NON-REGULARITY OF $\left\lfloor\alpha+\log _{k} n\right\rfloor$

Eric S. Rowland
Mathematics Department, Tulane University, New Orleans, LA
erowland@tulane.edu

Received: 6/2/09, Revised: 10/11/09, Accepted: 11/11/09, Published: 3/5/10

Abstract

This paper presents a new proof that if k^{α} is irrational then the sequence $\{\lfloor\alpha+$ $\left.\left.\log _{k} n\right\rfloor\right\}_{n \geq 1}$ is not k-regular. Unlike previous proofs, the methods used do not rely on automata or language theoretic concepts. The paper also proves the stronger statement that if k^{α} is irrational then the generating function in k non-commuting variables associated with $\left\{\left\lfloor\alpha+\log _{k} n\right\rfloor\right\}_{n \geq 1}$ is not algebraic.

Results

Fix an integer $k \geq 2$. A sequence $\{a(n)\}_{n \geq 0}$ is k-regular if the \mathbb{Z}-module generated by the subsequences $\left\{a\left(k^{e} n+i\right)\right\}_{n \geq 0}$ for $e \geq 0$ and $0 \leq i<k^{e}$ is finitely generated. Regular sequences were introduced by Allouche and Shallit [1] and have several nice characterizations, including the following characterization as rational power series in non-commuting variables $x_{0}, x_{1}, \ldots, x_{k-1}$. If $n=n_{l} \cdots n_{1} n_{0}$ is the standard base- k representation of n, then let $\tau(n)=x_{n_{0}} x_{n_{1}} \cdots x_{n_{l}}$. The sequence $\{a(n)\}_{n \geq 0}$ is k-regular if and only if the power series $\sum_{n \geq 0} a(n) \tau(n)$ is rational. In this sense, regular sequences are analogous to constant-recursive sequences (sequences that satisfy linear recurrence equations with constant coefficients), the set of which coincides with the set of sequences whose generating functions in a single variable are rational.

The sequence $\left\{\left\lfloor\log _{2}(n+1)\right\rfloor\right\}_{n \geq 0}$ is an example of a 2-regular sequence, and the associated power series in non-commuting variables x_{0} and x_{1} is

$$
\begin{aligned}
f\left(x_{0}, x_{1}\right)= & \sum_{n \geq 0}\left\lfloor\log _{2}(n+1)\right\rfloor \tau(n) \\
= & x_{1}+x_{0} x_{1}+2 x_{1} x_{1}+2 x_{0} x_{0} x_{1}+2 x_{1} x_{0} x_{1}+2 x_{0} x_{1} x_{1} \\
& \quad+3 x_{1} x_{1} x_{1}+\ldots
\end{aligned}
$$

The rational expression for this series is somewhat large; however its commutative projection is quite manageable:

$$
\frac{x_{1}\left(1-x_{0}-x_{1}+x_{0}^{2}+x_{0} x_{1}\right)}{\left(1-x_{1}\right)\left(1-x_{0}-x_{1}\right)^{2}}
$$

Allouche and Shallit [2, open problem 16.10] asked whether the sequence $\left\{\left\lfloor\frac{1}{2}+\right.\right.$ $\left.\left.\log _{2}(n+1)\right\rfloor\right\}_{n \geq 0}$ is 2-regular. Bell [3] and later Moshe [5, Theorem 4] gave proofs that this sequence is not 2-regular. Moreover, they proved the following.

Theorem 1. Let $k \geq 2$ be an integer and α be a real number. The sequence $\left\{\left\lfloor\alpha+\log _{k}(n+1)\right\rfloor\right\}_{n \geq 0}$ is k-regular if and only if k^{α} is rational.

In this paper we prove the following theorem, which is a slightly weaker statement than the previous theorem but still establishes that if k^{α} is irrational then $\{\lfloor\alpha+$ $\left.\left.\log _{k}(n+1)\right\rfloor\right\}_{n \geq 0}$ is not k-regular. Let $|\tau(n)|$ be the length of the word $\tau(n)$, i.e., $|\tau(0)|=0$ and $|\tau(n)|=\left\lfloor\log _{k} n\right\rfloor+1$ for $n \geq 1$.

Theorem 2. Let $k \geq 2$ be an integer and α be a real number. The series $f(x)=$ $\sum_{n \geq 0}\left\lfloor\alpha+\log _{k}(n+1)\right\rfloor x^{|\tau(n)|}$ is rational if and only if k^{α} is rational.

The proof given here is similar to Moshe's but does not require the notion of a regular language. Note that, given the associated power series

$$
f\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)=\sum_{n \geq 0}\left\lfloor\alpha+\log _{k}(n+1)\right\rfloor \tau(n)
$$

the series in the theorem is the power series $f(x)=f(x, x, \ldots, x)$ in one variable obtained by setting $x_{0}=x_{1}=\cdots=x_{k-1}=x$. Therefore non-rationality of $f(x)$ implies non-regularity of $\left\{\left\lfloor\alpha+\log _{k}(n+1)\right\rfloor\right\}_{n \geq 0}$.

To get a sense of computing $f(x)$ in the proof of the theorem, first we examine the case where $k=2$ and $\alpha=\frac{1}{2}$. The power series in this case is

$$
\begin{aligned}
f\left(x_{0}, x_{1}\right)= & \sum_{n \geq 0}\left\lfloor\frac{1}{2}+\log _{2}(n+1)\right\rfloor \tau(n) \\
= & x_{1}+2 x_{0} x_{1}+2 x_{1} x_{1}+2 x_{0} x_{0} x_{1}+3 x_{1} x_{0} x_{1}+3 x_{0} x_{1} x_{1} \\
& +3 x_{1} x_{1} x_{1}+\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
f(x) & =\sum_{n \geq 0}\left\lfloor\left.\frac{1}{2}+\log _{2}(n+1) \right\rvert\, x^{|\tau(n)|}\right. \\
& =x+2 x^{2}+2 x^{2}+2 x^{3}+3 x^{3}+3 x^{3}+3 x^{3}+3 x^{4}+3 x^{4}+3 x^{4}+4 x^{4}+\cdots \\
& =x+4 x^{2}+11 x^{3}+29 x^{4}+74 x^{5}+179 x^{6}+422 x^{7}+971 x^{8}+2198 x^{9}+\cdots \\
& =\sum_{m \geq 0} b(m) x^{m} .
\end{aligned}
$$

To write $b(m)$ in closed form, we observe how the first few terms of $\left\{\left\lfloor\frac{1}{2}+\log _{2}(n+\right.\right.$ 1) $\rfloor\}_{n \geq 0}$ gather by exponent:

Since the length of n in binary is $|\tau(n)|=1+\left\lfloor\log _{2} n\right\rfloor$ for $n \geq 1$, the difference $|\tau(n)|-\left\lfloor\frac{1}{2}+\log _{2}(n+1)\right\rfloor$ between exponent and coefficient in each term of the first sum above is either 1 or 0 . In other words, the only terms that contribute to $b(m) x^{m}$ are of the form $(m-1) x^{m}$ and $m x^{m}$, so for some sequence $\{c(m)\}_{m \geq 1}$ we have

$$
b(m)=(m-1)\left(c(m)-2^{m-1}\right)+m\left(2^{m}-c(m)\right)
$$

for $m \geq 1$. In fact $c(m)$ is the smallest value of n for which $\frac{1}{2}+\log _{2}(n+1) \geq m$, so $c(m)=\left\lfloor 2^{m-\frac{1}{2}}\right\rfloor$ and $b(m)=(m+1) 2^{m-1}-\left\lfloor 2^{m-\frac{1}{2}}\right\rfloor$ for $m \geq 1$. Therefore

$$
f(x)=\frac{1}{2(1-2 x)^{2}}-\frac{1}{2}-\sum_{m \geq 0}\left\lfloor 2^{m-\frac{1}{2}}\right\rfloor x^{m}
$$

where the term $-1 / 2$ is needed because $b(0)=0$.
We carry out the preceding computation more generally to prove the theorem.

Proof. Let $\operatorname{frac}(\alpha)=\alpha-\lfloor\alpha\rfloor$ denote the fractional part of α. Then

$$
\begin{aligned}
f(x)= & \sum_{n \geq 0}\left\lfloor\alpha+\log _{k}(n+1)\right\rfloor x^{|\tau(n)|} \\
= & \left\lfloor\alpha+\log _{k} 1\right\rfloor+\sum_{m \geq 1} \sum_{i=k^{m-1}}^{k^{m}-1}\left\lfloor\alpha+\log _{k}(i+1)\right\rfloor x^{m} \\
= & \lfloor\alpha\rfloor+\sum_{m \geq 1}\left(\sum_{i=k^{m-1}}^{\left\lceil k^{m-\operatorname{frac}(\alpha)}\right\rceil-2}\left\lfloor\alpha+\log _{k}(i+1)\right\rfloor\right. \\
& \left.\quad \sum_{i=\left\lceil k^{m-\operatorname{frac}(\alpha)}\right\rceil-1}^{k^{m}-1}\left\lfloor\alpha+\log _{k}(i+1)\right\rfloor\right) x^{m}
\end{aligned}
$$

Since

$$
\left\lfloor\alpha+\log _{k}(i+1)\right\rfloor= \begin{cases}\lfloor\alpha\rfloor+m-1 & \text { if } k^{m-1}+1 \leq i+1 \leq\left\lceil k^{m-\operatorname{frac}(\alpha)}\right\rceil-1 \\ \lfloor\alpha\rfloor+m & \text { if }\left\lceil k^{m-\operatorname{frac}(\alpha)}\right\rceil \leq i+1 \leq k^{m}\end{cases}
$$

we have

$$
\begin{aligned}
f(x) & =\lfloor\alpha\rfloor+\sum_{m \geq 1}\left(k^{m-1}((k-1)(m+\lfloor\alpha\rfloor)+1)+1-\left\lceil k^{m-\operatorname{frac}(\alpha)}\right\rceil\right) x^{m} \\
& =\frac{(1-x)(k x+\lfloor\alpha\rfloor(1-k x))}{(1-k x)^{2}}+\frac{x}{1-x}+\sum_{m \geq 1}\left\lfloor-k^{m-\operatorname{frac}(\alpha)}\right\rfloor x^{m}
\end{aligned}
$$

The series $f(x)$ is therefore rational if and only if

$$
\begin{aligned}
g(x) & =-\left\lfloor-k^{1-\operatorname{frac}(\alpha)}\right\rfloor+\left(\frac{1}{x}-k\right) \sum_{m \geq 1}\left\lfloor-k^{m-\operatorname{frac}(\alpha)}\right\rfloor x^{m} \\
& =\sum_{m \geq 1}\left(\left\lfloor-k^{m+1-\operatorname{frac}(\alpha)}\right\rfloor-k\left\lfloor-k^{m-\operatorname{frac}(\alpha)}\right\rfloor\right) x^{m}
\end{aligned}
$$

is rational. The expression $\left\lfloor k^{m} y\right\rfloor-k\left\lfloor k^{m-1} y\right\rfloor$ is the $(-m)$ th base- k digit of y, so the coefficients of $g(x)$ are the base- k digits of $\operatorname{frac}\left(-k^{1-\mathrm{frac}(\alpha)}\right)$, which is rational precisely when k^{α} is rational.

If k^{α} is rational, then the coefficients of $g(x)$ are eventually periodic, so $g(x)$ and hence $f(x)$ is rational. If k^{α} is irrational, then $g(x)$ is not rational, since in particular $g\left(\frac{1}{k}\right)=\operatorname{frac}\left(-k^{1-\operatorname{frac}(\alpha)}\right)$ is irrational; therefore $f(x)$ is not rational.

In fact we may show something stronger: Not only does $f\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)$ fail to be rational when k^{α} is irrational, but it fails to be algebraic. Bell, Gerhold, Klazar, and Luca [4, Proposition 13] prove that if a polynomial-recursive sequence (a sequence satisfying a linear recurrence equation with polynomial coefficients) has only finitely many distinct values, then it is eventually periodic. It follows that the coefficient sequence of $g(x)$ is not polynomial-recursive, hence $g(x)$ is not algebraic, and $f(x, x, \ldots, x)$ is not algebraic.

Acknowledgement Thanks are due to the referee for a careful reading and corrections.

References

[1] Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences, Theoretical Computer Science 98 (1992) 163-197; available at http://www.cs.uwaterloo.ca/ shallit/Papers/as0.ps.
[2] Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, Cambridge, 2003.
[3] Jason Bell, Automatic sequences, rational functions, and shuffles, unpublished.
[4] Jason Bell, Stefan Gerhold, Martin Klazar, and Florian Luca, Non-holonomicity of sequences defined via elementary functions, Annals of Combinatorics 12 (2008) 1-16; available at http://arxiv.org/abs/math/0605142.
[5] Yossi Moshe, On some questions regarding k-regular and k-context-free sequences, Theoretical Computer Science 400 (2008) 62-69.

