

UPPER AND LOWER BOUNDS FOR A FUNCTION RELATED TO BROWN'S LEMMA

Hayri Ardal

Dept. of Mathematics, Simon Fraser University, Burnaby, Brish Columia Canada

Received: 12/10/08, Revised: 7/5/10, Accepted: 7/14/10, Published: 11/15/10

Abstract

The well-known Brown's lemma says that for every finite coloring of the positive integers, there exist a fixed positive integer d and arbitrarily large monochromatic sets $A = \{a_1 < a_2 < \cdots < a_n\}$ such that $\max_{1 \le i \le n-1} (a_{i+1} - a_i) \le d$. We provide upper and lower bounds for some of the functions associated with the "finite form" of this result.

1. Introduction

The following two facts are equivalent.

Fact A. For any finite coloring of the positive integers, there exist a fixed positive integer d and arbitrarily large monochromatic sets $A = \{a_1 < a_2 < \cdots < a_n\}$ such that $\max_{1 \le i \le n-1} (a_{i+1} - a_i) = d$.

Fact B. For every positive integer k, and every function $f : \mathbb{N} \to \mathbb{N}$, there exists a (smallest) positive integer B(k, f) such that every k-coloring of the interval [1, B(k, f)] produces a monochromatic set $A = \{a_1 < a_2 < \cdots < a_n\}$ such that |A| > f(d) where $d = \max_{1 \le i \le n-1} (a_{i+1} - a_i)$.

|A| > f(d) where $d = \max_{1 \le i \le n-1} (a_{i+1} - a_i)$. The integer $\max_{1 \le i \le n-1} (a_{i+1} - a_i)$ is called the gap size of the set $A = \{a_1 < a_2 < \cdots < a_n\}$, and is denoted by gs(A), so that Fact B asserts the existence of a monochromatic set A with |A| > f(gs(A)). (If |A| = 1, set gs(A) = 1.)

Fact A first appeared in [1]. Some applications appear in [2] and in [4]–[9]. Proofs of Fact A and Fact B are found in [7]. The book [4] contains a very short proof of Fact A.

Let *id* denote the identity function on \mathbb{N} . The inductive proof of Fact B in [7] gives the upper bound $B(k, id) < \lfloor k! \cdot e \rfloor$. This is the only previously known bound for any B(k, f), and is mentioned in [3].

In Table 1, we give all the known values or the best lower bounds (known to date) for B(k, id).

k	$B\left(k,id ight)$
1	2
2	5
3	13
4	35
5	≥ 74
6	≥ 143

Table 1: All Known Values/Lower Bounds of B(k, id).

In this note we show that $k^{c \log k} \leq B(k, id) \leq k \cdot (2^k - k) + 1, k \geq 1$, for some c > 0.

Definition 1. Let A be a finite subset of N. We say that A has Property P if $|B| \leq gs(B)$ for any subset B of A.

Theorem 2. Let $A = \{a_1 < a_2 < \cdots < a_n\}$ be a subset of \mathbb{N} . Then the following are equivalent.

- (i) A has Property P.
- (ii) For each $1 \le i < j \le n$ $|[a_i, a_j]| \le gs([a_i, a_j])$ where $[a_i, a_j] = \{a_i, a_{i+1}, \cdots, a_j\}.$

Proof. (i) \Rightarrow (ii) is true by definition.

(ii) \Rightarrow (i) Assume that A does not have Property P, so that there exists a subset B of A such that

$$|B| > gs(B).$$

Let $i = \min \{k : a_k \in B\}$ and $j = \max \{k : a_k \in B\}$. Then

$$B \subseteq [a_i, a_j].$$

Since $a_i, a_j \in B$ and $B \subseteq [a_i, a_j]$,

$$gs([a_i, a_j]) \leq gs(B).$$

Hence

$$gs([a_i, a_j]) \le gs(B) < |B| \le |[a_i, a_j]|,$$

therefore (ii) does not hold.

Note that a finite set of positive integers has Property P if and only if any integer shift of it has Property P. This fact suggests the following definitions.

Definition 3. Let $A = \{a_1 < a_2 < \cdots < a_n\}$ be a subset \mathbb{N} . Then we define the difference sequence of A, $\mathbf{d}(A)$, as

$$\mathbf{d}(A) = (a_2 - a_1, a_3 - a_2, \cdots, a_n - a_{n-1}).$$

Definition 4. Let $\mathbf{d} = (d_1, d_2, ..., d_n) \in \mathbb{N}^n$. Then we say that \mathbf{d} has Property P' if

$$\max_{a \le i \le b} d_i \ge b - a + 2$$

for all $1 \le a \le b \le n$, i.e., any *l* consecutive numbers in **d** have maximum bigger than or equal to l + 1.

The following theorem gives the correspondence between Property P and Property P'.

Theorem 5. A finite subset A of \mathbb{N} has Property P if and only if $\mathbf{d}(A)$ has Property P'.

Proof. Let $A = \{a_1 < a_2 < \cdots < a_n\} \subset \mathbb{N}$ and let $\mathbf{d}(A) = (d_1, d_2, \dots, d_{n-1})$ be the difference sequence of A where $d_i = a_{i+1} - a_i$ for $1 \leq i \leq n-1$. Then

$$\begin{array}{lll} A \text{ has Property P} & \Leftrightarrow & |[a_i,a_j]| \leq gs\left([a_i,a_j]\right) & \forall i,j \text{ s.t. } 1 \leq i < j \leq n \\ & \Leftrightarrow & j-i+1 \leq \max_{i \leq l \leq j-1} a_{l+1} - a_l & \forall i,j \text{ s.t. } 1 \leq i < j \leq n \\ & \Leftrightarrow & t-i+2 \leq \max_{i \leq l \leq t} d_l & \forall i,j \text{ s.t. } 1 \leq i \leq t \leq n-1 & (t=j-1) \\ & \Leftrightarrow & \mathbf{d}(A) \text{ has Property P'}. \end{array}$$

_
_

2. Upper Bound

In this section, we will show that

$$B(k, id) \le k \cdot (2^k - k) + 1$$

for all $k \ge 1$. (B(k, id) is defined just after Fact B above.)

Definition 6. For a positive integer n, define

$$D_n = \left\{ \mathbf{d} = (d_1, d_2, \dots, d_n) \in \mathbb{N}^n : \mathbf{d} \text{ has Property P'} \right\}.$$

Lemma 7. Let $\mathbf{d} = (d_1, d_2, ..., d_n)$ and $\mathbf{d}' = (d'_1, d'_2, ..., d'_m)$ for some positive integers $n, m \in \mathbb{N}$, and $t \in \mathbb{N}$, t > n+m+1 be arbitrary. For $\mathbf{d}'' = (d_1, d_2, ..., d_n, t, d'_1, d'_2, ..., d'_m)$

 \mathbf{d}'' has Property P' if and only if both \mathbf{d} and \mathbf{d}' have Property P'.

Proof. The forward implication follows directly from the definition.

Now, assume both **d** and **d'** have Property P' and let $1 \le a \le b \le n + m + 1$ be arbitrary. Then

Case 1: $b \leq n$

$$\max_{a \le i \le b} d''_i = \max_{a \le i \le b} d_i \ge b - a + 2, \text{ since } \mathbf{d} \in D_n.$$

Case 2: $a \le n+1 \le b$

$$\max_{a \le i \le b} d''_i \ge t \ge n + m + 2 \ge b - a + 2, \text{ since } d''_{n+1} = t.$$

 $\texttt{Case 3:} \ a \geq n+2$

$$\max_{a \le i \le b} d_i'' = \max_{a \le i \le b} d_i' \ge b - a + 2, \text{ since } \mathbf{d}' \in D_m.$$

Therefore, \mathbf{d}'' has Property P'.

Corollary 8. Let $\mathbf{d^i} \in D_{n_i}, 1 \leq i \leq m$ for some m and $n_1, n_2, ..., n_m$. Let

$$n = m - 1 + \sum_{i=1}^{m} n_i$$

Then $\mathbf{d} = (\mathbf{d}^1, t_1, \mathbf{d}^2, t_2, \dots, t_{m-1}, \mathbf{d}^m) \in D_n$ for any $t_i > n, 1 \le i \le m-1$.

Corollary 9. Let $\mathbf{d} \in D_n$ and $m \ge 2$ be arbitrary. Then

$$\mathbf{d}' = (\mathbf{d}, t, \mathbf{d}, t, \dots, t, \mathbf{d}) \in D_{m \cdot n + m - 1}$$

for any $t > m \cdot n + m - 1$, where in \mathbf{d}' , \mathbf{d} is repeated m times.

For $\mathbf{d} = (d_1, d_2, ..., d_n) \in \mathbb{N}^n$, define

$$S(\mathbf{d}) = \sum_{i=1}^{n} d_i.$$

For a given set $A = \{a_1 < a_2 < \dots < a_n\}$ of positive integers

$$S(d(A)) = a_n - a_1.$$

Now, define the function $F : \mathbb{N} \cup \{0\} \to \mathbb{N} \cup \{0\}$ by F(0) = 0 and

$$F(n) = \min_{\mathbf{d} \in D_n} S(\mathbf{d}).$$

for $n \geq 1$.

Note that

$$F(n) = \min \{a_{n+1} - a_1 : \{a_1 < a_2 < \dots < a_{n+1}\} \text{ has Property P}\}$$

for all $n \ge 1$.

It is easy to check that F(1) = 2, F(2) = 5 and F(3) = 8. The following two lemmas give a recursive definition for F(n).

Lemma 10. Let $n \in \mathbb{N}$. Then

$$F(n) = n + 1 + F(n - m) + F(m - 1)$$

for some m in [1, n].

Proof. Let $\mathbf{d} \in D_n$ be such that

$$F(n) = S(\mathbf{d}) = \sum_{i=1}^{n} d_i$$

By the definition of Property P', $\max_{1 \le i \le n} d_i \ge n + 1$. And, by the minimality of F(n), $\max_{1 \le i \le n} d_i \le n + 1$. Therefore,

$$\max_{1 \le i \le n} d_i = n + 1$$

otherwise we could replace any d_i greater than n+1 with n+1 and the new sequence thus obtained would still be in D_n and have a smaller sum.

Assume $d_m = n + 1$. Then

$$\mathbf{d} = (d_1, d_2, \dots, d_{m-1}, n+1, d_{m+1}, d_{m+2}, \dots, d_n).$$

Again by the minimality of F(n) and Lemma 7,

$$\sum_{i=1}^{m-1} d_i = F(m-1) \text{ and } \sum_{i=m+1}^n d_i = F(n-m).$$

Therefore,

$$F(n) = n + 1 + F(m - 1) + F(n - m)$$

for some m in [1, n].

Lemma 11. We have

$$F(n) = F(n-1) + \lfloor \log_2 n \rfloor + 2$$
$$F(n) = n + 1 + F\left(\left\lfloor \frac{n-1}{2} \right\rfloor\right) + F\left(\left\lceil \frac{n-1}{2} \right\rceil\right)$$

for all $n \geq 2$.

Proof. We will prove both equalities by induction on n, at the same time.

It is clear that both equalities are true for n = 2 and n = 3. Now assume that they are true for all m < n for some n > 3. So

$$F(m) = F(m-1) + \lfloor \log_2 m \rfloor + 2 \qquad \text{for all } m \in [1, n),$$

which implies $F(m) - F(m-1) = \lfloor \log_2 m \rfloor + 2 \qquad \text{for all } m \in [1, n),$
which implies $F(m) - F(m-1) \ge F(m-1) - F(m-2) \qquad \text{for all } m \in [2, n).$

Hence, if l < m < n then

$$F(m) - F(m-1) \ge F(l+1) - F(l)$$

which implies

$$F(m) + F(l) \ge F(m-1) + F(l+1).$$
(1)

Hence, if m < n,

$$\min_{0 \le l \le m} \left(F(l) + F(m-l) \right) = F\left(\left\lfloor \frac{m}{2} \right\rfloor \right) + F\left(\left\lceil \frac{m}{2} \right\rceil \right)$$
(2)

which follows by repeated application of (1).

By Lemma 7,

$$F(n) \le n + 1 + F(m - 1) + F(n - m)$$
(3)

for all m in [1, n]. And by Lemma 10,

$$F(n) = n + 1 + F(m - 1) + F(n - m)$$
(4)

for some m in [1, n].

Hence, by the minimality of F(n), (3) and (4),

$$F(n) = n + 1 + \min_{1 \le m \le n} \left(F(m-1) + F(n-m) \right)$$

and by (2)

$$F(n) = n + 1 + F\left(\left\lfloor \frac{n-1}{2} \right\rfloor\right) + F\left(\left\lceil \frac{n-1}{2} \right\rceil\right).$$
(5)

Now we'll show that

$$F(n) = F(n-1) + \lfloor \log_2 n \rfloor + 2.$$

Case 1: Let n = 2t for some $t \ge 2$. Then we have

$$F(2t) = 2t + 1 + F(t - 1) + F(t)$$
 by (5)

and

$$F(2t-1) = 2t + F(t-1) + F(t-1)$$
 by the induction hypothesis.

Hence,

$$F(2t) - F(2t - 1) = 1 + F(t) - F(t - 1)$$

= 1 + \log_2 t \rightarrow + 2 (by the induction hypothesis)
= \log_2 2t \rightarrow + 2.

Case 2: Let n = 2t + 1 for some $t \ge 2$. Then we have

$$F(2t+1) = 2t + 2 + F(t) + F(t)$$
 by (5), and
 $F(2t) = 2t + 1 + F(t) + F(t-1)$ (by the induction hypothesis).

Hence,

$$F(2t+1) - F(2t) = 1 + F(t) - F(t-1)$$

= 1 + \log_2 t\rightarrow + 2 (by the induction hypothesis)
= \log_2 2t\rightarrow + 2
= \log_2(2t+1)\rightarrow + 2, since 2t + 1 is odd.

Hence, in both cases

$$F(n) = F(n-1) + \lfloor \log_2 n \rfloor + 2.$$

Lemma 12. $F(2^{k} - 1) = k \cdot 2^{k}$ for all k in N.

Proof. The equality is clear for k = 1.

Assume that the assumption is true for k - 1, for some $k \ge 2$. Then

$$F(2^{k}-1) = 2 \cdot F(2^{k-1}-1) + 2^{k} \text{ (from Lemma 11)}$$

= $2 \cdot ((k-1) \cdot 2^{k-1}) + 2^{k} \text{ (by the induction hypothesis)}$
= $k \cdot 2^{k}$

We need two more lemmas to obtain an upper bound for B(k, id) using the function F(n).

Lemma 13.
$$F(2^k - k) = k(2^k - k) + 1$$
 for all k in N.

Proof. Let k in \mathbb{N} be given. Then

$$F(2^{k}-1) = F(2^{k}-k) + \sum_{i=1}^{k-1} \left(\lfloor \log_{2}(2^{k}-i) \rfloor + 2 \right) \text{ (by Lemma 11)}$$

= $F(2^{k}-k) + (k-1)((k-1)+2)$
= $F(2^{k}-k) + (k^{2}-1).$

Hence,

$$F(2^{k} - k) = F(2^{k} - 1) - (k^{2} - 1)$$

= $k \cdot 2^{k} - (k^{2} - 1)$
= $k \cdot (2^{k} - k) + 1.$

Lemma 14. Let $k \in \mathbb{N}$ be given and let $N \in \mathbb{N}$ be such that B(k, id) > kN + 1. Then $F(N) \leq kN$

Proof. Assume that B(k, id) > kN + 1 for some $N \in \mathbb{N}$. Then there exists a k-coloring of [1, kN + 1] such that each color class has Property P. By the pigeon hole principle, at least one of the color classes has at least N + 1 elements. Let C be this color class. Then

$$\mathbf{d}(C) = (d_1, d_2, \dots, d_{|C|-1}) \in D_{|C|-1}$$

by Theorem 5.

So,

$$F(N) \le F(|C|-1) \le S(\mathbf{d}(C)).$$

But since $C \subset [1, kN + 1]$,

$$S(\mathbf{d}(C) \le kN.$$

Hence

$$F(N) \le kN.$$

Theorem 15. We have $B(k, id) \leq k(2^k - k) + 1$ for all $k \geq 1$.

Proof. Let $k \ge 1$ be given and let $N = 2^k - k$.

If B(k, id) > kN + 1 then by Lemma 14 $F(N) \le kN$. But this is a contradiction as F(N) = kN + 1 by Lemma 13.

3. Lower Bound

In what follows, we'll recursively construct a 2^s -coloring of the interval $[1, n_s]$ in such a way that all color classes will have Property P and therefore we will conclude that $B(2^s, id) \ge n_s$, where $n_s = 2^s \cdot \prod_{i=0}^{s-1} (2^i + 1)$. This coloring will be represented by a matrix M_s with 2^s rows and $\prod_{i=0}^{s-1} (2^i + 1)$ columns where the rows of M_s are the color classes of the coloring.

Let J_s denote the $2^s \times \prod_{i=0}^{s-1} (2^i + 1)$ matrix of all 1's.

Let $d(M_s)$ denote the difference sequence of the first row of M_s . For s = 0, let $n_0 = 1$ and $M_0 = [1]$. For s = 1, let

$$n_{1} = 2^{1} \cdot 2 = 4, \text{ and}$$

$$M_{1} = \begin{bmatrix} M_{0} & M_{0} + 2n_{0}J_{0} \\ M_{0} + n_{0}J_{0} & M_{0} + 3n_{0}J_{0} \end{bmatrix}$$

$$= \begin{bmatrix} M_{0} & M_{0} + 2J_{0} \\ M_{0} + J_{0} & M_{0} + 3J_{0} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}.$$

For s = 2, let

$$n_{2} = 2^{2} \cdot 2 \cdot 3 = 24, \text{ and}$$

$$M_{2} = \begin{bmatrix} M_{1} & M_{1} + 2n_{1}J_{1} & M_{1} + 4n_{1}J_{1} \\ M_{1} + n_{1}J_{1} & M_{1} + 3n_{1}J_{1} & M_{1} + 5n_{1}J_{1} \end{bmatrix}$$

$$= \begin{bmatrix} M_{1} & M_{1} + 8J_{1} & M_{1} + 16J_{1} \\ M_{1} + 4J_{1} & M_{1} + 12J_{1} & M_{1} + 20J_{1} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 3 & 9 & 11 & 17 & 19 \\ 2 & 4 & 10 & 12 & 18 & 20 \\ 5 & 7 & 13 & 15 & 21 & 23 \\ 6 & 8 & 14 & 16 & 22 & 24 \end{bmatrix}.$$

Clearly, M_0, M_1 and M_2 have the desired property.

Note that all the rows of M_1 and M_2 are obtained by shifting the first row of the corresponding matrix. And this will turn out to be true for each M_s so that each row of M_s has the same difference sequence as the first row of M_s . We will designate the common difference sequence as $\mathbf{d}(M_s)$.

Note that $\mathbf{d}(M_2) = (2, 6, 2, 6, 2)$, so by Theorem 5 and Definition 4, each row of M_2 has Property P.

Assume that we have constructed the coloring M_s of $[1, n_s]$ such that all the color classes (rows of M_s) have Property P.

We construct M_{s+1} as follows.

$$M_{s+1} = \begin{bmatrix} M_s & M_s + 2n_s J_s & M_s + 4n_s J_s & \cdots & M_s + 2^{s+1} n_s J_s \\ M_s + n_s J_s & M_s + 3n_s J_s & M_s + 5n_s J_s & \cdots & M_s + (2^{s+1} + 1)n_s J_s \end{bmatrix}$$

Since each row of M_s is a shift of the first row of M_s , it is also true for M_{s+1} .

Then

$$\mathbf{d}(M_{s+1}) = (\mathbf{d}(M_s), t_s, \mathbf{d}(M_s), \cdots, t_s, \mathbf{d}(M_s)),$$

where $\mathbf{d}(M_s)$ is repeated $2^s + 1$ times, and

$$t_{s} = (2n_{s} + 1) - \max(M_{s})_{1}$$

= $(2^{s} + 1) \left(\prod_{i=0}^{s-1} (2^{i} + 1) - 1 \right) + 2^{s} + 1$ (can be proven by induction on s)
= $(2^{s} + 1) \prod_{i=0}^{s-1} (2^{i} + 1)$
= $\prod_{i=0}^{s} (2^{i} + 1)$

where $(M_s)_1$ denotes the first row of M_s .

Hence, by Corollary 9, $(M_s)_1$ has Property P and therefore all the color classes have Property P.

Therefore, we have

$$B(2^{s}, id) \geq n_{s}$$

$$= 2^{s} \prod_{i=0}^{s-1} (2^{i} + 1)$$

$$\geq 2^{s} \cdot 2^{\frac{s^{2}-s}{2}}$$

$$= 2^{\frac{s^{2}+s}{2}}$$

$$= (2^{s+1})^{\frac{s}{2}}.$$

Now, let k in \mathbb{N} be given. Then

$$2^s \le k < 2^{s+1}$$

for some $s \in \mathbb{N}$. So,

$$B(k, id) \geq B(2^{s}, id)$$

$$\geq (2^{s+1})^{\frac{s}{2}}$$

$$\geq k^{\frac{\log_{2} k - 1}{2}}$$

$$> k^{c \log k}$$

for some c > 0.

Remark A slight modification of the above construction gives better lower bounds for B(k, id), but it does not improve the asymptotic lower bound.

4. Upper Bound for B(k, mx)

In this section, we will give an upper bound for B(k, f) where f(x) = mx for some $m \in \mathbb{N}$. It will be analogous to what we did in Section 2.

Before we consider functions of this type, we will first prove a few theorems that are true for any increasing function.

Let $f : \mathbb{N} \longrightarrow \mathbb{N}$ be an arbitrary increasing function.

Definition 16. Let A be a finite subset of N. We say that A has Property P_f if $|B| \leq f(gs(B))$ for any subset B of A.

Theorem 17. Let $A = \{a_1 < a_2 < \cdots < a_n\}$ be a subset of \mathbb{N} . Then the following are equivalent.

- i. A has Property P_f .
- ii. For each $1 \leq i < j \leq n$,

$$|[a_i, a_j]| \le f\left(gs\left([a_i, a_j]\right)\right)$$

where $[a_i, a_j] = \{a_i, a_{i+1}, \cdots, a_j\}.$

Proof. Analogous to the proof of Theorem 2.

Definition 18. Let $\mathbf{d} = (d_1, d_2, ..., d_n) \in \mathbb{N}^n$. Then we say that \mathbf{d} has Property \mathbf{P}'_f if and only if, for all a, b such that $1 \leq a \leq b \leq n$ we have $\max_{a \leq i \leq b} d_i \geq f^{-1}(b - a + 2)$, i.e., any l consecutive numbers in \mathbf{d} have maximum bigger than or equal to $f^{-1}(l+1)$.

The following theorem gives the correspondence between Property P_f and Property P'_f .

Theorem 19. A finite subset A of \mathbb{N} has Property P_f if and only if $\mathbf{d}(A)$ has Property P'_f .

Proof. Analogous to the proof of Theorem 5.

Let n be a positive integer. Define

$$D_{n,f} = \left\{ \mathbf{d} = (d_1, d_2, \dots, d_n) \in \mathbb{N}^n : \mathbf{d} \text{ has Property P}_f^{\prime} \right\}.$$

Now, define the function $F_f : \mathbb{N} \to \mathbb{N} \cup \{0\}$ as

$$F_f(n) = \min_{\mathbf{d} \in D_{n,f}} S(\mathbf{d}).$$

Note that $F_f(n)$ equals $\min \{a_n - a_0 : \{a_0 < a_1 < \cdots < a_n\}$ has Property $P_f\}$.

Theorem 20. For every $n \ge 1$ and every increasing function f on \mathbb{N} ,

$$D_{n,f} = \left\{ \left(\left\lceil f^{-1}(d_1) \right\rceil, \left\lceil f^{-1}(d_2) \right\rceil, ..., \left\lceil f^{-1}(d_n) \right\rceil \right) : (d_1, d_2, ..., d_n) \in D_n \right\}.$$

Proof.

$$(d_1, d_2, \dots, d_n) \in D_n \implies \max_{a \le i \le b} d_i \ge b - a + 2 \quad \forall a, b \text{ s.t. } 1 \le a \le b \le n$$
$$\implies \max_{a \le i \le b} \left\lceil f^{-1} (d_i) \right\rceil \ge \max_{a \le i \le b} f^{-1} (d_i) \ge f^{-1} (b - a + 2)$$
$$\forall a, b \text{ s.t. } 1 \le a \le b \le n$$
$$\implies \left(\left\lceil f^{-1} (d_1) \right\rceil, \left\lceil f^{-1} (d_2) \right\rceil, \dots, \left\lceil f^{-1} (d_n) \right\rceil \right) \in D_{n, f}$$

$$(d_1, d_2, \dots, d_n) \in D_{n, f} \implies \max_{a \le i \le b} d_i \ge f^{-1} (b - a + 2) \quad \forall a, b \text{ s.t. } 1 \le a \le b \le n$$

$$\implies \max_{a \le i \le b} f (d_i) = f \left(\max_{a \le i \le b} d_i \right) \ge b - a + 2$$

$$\forall a, b \text{ s.t. } 1 \le a \le b \le n$$

$$\implies (f (d_1), f (d_2), \dots, f (d_n)) \in D_n$$

Theorem 21. Let k in \mathbb{N} be given. Then if there exists an N in \mathbb{N} such that $F_f(N) > kN$ then $B(k, f) \leq kN + 1$.

Proof. Analogous to the proof of Theorem 14. $\hfill \Box$

In the rest of this section, we will only consider linear functions on \mathbb{N} . For ease of notation, we will write $F_m(n)$, $B_m(n)$ and $D_{n,m}$ for $F_f(n)$, B(n, f) and $D_{n,f}$, respectively, if f(x) = mx for some $m \in \mathbb{N}$.

Lemma 22. Let m and n be two given positive integers. Then

$$F_m(n) \ge \frac{1}{m}F(n)$$
.

Proof. We have that

$$F_{m}(n) = \min_{\mathbf{d}\in D_{n,m}} S(\mathbf{d})$$

=
$$\min_{\mathbf{d}\in D_{n}} \sum_{i=1}^{n} \left\lceil \frac{d_{i}}{m} \right\rceil, \text{ by Theorem 20}$$

$$\geq \frac{1}{m} \min_{\mathbf{d}\in D_{n}} \sum_{i=1}^{n} d_{i}$$

=
$$\frac{1}{m} F(n).$$

Lemma 23. $F_m(2^{mk} - mk) \ge k(2^{mk} - mk) + 1.$

Theorem 24. Let k and m be two positive integers Then

$$B_m(k) \le k(2^{mk} - mk) + 1.$$

Proof. Analogous to the proof of Theorem 15.

5. Conclusion

Remark The method used in Section 3 to obtain a lower bound for $B(2^s, id)$ can be extended in the obvious way to obtain the following lower bound for $B(2^s, mx)$ for any positive integer m and s.

$$B(2^s, mx) \ge n_s = m2^s \prod_{i=0}^{s-1} (m2^i + 1).$$

Therefore, for any positive integer k,

$$B(k, mx) \ge (mk)^{clogk}$$

for some c > 0.

There is a big gap between the lower and upper bounds established for B(k, id). The known values suggests that the upper bound is a better estimate. In fact, it seems like

$$B(k, id) = k \cdot (2^{k-1}) + O(k).$$

It would be nice to have proven this.

References

- [1] Brown, T.C. On locally finite semigroups, Ukrainian Math. J. 20 (1968), 732-738.
- Brown, T.C. An interesting combinatorial method in the theory of locally finite semigroups, Pacific J. Math. 36 (1971), 285-289.
- Brown, T.C. On van der Waerden's Theorem and the Theorem of Paris and Harrington, J. Combin. Theory Series A 30 (1981), 108-111.
- [4] Hindman, H. and Strauss, D. Algebra in the Stone-Čech Compactification, W. de Gruyter, 1998.
- [5] Justin, J. Theoreme de van der Waerden, Lemme de Brown et demi-groups repetitifs, Journées sur la Théorie Algébrique des Demi-groups (1971), Faculté de Sciences de Lyon.
- [6] Lallement, G. Semigroups and Combinatorial Applications, Wiley-Interscience, New York, 1979.
- [7] Landman, B.M. and Robertson, A. Ramsey Theory on the Integers, AMS, 2004.
- [8] de Loca, A. and Varricchio, S. Finiteness and Regularity in Semigroups and Formal Languages, Springer-Verlag Berlin Heidelberg Newyork, 1998.
- [9] Straubing, H. The Burnside problem for semigroups of matrices, in Combinatorics on Words, Progress and Perspectives, Academic Press 1982, 279-295.