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Abstract
Let K be a field of characteristic != 2 and G the additive group of K ×K. In 2004,
Haddad and Helou constructed an additive basis B of G for which the number of
representations of g ∈ G as a sum b1 + b2(b1, b2 ∈ B) is bounded by 18. In this
paper, we proceed to investigate the parallel problem for differences.

1. Introduction

Let G be a semi-group. For A,B ⊆ G and g ∈ G, we define

σA,B(g) = |{(a, b) ∈ A×B : a + b = g}|,

δA,B(g) = |{(a, b) ∈ A×B : a− b = g}|.

Let σA(g) = σA,A(g), δA(g) = δA,A(g), and A−B = {a− b : a ∈ A, b ∈ B}.
The celebrated Erdős-Turán conjecture [3] states that if A ⊂ N is an additive

asymptotic basis of N, then the representation function σA(n) must be unbounded.
This conjecture has had an important impact in additive number theory. In 1954,
Erdős [2] proved the function σA(n) can have logarithmic growth. In 1990, Ruzsa
[7] constructed a basis of A ⊂ N for which σA(n) is bounded in the square mean.
These results indicate the difficulty involved in the conjecture and leads to the
consideration of the problem in other semigroups. Pǔs [6] first established that
the analogue of the Erdős-Turán conjecture fails to hold in some abelian groups.
Nathanson [4] constructed a family of arbitrarily sparse unique representation bases
for Z. In 2004, Haddad and Helou [5] showed that the analogue of the Erdős-
Turán conjecture does not hold in a variety of additive groups derived from those of
certain fields. In [8], Tang and Chen showed that the analogue of the Erdős-Turán
conjecture fails to hold in (Zm,+). For the related problems see [1,9].
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It is natural to consider the parallel problems for differences. In this paper, based
on the methods of Haddad and Helou, we obtain the following result.
Theorem 1. Let K be a finite field of characteristic != 2 and G the additive group
of K ×K. Then there exists a set B ⊂ G such that B − B = G, and δB(g) ≤ 14
for all g != 0.
Remark 2. This result is a generalization of the result obtained by Tang [10,
Lemma 3]. For example, let p be prime with p ≥ 3. By the theorem, there exists a
set B ⊂ Zp × Zp such that B −B = G and δB(g) ≤ 14 for all g != 0.

Throughout this paper, let K be a field of characteristic != 2 and G the additive
group of K×K. We denote by K∗ = K \ {0} the multiplicative group of K and by
S(K∗) = {x2 : x ∈ K∗} the subgroup of the square elements of K∗. For k ∈ K∗,
let Qk = {(u, ku2) : u ∈ K} ⊂ G.

2. Proofs

Lemma 3. For g = (a, b) ∈ G and fixed k, l ∈ K∗, consider the equation

g = x− y, x ∈ Qk, y ∈ Ql.

If k − l != 0, then the set Qk −Ql consists of all the elements (a, b) ∈ G such that
b(k − l) + a2kl is a square in K, and for any g ∈ G, δQk,Ql(g) ≤ 2. If k − l = 0, it
has at most one solution except if g = 0, when it has |K| solutions.

Proof. Let g = (a, b) ∈ G. Consider the system of equations

a = u− v, (1)

b = ku2 − lv2. (2)

Substituting the value of u from (1) into (2), we get the equation

b = (k − l)v2 + 2kav + ka2. (3)

Case 1. k− l != 0. This is a quadratic equation in v, and it has exactly one or two
solutions in the field K if and only if its discriminant 4a2k2 − 4(k − l)(a2k − b) =
4
(
(k− l)b+kla2

)
is a square in K. Since the characteristic of K is != 2, the non-zero

square factor 4 can be discarded in the latter condition. Thus for any g = (a, b) ∈ G,
we have δQk,Ql(g) ≤ 2.
Case 2. Case 2. k − l = 0. Then (3) is an equation of degree 1. If a != 0, (3) has
one solution. If a = b = 0, (3) has |K| solutions. If a = 0, b != 0, (3) has no solution.

This completes the proof of Lemma 3. !
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Lemma 4 [5, Lemma 3.7]. If K is a finite field of characteristic != 2, then the index
of the subgroup S(K∗) in the multiplicative group of K∗ is 2. Thus the product of
two non-square elements of K∗ is a square element of K∗.

Lemma 5. If K is a finite field of characteristic != 2 and |K| ≥ 5, then there exist
elements j, k ∈ K∗ such that j ∈ S(K∗), k !∈ S(K∗), and k != −j.

Proof. By Lemma 4, S(K∗) != K∗ and |S(K∗)| = |K∗|/2 ≥ 2, thus we can choose
j ∈ S(K∗), k ∈ K∗ \ S(K∗), and k != −j. !

Proof of Theorem 1. If K = F3 = {0, 1, 2}, put B = {(0, 0), (0, 1), (0, 2),
(1, 1), (2, 0)} ⊂ F3 × F3. Then we have B −B = G and δB(g) ≤ 3 for all g != 0.

Now we consider K to be a finite field of characteristic != 2 and |K| ≥ 5.
Let j, k ∈ K∗ such that j ∈ S(K∗), k !∈ S(K∗), and k != −j. Put n = 2jk/(j+k),

B = Qj ∪Qk ∪Qn. By the fact that k != j, we have j != n, k != n.
By Lemma 3, Qj −Qn = {(a, b) ∈ G : b(j−n) + a2jn ∈ S(K∗)∪ {0}}; similarly,

Qn −Qk = {(a, b) ∈ G : b(n− k) + a2nk ∈ S(K∗) ∪ {0}}.
Let

e = b(j − n) + a2jn, f = b(n− k) + a2nk.

Thus an element (a, b) != (0, 0) of G lies in Qj − Qn (respectively, in Qn − Qk) if
and only if e (respectively, f) is a square in K.

By simple calculation, we have f = kj−1e. Since j ∈ S(K∗), j−1 ∈ S(K∗), by
Lemma 4, we have kj−1 !∈ S(K∗), and thus f ∈ S(K∗) if and only if e !∈ S(K∗).
Hence, if an element (a, b) != (0, 0) of G does not lie in Qj − Qn then it lies in
Qn − Qk. Therefore, G = (Qj − Qn) ∪ (Qn − Qk), which is stronger than the
required B −B = G.

By the above discussion, for g(!= 0) ∈ G, we have the following two cases.
Case 1. e !∈ S(K∗) and f ∈ S(K∗). If g ∈ Qj −Qn, then e = 0, and by the proof
of Lemma 3 we have δQj ,Qn(g) = 1.
Case 2. e ∈ S(K∗) and f !∈ S(K∗). If g ∈ Qn −Qk, then f = 0, and by the proof
of Lemma 3 we have δQn,Qk(g) = 1.
Hence,

δB(g) ≤
∑

r,s∈{j,k,n}

δQr,Qs(g) =
∑

r,s∈{j,k,n}
r $=s

δQr,Qs(g) +
∑

r∈{j,k,n}

δQr(g) ≤ 14.

This completes the proof of the theorem. !



INTEGERS: 10 (2010) 232

References
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