
#A32 INTEGERS 10 (2010), 369-377

TWO NEW VAN DER WAERDEN NUMBERS:
w(2; 3, 17) AND w(2; 3, 18)

Tanbir Ahmed
ConCoCO Research Laboratory, Department of Computer Science and Software

Engineering, Concordia University, Montréal, Canada
ta ahmed@cs.concordia.ca

Received: 10/21/09, Revised: 3/4/10, Accepted: 3/28/10, Published: 8/10/10

Abstract
The van der Waerden number w(r; k1, k2, . . . , kr) is the least integer m such that
for every partition P1 ∪ P2 ∪ · · · ∪ Pr of the set {1, 2, . . . ,m}, there is an index j
in {1, 2, . . . , r} such that Pj contains an arithmetic progression of kj terms. We
have computed exact values of the previously unknown van der Waerden numbers
w(2; 3, 17) and w(2; 3, 18).

1. Introduction

Van der Waerden’s theorem [7] can be formulated (as in Chvátal [2]) as follows:
Given any positive integer r and positive integers k1, k2, . . . , kr, there is an integer
m such that given any partition

{1, 2, . . . ,m} = P1 ∪ P2 ∪ · · · ∪ Pr (1)

there is always a class Pj containing an arithmetic progression of length kj . Let us
denote the least m with this property by w(r; k1, k2, . . . , kr). By a good partition, we
mean a partition of the form (1) such that no Pj contains an arithmetic progression
of kj terms.

We formulate an instance F of the satisfiability problem (described in the follow-
ing paragraph) with n variables for the van der Waerden number w(r; k1, . . . , kr)
such that F is satisfiable if and only if n < w(r; k1, . . . , kr).

To describe the satisfiability problem, we require a few other definitions. A truth
assignment is a mapping f that assigns each variable in {x1, x2, . . . , xn} a value
in {0, 1}. The complement x̄i of each variable xi is defined by f(x̄i) = 1 − f(xi)
for all truth assignments f . Both xi and x̄i are called literals: a clause is a set of
(distinct) literals and a formula is a family of (not necessarily distinct) clauses. A
truth assignment satisfies a clause if it maps at least one of its literals to 1; the
assignment satisfies a formula if and only if it satisfies each of its clauses. A formula
is called satisfiable if it is satisfied by at least one truth assignment; otherwise, it
is called unsatisfiable. The problem of recognizing satisfiable formulas is known

INTEGERS: 10 (2010) 370

as the satisfiability problem, or SAT for short. These definitions are taken from
Chvátal and Reed [3].

In this paper, our focus is on w(2; k1, k2) only. Given a positive integer n, we
construct an instance of the satisfiability problem with variables xi for 1 ! i ! n
and the following clauses:

(a) {x̄a, x̄a+d, . . . , x̄a+d(k1−1)} with a " 1, d " 1, a + d(k1 − 1) ! n,

(b) {xa, xa+d, . . . , xa+d(k2−1)} with a " 1, d " 1, a + d(k2 − 1) ! n.

Here, xi = 1 encodes i ∈ P1 and xi = 0 encodes i ∈ P2 (if xi is not assigned
but the formula is satisfied, then i can be arbitrarily placed in either of the blocks
of the partition). Clauses (a) prohibit the existence of an arithmetic progression of
length k1 in P1 and clauses (b) prohibit the existence of an arithmetic progression
of length k2 in P2.

To test the satisfiability of the generated instance, we have coded an efficient
implementation of the DPLL Algorithm [4], which we describe in brief before going
to the next section. Given a formula F and a literal u in F , we let F |u denote the
residual formula arising from F when f(u) is set to 1: explicitly, this formula is
obtained from F by (i) removing all the clauses that contain u, (ii) deleting ū from
all the clauses that contain ū, (iii) removing both u and ū from the list of literals.
Each recursive call of DPLL may involve a choice of a literal u. Algorithms for
making these choices are referred to as branching rules.

It is customary to represent each call of DPLL(F) by a node of a binary tree.
By branching on a literal u, we mean calling DPLL(F |u). If this call leads to a
contradiction, then we call DPLL(F |ū). Every node that is not a leaf has at least
one child and may not have both children. This tree is referred to as DPLL-tree in
the literature. Different branches of the DPLL-tree may be distributed to separate
processors for improving the computation time.

Algorithm 1 Recursive algorithm DPLL(F)

1: function DPLL(F)
2: while F includes a clause C such that |C| ! 1 do
3: if C = ∅ then return Unsatisfiable
4: else if C = {v} then F = F |v
5: end while
6: if F = ∅ then return Satisfiable
7: Choose an unassigned literal u using a branching rule
8: if DPLL(F |u) = Satisfiable then return Satisfiable
9: if DPLL(F |u) = Satisfiable then return Satisfiable

10: return Unsatisfiable
11: end function

INTEGERS: 10 (2010) 371

2. New Van Der Waerden Numbers

A list of known van der Waerden numbers was recently published in [1]. In Table
1, we present the exact values of w(2; 3, 17) and w(2; 3, 18). We provide examples
of good partitions of the sets {1, 2, . . . , 278} and {1, 2, . . . , 311} for the numbers
w(2; 3, 17) and w(2; 3, 18), respectively.

We denote partitions as strings; for example 11221122 means P1 = {1, 2, 5, 6}
and P2 = {3, 4, 7, 8}. We have used 2.2 GHz AMD Opteron 64-bit processors (80
of them) in the cirrus cluster of ConCoCO Research Laboratory at Concordia
University to compute them. The CPU time is the total time taken by all the
distributed processes each taking care of a separate branch of the DPLL-tree to
prove that the SAT instance corresponding to w(2; k1, k2) is unsatisfiable.

In the following section, we describe the reason behind choosing DPLL for com-
puting van der Waerden numbers and provide a brief description of our implemen-
tation.

3. On Our Implementation of DPLL

For around fifty years, the DPLL backtrack-search algorithm has been immensely
popular as a complete (that finds a satisfying assignment if one exists; otherwise,
correctly says that no satisfying assignment exists) procedure to solve the satisfia-
bility problem. Any incomplete algorithm (which is generally faster than algorithms
like DPLL but may fail to deliver a satisfying assignment when there exists one) is
not useful when we would like to correctly prove that an instance is unsatisfiable.

Our implementation is engineered to run faster on unsatisfiable van der Waerden
instances. We make a little modification (as in Algorithm 2) in Algorithm 1 and
describe why.

If in some yet-to-be-satisfied clause C, a literal u is unassigned and every other
literal is assigned false, then u is called unit. We get an empty clause in F |u only
if ū is already unit in F . So during unit-propagation (lines 2-5 in Algorithm 1), we
can avoid computing F |u and return Unsatisfiable, when both u and ū are unit
literals in F . During the search, we spend most of our time in unit-propagations
leading to contradictions (generates an empty clause). We can save (as in lines
2-6 of Algorithm 2) one computation of F |u in each of those contradictory unit-
propagations. Assuming that the initial formula does not contain an empty clause,
Algorithm 2 never generates an empty clause.

Now we describe how F |u can be computed efficiently while solving instances
for w(2; 3, k) with k ! 32. Let L(u) denote the set of clauses that contain u
as a literal. When computing F |u, each clause in L(u) is deleted from F and each

INTEGERS: 10 (2010) 372

Table 1: Two new van der Waerden numbers

w(2; k1, k2) Example of a good partition CPU-time Run-time
w(2; 3, 17) = 279 22221222 22212222 21222122 22222222 301 days 5 days

12222221 22222122 22222211 22222222
22121222 22212222 22212122 22222212
22222222 22212122 22222222 22222212
22222222 11221122 22222221 22222222
22222222 12122222 22222221 22222222
12122222 22122222 21212222 22222211
22222222 12222212 22222122 22222222
12221222 22122222 212222

w(2; 3, 18) = 312 22222212 222222AB 22212222 22222222 13.6 yrs 70 days
22222112 22112122 22222222 12222222
22222222 21222222 21222222 22211211
22221222 22222212 22222212 22212222
22222222 22122222 22222122 22222222
21222222 22221222 22222222 22212222
12222222 12222222 22122221 12112222
22222122 22222122 22222222 22222212
22222222 21211222 11222222 22222222
2221222C 12222222 D222222
(where ABCD is arbitrary).

INTEGERS: 10 (2010) 373

Algorithm 2 Our variant of the DPLL algorithm
1: function DPLL(F)
2: while True do
3: if {u} ∈ F and {ū} ∈ F then return Unsatisfiable
4: else if there is a clause {v} then F = F |v
5: else break
6: end while
7: if F = ∅ then return Satisfiable
8: Choose an unassigned literal u using a branching rule
9: if DPLL(F |u) = Satisfiable then return Satisfiable

10: if DPLL(F |u) = Satisfiable then return Satisfiable
11: return Unsatisfiable
12: end function

clause in L(ū) shrinks in length by one. When the length of a clause becomes one,
the general idea to find the unit literal is to scan the clause, which is expensive
if there are many long clauses. SAT instances corresponding to w(2; 3, 17) and
w(2; 3, 18) contain clauses of length 17 and 18, respectively. We encode each clause
C as a 32 bit unsigned integer b, which is initialized to 2t − 1 (where t = |C|), a
bitstring of t 1’s. If ū is the i-th (i ∈ {0, 1, . . . , t− 1}) literal in C, then we subtract
2i from b. When |C| = 1, we know that b equals 2s for some nonnegative integer s
less than 32. We can compute, in at most 5 (= log2 32) steps, the location of the
only True bit, which corresponds to the unit literal, say v, in C. This works for
instances corresponding to every w(2; 3, k) with k ! 32.

The size of the DPLL-tree greatly varies with the choice of the branching rule. It
is hard to find a branching rule that works good on every SAT instance. Branching
rules can be described using a paradigm (proposed by Chvátal and introduced in
Ouyang [6]), which associates a weight w(F, u) with each literal u, and chooses a
function Φ of two variables. The paradigm is as follows:

(!) Find a variable x that maximizes Φ(w(F, x), w(F, x̄)); choose x if
w(F, x) " w(F, x̄), otherwise, choose x̄. If more than one variable max-
imizes Φ, then ties have to be broken by some rule.

Usually, w(F, u) is defined in terms of dk(F, u), which is the number of clauses
of length k in F that contain literal u. These branching rules (see Ouyang [6])
choose a literal analyzing the current state of the formula. These are heuristics
each striving for a tradeoff between its own running time and the ability to reduce
the size of the DPLL-tree. We use Two-sided Jeroslaw-Wang (2sJW), (by Hooker

INTEGERS: 10 (2010) 374

and Vinay [5]) in our implementation, which is (!) with

w(F, u) =
∑

k

2−kdk(F, u), Φ(x, y) = x + y.

Our implementation performs best with 2sJW (as branching rule) on unsatisfi-
able instances corresponding to van der Waerden numbers. All of the 30 numbers
reported in [1] were computed using this branching rule. In addition, this branching
rule helps us to recognize a pattern in the size of the subtrees when we split the
DPLL-tree of w(2; 3, k) for distributed computation, as described in the following
section.

Table 2: Splitting the DPLL-tree for w(2; 3, 14)

Process (u1, u2, u3) CPU-time
P0 (-93,-94,-92) 4635.50 sec
P1 (-93,-94, 92) 1041.60 sec
P2 (-93, 94,-96) 1068.80 sec
P3 (-93, 94, 96) 178.51 sec
P4 (93,-94,-91) 1074.53 sec
P5 (93,-94, 91) 177.71 sec
P6 (93, 94,-89) 224.78 sec
P7 (93, 94, 89) 32.77 sec

Table 3: Splitting the DPLL-tree for w(2; 3, 15)

Process (u1, u2, u3, u4) CPU-time
P0 (-109,-110,-108,-111) 40746.08 sec
P1 (-109,-110,-108, 111) 9443.45 sec
P2 (-109,-110, 108,-111) 9308.47 sec
P3 (-109,-110, 108, 111) 1235.54 sec
P4 (-109, 110,-112,-106) 9348.02 sec
P5 (-109, 110,-112, 106) 1264.93 sec
P6 (-109, 110, 112,-107) 1619.97 sec
P7 (-109, 110, 112, 107) 191.86 sec
P8 (109,-110,-107,-113) 9703.46 sec
P9 (109,-110,-107, 113) 1265.80 sec
P10 (109,-110, 107,-112) 1597.04 sec
P11 (109,-110, 107, 112) 192.01 sec
P12 (109, 110,-105,-114) 1909.96 sec
P13 (109, 110,-105, 114) 251.87 sec
P14 (109, 110, 105,-114) 255.68 sec
P15 (109, 110, 105, 114) 18.01 sec

INTEGERS: 10 (2010) 375

4. On Distributed Application of Our Implementation

Our implementation of DPLL works as a stand-alone SAT-solver. We choose to
split the DPLL-tree and use the stand-alone solver for each subtree instead of im-
plementing a parallel version of the solver. We completely avoid message-passing
overheads between processes and other synchronization issues. In our case, the total
CPU-time is the sum of CPU-times taken by each of the processes, and the total
running time is the maximum of the CPU-times.

Given a branching rule, there are at most 2t branching-sequences of length
t from the root. Each branching-sequence (u1, u2, . . . , ut) results in a subtree
rooted at DPLL(F |ut). Each of these subtrees can be explored separately and
independently by the stand-alone SAT-solver in a separate processor. Depending

Table 4: Further splitting the DPLL-tree for w(2; 3, 15)

Process (u1, u2, u3, u4) (u5, u6, u7) (u8, u9) CPU-time
P0,0,0 (-109,-110,-108,-111) (-107,-112,-106) (-113,-105) 10930.76 sec
P0,0,1 (-109,-110,-108,-111) (-107,-112,-106) (-113, 105) 4152.11 sec
P0,0,2 (-109,-110,-108,-111) (-107,-112,-106) (113,-105) 4157.58 sec
P0,0,3 (-109,-110,-108,-111) (-107,-112,-106) (113, 105) 730.76 sec
P0,1 (-109,-110,-108,-111) (-107,-112, 106) 6097.47 sec
P0,2 (-109,-110,-108,-111) (-107, 112,-106) 5831.26 sec
P0,3 (-109,-110,-108,-111) (-107, 112, 106) 841.39 sec
P0,4 (-109,-110,-108,-111) (107,-112,-113) 5942.24 sec
P0,5 (-109,-110,-108,-111) (107,-112, 113) 840.16 sec
P0,6 (-109,-110,-108,-111) (107, 112,-105) 978.12 sec
P0,7 (-109,-110,-108,-111) (107, 112, 105) 262.63 sec
P1 (-109,-110,-108, 111) 9443.45 sec
P2 (-109,-110, 108,-111) 9308.47 sec
P3 (-109,-110, 108, 111) 1235.54 sec
P4 (-109, 110,-112,-106) 9348.02 sec
P5 (-109, 110,-112, 106) 1264.93 sec
P6 (-109, 110, 112,-107) 1619.97 sec
P7 (-109, 110, 112, 107) 191.86 sec
P8 (109,-110,-107,-113) 9703.46 sec
P9 (109,-110,-107, 113) 1265.80 sec
P10 (109,-110, 107,-112) 1597.04 sec
P11 (109,-110, 107, 112) 192.01 sec
P12 (109, 110,-105,-114) 1909.96 sec
P13 (109, 110,-105, 114) 251.87 sec
P14 (109, 110, 105,-114) 255.68 sec
P15 (109, 110, 105, 114) 18.01 sec

INTEGERS: 10 (2010) 376

on the number of processors available, we can set the value of t. As examples,
we show (in Tables 2 and 3) the CPU-times of distributed processes for instances
corresponding to w(2; 3, 14) and w(2; 3, 15), respectively. We write j and −j to
mean the literals xj and x̄j , respectively.

For proving that the instance corresponding to w(2; 3, 14) is unsatisfiable, we
split the DPLL-tree into 8 subtrees, and run our SAT-solver on these subtrees
separately and simultaneously in 8 different processors. We see, as in Table 2, that
the subtrees corresponding to P0, P1, P2, and P4 are bigger than the other four
subtrees. Similarly, we distribute the DPLL-tree for w(2; 3, 15) into 16 processors.
Here we see, as in Table 3, that the subtrees corresponding to P0, P1, P2, P4, and
P8 are bigger than the other eleven subtrees. In each of the cases, the subtree
corresponding to P0 is the biggest. In fact, these observations are true for all
w(2; 3, k) with k ! 18. From Table 3, we see that the total running time (the
maximum of the CPU-times taken by the 16 processes) is 40746.08 seconds to prove
that the instance corresponding to w(2; 3, 15) is unsatisfiable. If we judiciously split
the bigger processes considering the number of processors available, then we can
control the total running time as shown in Table 4.

From Table 4, we see that the total running time (the maximum of the CPU-
times taken by the 26 processes) has come down to 10930.76 seconds. The above
techniques may be used to compute w(2; 3, k) for k " 19.

Acknowledgements The author is grateful to Vašek Chvátal for his continuous
support, to the anonymous referee for his or her helpful comments and suggestions,
and to Andalib Parvez for carefully reading the manuscript.

References

[1] Ahmed T., Some new van der Waerden numbers and some van der Waerden-type numbers,
Integers 9 (2009), A06, 65–76, MR2506138.

[2] Chvátal V., Some unknown van der Waerden numbers, Combinatorial Structures and Their
Applications (R.Guy et al.,eds.), 31–33, Gordon and Breach, New York, 1970, MR0266891.

[3] Chvátal V., Reed B., Mick Gets Some (The Odds Are on His Side), Proceedings of the 33rd
Annual Symposium on FOCS, 1992, 620–627.

[4] Davis M., Logemann G., Loveland D., A machine program for theorem-proving, Comm. ACM
5 (1962), 394–397, MR0149690.

[5] Hooker J. N., Vinay V., Branching rules for satisfiability, J. Automat. Reason. 15(3) 1995,
359–383, MR1356629.

INTEGERS: 10 (2010) 377

[6] Ouyang M., Implementation of the DPLL algorithm, PhD Thesis, Rutgers University, 1999.

[7] Van der Waerden, B. L., Beweis einer Baudetschen Vermutung, Nieuw Archief voor Wiskunde
15 (1927), 212–216.

