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Abstract
This paper presents a new proof that if kα is irrational then the sequence {!α +
logk n"}n≥1 is not k-regular. Unlike previous proofs, the methods used do not rely
on automata or language theoretic concepts. The paper also proves the stronger
statement that if kα is irrational then the generating function in k non-commuting
variables associated with {!α + logk n"}n≥1 is not algebraic.

Results

Fix an integer k ≥ 2. A sequence {a(n)}n≥0 is k-regular if the Z-module gener-
ated by the subsequences {a(ken + i)}n≥0 for e ≥ 0 and 0 ≤ i < ke is finitely
generated. Regular sequences were introduced by Allouche and Shallit [1] and have
several nice characterizations, including the following characterization as rational
power series in non-commuting variables x0, x1, . . . , xk−1. If n = nl · · ·n1n0 is the
standard base-k representation of n, then let τ(n) = xn0xn1 · · ·xnl . The sequence
{a(n)}n≥0 is k-regular if and only if the power series

∑
n≥0 a(n)τ(n) is rational.

In this sense, regular sequences are analogous to constant-recursive sequences (se-
quences that satisfy linear recurrence equations with constant coefficients), the set
of which coincides with the set of sequences whose generating functions in a single
variable are rational.

The sequence {!log2(n + 1)"}n≥0 is an example of a 2-regular sequence, and the
associated power series in non-commuting variables x0 and x1 is

f(x0, x1) =
∑

n≥0

!log2(n + 1)"τ(n)

= x1 + x0x1 + 2x1x1 + 2x0x0x1 + 2x1x0x1 + 2x0x1x1

+3x1x1x1 + . . . .
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The rational expression for this series is somewhat large; however its commutative
projection is quite manageable:

x1

(
1− x0 − x1 + x2

0 + x0x1

)

(1− x1) (1− x0 − x1)
2 .

Allouche and Shallit [2, open problem 16.10] asked whether the sequence {!1
2 +

log2(n + 1)"}n≥0 is 2-regular. Bell [3] and later Moshe [5, Theorem 4] gave proofs
that this sequence is not 2-regular. Moreover, they proved the following.

Theorem 1. Let k ≥ 2 be an integer and α be a real number. The sequence
{!α + logk(n + 1)"}n≥0 is k-regular if and only if kα is rational.

In this paper we prove the following theorem, which is a slightly weaker statement
than the previous theorem but still establishes that if kα is irrational then {!α +
logk(n + 1)"}n≥0 is not k-regular. Let |τ(n)| be the length of the word τ(n), i.e.,
|τ(0)| = 0 and |τ(n)| = !logk n"+ 1 for n ≥ 1.

Theorem 2. Let k ≥ 2 be an integer and α be a real number. The series f(x) =∑
n≥0!α + logk(n + 1)"x|τ(n)| is rational if and only if kα is rational.

The proof given here is similar to Moshe’s but does not require the notion of a
regular language. Note that, given the associated power series

f(x0, x1, . . . , xk−1) =
∑

n≥0

!α + logk(n + 1)" τ(n),

the series in the theorem is the power series f(x) = f(x, x, . . . , x) in one variable
obtained by setting x0 = x1 = · · · = xk−1 = x. Therefore non-rationality of f(x)
implies non-regularity of {!α + logk(n + 1)"}n≥0.

To get a sense of computing f(x) in the proof of the theorem, first we examine
the case where k = 2 and α = 1

2 . The power series in this case is

f(x0, x1) =
∑

n≥0

⌊
1
2

+ log2(n + 1)
⌋

τ(n)

= x1 + 2x0x1 + 2x1x1 + 2x0x0x1 + 3x1x0x1 + 3x0x1x1

+3x1x1x1 + · · · ,
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and

f(x) =
∑

n≥0

⌊
1
2

+ log2(n + 1)
⌋

x|τ(n)|

= x + 2x2 + 2x2 + 2x3 + 3x3 + 3x3 + 3x3 + 3x4 + 3x4 + 3x4 + 4x4 + · · ·

= x + 4x2 + 11x3 + 29x4 + 74x5 + 179x6 + 422x7 + 971x8 + 2198x9 + · · ·

=
∑

m≥0

b(m)xm.

To write b(m) in closed form, we observe how the first few terms of {!1
2 + log2(n +

1)"}n≥0 gather by exponent:

01222333︸︷︷︸
x3

33344444︸ ︷︷ ︸
x4

4444445555555555︸ ︷︷ ︸
x5

55555555555556666666666666666666︸ ︷︷ ︸
x6

· · ·

Since the length of n in binary is |τ(n)| = 1 + !log2 n" for n ≥ 1, the difference
|τ(n)| − !1

2 + log2(n + 1)" between exponent and coefficient in each term of the
first sum above is either 1 or 0. In other words, the only terms that contribute to
b(m)xm are of the form (m− 1)xm and mxm, so for some sequence {c(m)}m≥1 we
have

b(m) = (m− 1)
(
c(m)− 2m−1

)
+ m (2m − c(m))

for m ≥ 1. In fact c(m) is the smallest value of n for which 1
2 + log2(n + 1) ≥ m, so

c(m) = !2m− 1
2 " and b(m) = (m + 1)2m−1 − !2m− 1

2 " for m ≥ 1. Therefore

f(x) =
1

2(1− 2x)2
− 1

2
−

∑

m≥0

⌊
2m− 1

2

⌋
xm,

where the term −1/2 is needed because b(0) = 0.

We carry out the preceding computation more generally to prove the theorem.
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Proof. Let frac(α) = α− !α" denote the fractional part of α. Then

f(x) =
∑

n≥0

!α + logk(n + 1)"x|τ(n)|

= !α + logk 1"+
∑

m≥1

km−1∑

i=km−1

!α + logk(i + 1)"xm

= !α"+
∑

m≥1




&km−frac(α)'−2∑

i=km−1

!α + logk(i + 1)"

+
km−1∑

i=&km−frac(α)'−1

!α + logk(i + 1)"



xm.

Since

!α + logk(i + 1)" =





!α"+ m− 1 if km−1 + 1 ≤ i + 1 ≤

⌈
km−frac(α)

⌉
− 1

!α"+ m if
⌈
km−frac(α)

⌉
≤ i + 1 ≤ km,

we have

f(x) = !α"+
∑

m≥1

(
km−1 ((k − 1)(m + !α") + 1) + 1−

⌈
km−frac(α)

⌉)
xm

=
(1− x)(kx + !α"(1− kx))

(1− kx)2
+

x

1− x
+

∑

m≥1

⌊
−km−frac(α)

⌋
xm.

The series f(x) is therefore rational if and only if

g(x) = −
⌊
−k1−frac(α)

⌋
+

(
1
x
− k

) ∑

m≥1

⌊
−km−frac(α)

⌋
xm

=
∑

m≥1

(⌊
−km+1−frac(α)

⌋
− k

⌊
−km−frac(α)

⌋)
xm

is rational. The expression !kmy" − k!km−1y" is the (−m)th base-k digit of y, so
the coefficients of g(x) are the base-k digits of frac(−k1−frac(α)), which is rational
precisely when kα is rational.

If kα is rational, then the coefficients of g(x) are eventually periodic, so g(x)
and hence f(x) is rational. If kα is irrational, then g(x) is not rational, since in
particular g( 1

k ) = frac(−k1−frac(α)) is irrational; therefore f(x) is not rational.
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In fact we may show something stronger: Not only does f(x0, x1, . . . , xk−1) fail
to be rational when kα is irrational, but it fails to be algebraic. Bell, Gerhold,
Klazar, and Luca [4, Proposition 13] prove that if a polynomial-recursive sequence
(a sequence satisfying a linear recurrence equation with polynomial coefficients) has
only finitely many distinct values, then it is eventually periodic. It follows that the
coefficient sequence of g(x) is not polynomial-recursive, hence g(x) is not algebraic,
and f(x, x, . . . , x) is not algebraic.

Acknowledgement Thanks are due to the referee for a careful reading and cor-
rections.
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