
i=1 β

n
i .

To establish the converse direction, suppose the algorithm returns r′ and
α ∈ Nr′ with α · 1 = r. Note that none of the αi are zero, since then mrank
would have terminated on a smaller value of r′. Thus, the αi are positive
integers summing to r, so we may write

cn+1 =

r′∑
j=1

αi∑
i=1

βn+1
j ,

i.e., cn =
∑r
j=1 β

′
j
n

if {βj}r
′

j=1 = {β′j}rj=1 with βj appearing with multiplicity
αj on the right-hand side.

3⇔ 8: This is a direct consequence of Theorem 1.
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1⇔ 5: Suppose condition (1) holds and let {βi}ri=1 be given to satisfy the definition
of unitary rank for the sequence C. To adopt the notation of Lemma 5, letting
bi = 1 and ai = βi for 1 ≤ i ≤ r proves (5).

Now, suppose (5) holds. Letting bi = 1 for each 1 ≤ i ≤ r in the form of V TDV
given in Lemma 5, we have that the (i, j) entry of H ′∞ is

∑r
i=1 a

i+j−2
i . Clearly

then, we have that c′n =
∑r
i=1 a

n
i , further implying that cn =

∑r
i=1 a

n+1
i . The

uniqueness of unitary rank given by Lemma 6 completes the proof.

1⇔ 6: Suppose (1) holds. Let cn =
∑r
i=1 β

n
i . Since f(x) =

∑
n≥1 cnx

n, we have

that
∫
−x−1f(x) dx = −

∑
n≥1

cnx
n

n +C. We have the following computation:

exp

−∑
n≥1

cnx
n

n

 = exp

−∑
n≥1

r∑
i=1

βni x
n

n


= exp

− r∑
i=1

∑
n≥1

(βix)n

n


=

r∏
i=1

exp

−∑
n≥1

(βix)n

n


=

r∏
i=1

exp (log[1− βix])

=

r∏
i=1

(1− βix).

Therefore, we see that
∫
−x−1f(x) dx is the log of a polynomial of degree r,

as desired.

Suppose (6) holds. Since it is only possible to take the log of a polyno-
mial if the polynomial has nonzero constant term, we have that there exists
nonzero {βi}ri=1 so that exp(−

∫
x−1f(x) dx) =

∏r
i=1(1 − βix). By letting

cn =
∑r
i=1 βi and working backwards through the computation given in the

first direction of the proof shows

exp

(
−
∫
x−1f(x) dx

)
= eC exp

−∑
n≥1

cnx
n

n

 .

Taking log of both sides and differentiating gives that f(x) =
∑
n≥1 cnx

n,
showing that f(x) is the generating function for a sequence with unitary rank
r, completing the proof.

1⇔ 7: Suppose (1) holds. Having already proved 1 ⇔ 3, we appeal to (3) and
Theorem 1, to give that (despite the shift in index, which is taken care
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of by the variable t) there exist nonzero {α1, . . . , αr′}, {β1, . . . , βr′}, and

{λ1, . . . , λr′} so that, for each t ≥ 0, the polynomial
∑2r′

j=0

(
2r′

j

)
cj+tx

2r′−jyj =∑r′

j=1 λj(βj/αj)
t(αjx + βjy)2r

′
. The fact that

∑r′

i=1 αi = r is given by the
assumption of condition (1).

Now suppose (7) is true. By Theorem 1, we have that mrank(C) = r′. The
assumption in (7) that {αi}r

′

i=1 is a set of positive naturals summing to r gives
that urank(C) = r.

1⇔ 4: Suppose (4). By the computation given in Lemma 5, it is clear that the
(i, j) entry of V TDtV is given by

∑r
i=1 β

t+i+j−2
i . By letting cn =

∑r
i=1 β

n
i ,

we have that C = (cn)∞n=1 has unitary rank at most r. We note that Lemma
6 completes the proof that urank(C) = r.

Now, suppose (1). By the computation given in Lemma 5, we see that letting
the ith row of V be generated by βi and defining D = diag(βi), the result
follows immediately.

Suppose A is an infinite positive-semidefinite matrix (aka positive-type kernel for
`2); then A can be written as A = M∗M , which we will refer to as a “Gramian
representation” (since M∗M is a Gramian matrix in the finite-dimensional case).
In general, this representation is unique up to unitary conjugation.

Corollary 3. The property that a real sequence C is the moment sequence of a
finite-atomic measure on C with integer masses is equivalent to H ′∞ being positive
semi-definite of finite rank with a Vandermonde Gramian representation.

Proof. By Theorem 2, H ′∞ has a factorization as V TV for some Vandermonde kernel
V . Note that, if H ′∞ = M∗M for some M , then H ′∞ is Hermitian and symmetric,
which implies that C is real. Thus, V T = V ∗.
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