NOTE ON A RESULT OF HADDAD AND HELOU

Chi-Wu Tang
Department of Mathematics, Anhui Normal University, Wuhu 241000, China
tangchiwu@126.com
Min Tang ${ }^{1}$
Department of Mathematics, Anhui Normal University, Wuhu 241000, China
tmzzz2000@163.com

Received: 7/31/09, Revised: 1/18/10, Accepted: 1/23/10, Published: 5/12/10

Abstract

Let K be a field of characteristic $\neq 2$ and G the additive group of $K \times K$. In 2004, Haddad and Helou constructed an additive basis B of G for which the number of representations of $g \in G$ as a sum $b_{1}+b_{2}\left(b_{1}, b_{2} \in B\right)$ is bounded by 18. In this paper, we proceed to investigate the parallel problem for differences.

1. Introduction

Let G be a semi-group. For $A, B \subseteq G$ and $g \in G$, we define

$$
\begin{aligned}
\sigma_{A, B}(g) & =|\{(a, b) \in A \times B: a+b=g\}|, \\
\delta_{A, B}(g) & =|\{(a, b) \in A \times B: a-b=g\}| .
\end{aligned}
$$

Let $\sigma_{A}(g)=\sigma_{A, A}(g), \delta_{A}(g)=\delta_{A, A}(g)$, and $A-B=\{a-b: a \in A, b \in B\}$.
The celebrated Erdős-Turán conjecture [3] states that if $A \subset \mathbb{N}$ is an additive asymptotic basis of \mathbb{N}, then the representation function $\sigma_{A}(n)$ must be unbounded. This conjecture has had an important impact in additive number theory. In 1954, Erdős [2] proved the function $\sigma_{A}(n)$ can have logarithmic growth. In 1990, Ruzsa [7] constructed a basis of $A \subset \mathbf{N}$ for which $\sigma_{A}(n)$ is bounded in the square mean. These results indicate the difficulty involved in the conjecture and leads to the consideration of the problem in other semigroups. Pǔs [6] first established that the analogue of the Erdős-Turán conjecture fails to hold in some abelian groups. Nathanson [4] constructed a family of arbitrarily sparse unique representation bases for \mathbb{Z}. In 2004, Haddad and Helou [5] showed that the analogue of the ErdősTurán conjecture does not hold in a variety of additive groups derived from those of certain fields. In [8], Tang and Chen showed that the analogue of the Erdős-Turán conjecture fails to hold in $\left(\mathbb{Z}_{m},+\right)$. For the related problems see $[1,9]$.

[^0]It is natural to consider the parallel problems for differences. In this paper, based on the methods of Haddad and Helou, we obtain the following result.
Theorem 1. Let K be a finite field of characteristic $\neq 2$ and G the additive group of $K \times K$. Then there exists a set $B \subset G$ such that $B-B=G$, and $\delta_{B}(g) \leq 14$ for all $g \neq 0$.
Remark 2. This result is a generalization of the result obtained by Tang [10, Lemma 3]. For example, let p be prime with $p \geq 3$. By the theorem, there exists a set $B \subset \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ such that $B-B=G$ and $\delta_{B}(g) \leq 14$ for all $g \neq 0$.

Throughout this paper, let K be a field of characteristic $\neq 2$ and G the additive group of $K \times K$. We denote by $K^{*}=K \backslash\{0\}$ the multiplicative group of K and by $S\left(K^{*}\right)=\left\{x^{2}: x \in K^{*}\right\}$ the subgroup of the square elements of K^{*}. For $k \in K^{*}$, let $Q_{k}=\left\{\left(u, k u^{2}\right): u \in K\right\} \subset G$.

2. Proofs

Lemma 3. For $g=(a, b) \in G$ and fixed $k, l \in K^{*}$, consider the equation

$$
g=x-y, x \in Q_{k}, y \in Q_{l}
$$

If $k-l \neq 0$, then the set $Q_{k}-Q_{l}$ consists of all the elements $(a, b) \in G$ such that $b(k-l)+a^{2} k l$ is a square in K, and for any $g \in G, \delta_{Q_{k}, Q_{l}}(g) \leq 2$. If $k-l=0$, it has at most one solution except if $g=0$, when it has $|K|$ solutions.

Proof. Let $g=(a, b) \in G$. Consider the system of equations

$$
\begin{gather*}
a=u-v, \tag{1}\\
b=k u^{2}-l v^{2} . \tag{2}
\end{gather*}
$$

Substituting the value of u from (1) into (2), we get the equation

$$
\begin{equation*}
b=(k-l) v^{2}+2 k a v+k a^{2} \tag{3}
\end{equation*}
$$

Case 1. $k-l \neq 0$. This is a quadratic equation in v, and it has exactly one or two solutions in the field K if and only if its discriminant $4 a^{2} k^{2}-4(k-l)\left(a^{2} k-b\right)=$ $4\left((k-l) b+k l a^{2}\right)$ is a square in K. Since the characteristic of K is $\neq 2$, the non-zero square factor 4 can be discarded in the latter condition. Thus for any $g=(a, b) \in G$, we have $\delta_{Q_{k}, Q_{l}}(g) \leq 2$.
Case 2. Case 2. $k-l=0$. Then (3) is an equation of degree 1. If $a \neq 0$, (3) has one solution. If $a=b=0,(3)$ has $|K|$ solutions. If $a=0, b \neq 0,(3)$ has no solution.

This completes the proof of Lemma 3.

Lemma 4 [5, Lemma 3.7]. If K is a finite field of characteristic $\neq 2$, then the index of the subgroup $S\left(K^{*}\right)$ in the multiplicative group of K^{*} is 2. Thus the product of two non-square elements of K^{*} is a square element of K^{*}.

Lemma 5. If K is a finite field of characteristic $\neq 2$ and $|K| \geq 5$, then there exist elements $j, k \in K^{*}$ such that $j \in S\left(K^{*}\right), k \notin S\left(K^{*}\right)$, and $k \neq-j$.

Proof. By Lemma $4, S\left(K^{*}\right) \neq K^{*}$ and $\left|S\left(K^{*}\right)\right|=\left|K^{*}\right| / 2 \geq 2$, thus we can choose $j \in S\left(K^{*}\right), k \in K^{*} \backslash S\left(K^{*}\right)$, and $k \neq-j$.
Proof of Theorem 1. If $K=\mathbb{F}_{3}=\{0,1,2\}$, put $B=\{(0,0),(0,1),(0,2)$, $(1,1),(2,0)\} \subset \mathbb{F}_{3} \times \mathbb{F}_{3}$. Then we have $B-B=G$ and $\delta_{B}(g) \leq 3$ for all $g \neq 0$.

Now we consider K to be a finite field of characteristic $\neq 2$ and $|K| \geq 5$.
Let $j, k \in K^{*}$ such that $j \in S\left(K^{*}\right), k \notin S\left(K^{*}\right)$, and $k \neq-j$. Put $n=2 j k /(j+k)$, $B=Q_{j} \cup Q_{k} \cup Q_{n}$. By the fact that $k \neq j$, we have $j \neq n, k \neq n$.

By Lemma $3, Q_{j}-Q_{n}=\left\{(a, b) \in G: b(j-n)+a^{2} j n \in S\left(K^{*}\right) \cup\{0\}\right\} ;$ similarly, $Q_{n}-Q_{k}=\left\{(a, b) \in G: b(n-k)+a^{2} n k \in S\left(K^{*}\right) \cup\{0\}\right\}$.

Let

$$
e=b(j-n)+a^{2} j n, \quad f=b(n-k)+a^{2} n k
$$

Thus an element $(a, b) \neq(0,0)$ of G lies in $Q_{j}-Q_{n}$ (respectively, in $\left.Q_{n}-Q_{k}\right)$ if and only if e (respectively, f) is a square in K.

By simple calculation, we have $f=k j^{-1} e$. Since $j \in S\left(K^{*}\right), j^{-1} \in S\left(K^{*}\right)$, by Lemma 4, we have $k j^{-1} \notin S\left(K^{*}\right)$, and thus $f \in S\left(K^{*}\right)$ if and only if $e \notin S\left(K^{*}\right)$. Hence, if an element $(a, b) \neq(0,0)$ of G does not lie in $Q_{j}-Q_{n}$ then it lies in $Q_{n}-Q_{k}$. Therefore, $G=\left(Q_{j}-Q_{n}\right) \cup\left(Q_{n}-Q_{k}\right)$, which is stronger than the required $B-B=G$.

By the above discussion, for $g(\neq 0) \in G$, we have the following two cases.
Case 1. $e \notin S\left(K^{*}\right)$ and $f \in S\left(K^{*}\right)$. If $g \in Q_{j}-Q_{n}$, then $e=0$, and by the proof of Lemma 3 we have $\delta_{Q_{j}, Q_{n}}(g)=1$.
Case 2. $e \in S\left(K^{*}\right)$ and $f \notin S\left(K^{*}\right)$. If $g \in Q_{n}-Q_{k}$, then $f=0$, and by the proof of Lemma 3 we have $\delta_{Q_{n}, Q_{k}}(g)=1$.
Hence,

$$
\delta_{B}(g) \leq \sum_{r, s \in\{j, k, n\}} \delta_{Q_{r}, Q_{s}}(g)=\sum_{\substack{r, s \in\{j, k, n\} \\ r \neq s}} \delta_{Q_{r}, Q_{s}}(g)+\sum_{r \in\{j, k, n\}} \delta_{Q_{r}}(g) \leq 14
$$

This completes the proof of the theorem.

References

[1] Y. G. Chen, The analogue of Erdős-Turán conjecture in \mathbb{Z}_{m}, J. Number Theory 128 (2008), 2573-2581.
[2] P. Erdős, On a problem of Sidon in additive number theory, Acta Sci. Math. (Szeged) 15 (1954), 255-259.
[3] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941), 212-215.
[4] M. B. Nathanson, Unique representation bases for integers, Acta Arith. 108 (2003), 1-8.
[5] L. Haddad and C.Helou, Bases in some additive groups and the Erdős-Turán conjecture, J. Comb. Theory(Series A). 108 (2004), 147-153.
[6] V. Pǔs, On multiplicative bases in abelian groups, Czech. Math. J. 41 (1991), 282-287.
[7] I. Z. Ruzsa, A just basis, Monatsh. Math. 109 (1990), 145-151.
[8] M. Tang and Y. G. Chen, A basis of \mathbb{Z}_{m}, Colloq. Math. 104 (2006), 99-103.
[9] M. Tang and Y. G. Chen, A basis of \mathbb{Z}_{m},II, Colloq. Math. 108 (2007), 141-145.
[10] M. Tang, A note on a result of Ruzsa, Bull. Austral. Math. Soc. 77 (2008), 91-98.

[^0]: ${ }^{1}$ Supported by the National Natural Science Foundation of China, Grant No 10901002.

